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ABSTRACT
The computation of logic-stage delays is a fundamental sub-problem
for many EDA tasks. Although accurate delays can be obtained via
circuit simulation, we must estimate the input assignments that will
maximize the delay. With conventional methods, it is not feasible to
estimate the delay for all input assignments on large sub-networks,
so previous approaches have relied on heuristics. We present a
symbolic algorithm that enables efficient computation of the El-
more delay under all input assignments and delay refinement us-
ing circuit-simulation. We analyze the Elmore estimate with three
metrics using data extracted from symbolic timing simulations of
industrial circuits.

1. INTRODUCTION
The computation of logic-stage delays in transistor networks is

a fundamental sub-problem for a number of electronic design au-
tomation tasks. Examples include static timing analysis, timing
simulation, transistor-sizing optimization, and library cell charac-
terization. Determination of the sensitizing conditions for the max-
imum and minimum stage delays is extremely difficult in general,
and exact solutions may be impossible for large networks.

Typically, stage delays are computed on channel-connected re-
gions (CCRs), consisting of all nodes and transistors reachable from
each other through transistor drain-source (channel) connections.
Given a particular input transition or simultaneous set of transi-
tions, we wish to determine the delay to the resulting transition on
a designated output node. This delay value is generally dependent
on the states of other inputs to the stage, as well as the initial condi-
tions of the internal nodes. For example, Figure 1 shows a dynamic
stage where the delay from a rising to pc falling is dependent on
the values of b, c, and x1. Inputs b and c control the conductance of
the discharge path, while the initial state of x1 affects the amount
of charge that must be removed. Determining the sensitizing con-
ditions for the minimum or maximum delay is further complicated
by potential logical relationships between the inputs.
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Figure 1: Effects of Side-Conditions on Delay

Previously published approaches have used a combination of for-
mal methods and heuristics. Desai and Yen [8] implemented al-
gorithms for sensitizing the maximum delay on a specified path
through a multi-CCR transistor-level network, which they decom-
posed into sensitizing a series of maximum delays through single
CCRs. Their method utilizes Boolean functions (stored as Binary
Decision Diagrams, or BDDs) to compute the set of input assign-
ments that enable the desired input to output transition. For small
CCRs, they advocate explicit enumeration of these input assign-
ments to determine which sensitizes the largest delay. For large
CCRs, they first determine the maximum-resistance driving path,
and then use a greedy algorithm that attempts to select the assign-
ment which maximizes the capacitance connected to the output
node. This approach assumes that the assignment that maximizes
the Elmore delay will maximize the true delay, an assumption that
is challenged by our data (Section 3). Furthermore, maximizing the
resistance before considering capacitances may not even lead to a
maximal Elmore delay, as there might be an assignment which sen-
sitizes a low-resistance, high-capacitance driving path with a larger
RC product. Burks and Main’s approach [5] is quite similar, though
they primarily focused on incorporating logical dependencies be-
tween inputs. To select the worst-case input assignment, they say
only that they use a heuristic method.

Our approach also uses the Elmore delay as an estimate of the
true delay. However, using symbolic techniques, we can exploit
the regularity of large CCRs and compute the Elmore delay ex-
actly for all input assignments while avoiding exponential blowup
for all but the most pathological cases. The primary enabler for
our methodology is the Multi-Terminal Binary Decision Diagram
(MTBDD) data structure [2]. Using MTBDDs, we compute the El-
more delay for all possible input assignments. We can then select
one assignment for each possible delay case, and use it as stimulus
for a SPICE-like simulation.

Section 2 discusses the computation of the symbolic Elmore de-
lay and its refinement to high-accuracy delay values with a SPICE-
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Figure 2: Elmore Approximation for Logic Stage

like simulator. We then present error-characterization data in Sec-
tion 3, drawn from test-runs of our symbolic timing simulator on
industrial circuit designs.

2. STAGE-DELAY CALCULATION

2.1 Elmore Estimate
Since our approach is based on the Elmore estimate of a logic-

stage’s delay, we will first present a quick review. The Elmore delay
is an estimate of the dominant time constant of the step-response of
an RC tree. As a result, it has been heavily utilized for estimat-
ing delays in interconnect networks. However, a number of re-
searchers have adapted it to obtain delay estimates of single stages
of MOSFET circuits [11, 6]. This is accomplished by removing
non-conducting (OFF) transistors and replacing conducting (ON)
transistors with simple linear resistors. At each internal node we
compute a single grounded capacitance value, and then heuristi-
cally break loops of conducting transistors to complete the RC tree.
This conversion process is depicted in Figure 2.

Besides the obviously risky approximation of transistors by lin-
ear resistances, the Elmore estimate has several deficiencies when
used for logic stages. First, it assumes that the inputs switch in-
stantaneously at time zero. To incorporate the effects of non-zero
rise/fall times, we can effectively modify the resistance represent-
ing the turning-on transistor to reflect its reduced drive-capacity or
calculate an empirical penalty to be added onto the final delay esti-
mate. The second major assumption is that of a single driving volt-
age source. This can be a significant difficulty in analyzing stages
where multiple pulldown paths can be activated simultaneously, or
for ratioed circuits where pullup and pulldown paths are “fighting”
each other. Again, empirical approximations can be made to incor-
porate these effects, as was done by Chu[6]. Since our symbolic
Elmore analysis procedure is based on Chu’s, it implements these
enhancements.

2.2 MTBDDs
Previously published approaches to stage-delay computation have

utilized symbolic techniques to handle logical restrictions on in-
put patterns with considerable success. However, they have had to
resort to heuristic methods for representing real-valued functions,
such as resistance, capacitance and delay. The primary enabler
for our approach, and the key to extending symbolic techniques
to this real-valued domain, is the Multi-Terminal Binary Decision
Diagram (MTBDD) [2].

MTBDDs are generalizations of BDDs that allow an arbitrary
number of real-valued terminals. For example, the MTBDD in Fig-
ure 3 represents the function � having two inputs � and � . To de-
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Figure 3: Example MTBDD
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Figure 4: Example MTBDD Operation

termine the return value for any given input assignment, we work
downwards from the root, following the solid arc from nodes as-
signed 1 and the dashed arcs from nodes assigned 0. We can see
that ������� 	 when either � or � is 1, and ����
�� � otherwise.

Computation on MTBDDs can be accomplished using the func-
tion MtbddApply, which is virtually identical to the well-known
BDD Apply function[3]. It takes as arguments an operator and two
operands, and returns an MTBDD representing the result for all
input assignments. For example, Figure 4 shows two input MTB-
DDs  and � , and the MTBDD that would result from comput-
ing MtbddApply(+,  , � ). MtbddApply has worst-case complexity�����  ����� � � �

, where
�  �

represents the number of terminals in
MTBDD  .

Using MtbddApply, we can perform any algebraic operations
necessary to compute series and parallel resistances, RC products,
and other quantities needed for our analysis. For example, since
Elmore delays in digital networks are computed by replacing tran-
sistors with switched resistors, we can represent its symbolic resis-
tance by an MTBDD which returns infinity where the transistor is
off, and its equivalent conducting resistance when it is on (Figure
5). Then, using MtbddApply calls, we can compute arbitrary paral-
lel and series combinations of these symbolic resistors as shown in
Figure 6.

Throughout this paper, we will denote BDDs and MTBDDs in
boldface (i.e.  ), while scalar values will appear in normal type.
We will also often utilize infix notation rather than explicit calls to
MtbddApply, such that ������ MtbddApply

� ������ � �
. In some

cases it will be convenient to specify trivial MTBDDs, consisting
only of a single terminal node, in brackets (i.e. ! 
"� 	$# ).
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Figure 6: Symbolic FET Analysis
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Figure 7: Example ������� �	� for dynamic NOR

2.3 Symbolic Elmore Analysis
The core of our symbolic Elmore analysis procedure is the pair of

functions SymbolicComputeDC and SymbolicComputeDelay, which
are described in detail in [9].

Given a channel-connected transistor network (CCR) whose in-
put and internal node-values have been set to appropriate Boolean
functions, SymbolicComputeDC(z) returns a BDD representing the
function to which node z will settle. SymbolicComputeDelay(z, 
 )
returns an MTBDD representing the time required for node z to set-
tle to function 
 . Both functions start from the output node and re-
cur through channel connections until they reach power or ground.
They then perform series and parallel computations as they re-
turn from the recursion, using symbolic algebra as outlined above.
SymbolicComputeDC uses a voltage-divider or charge-sharing equa-
tion to compute an MTBDD representing the steady-state voltage
at the output node under any input assignment. This voltage value
is thresholded to obtain a Boolean function for the output node. In
similar fashion, SymbolicComputeDelay computes symbolic resis-
tance and capacitance MTBDDs that are combined to obtain the
symbolic Elmore delay MTBDD, � ����� ��� .

Our procedure for computing the DC value of a CCR is more
general than that presented by Desai [8], since it handles the in-
termediate voltage levels generated by ratioed logic, and differen-
tiates automatically between the drive strengths of logic transistors
and weak holders. If this generality is not required, a purely BDD-
based approach such as Desai’s may be substituted. Alternatively,
the multi-strength approach used by COSMOS [4] has also been
shown to work well for most digital circuits.

Since all computations are performed symbolically using MTB-
DDs and symbolic algebra, the final delay MTBDD ������ ��� en-
codes the correct Elmore delay under all input assignments. In
general, ������ ��� can be of exponential size with respect to the num-
ber of inputs to the CCR. Typically, the CCRs being analyzed are
quite small and this exponential possibility is not a concern. Fortu-
nately, larger CCRs tend to contain regularities that can be captured
by subgraph sharing in the MTBDD data structure. Figure 7 shows

1 Refine( Network � , � ���� �	� )
2 ������������� � ! � #
3 while

� ������ ������ ! � # �
4 �����! � MtbddMinTerminal

� ������ ��� �
5 "$#&%('*) � MtbddEqual

� ������� ��� �+� ���, �
6 -�. ��/ � GetRandomCube
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7 1 nodes 2435�
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9 ��;	<>= �, <@? � TETA

� � �
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Figure 8: Delay Refinement

the ������� �	� that results from computing the symbolic Elmore de-
lay of a wide dynamic NOR gate. We see that we only need one
terminal for each number of pulldowns that can be on simultane-
ously, and that there are a large number of reconverging paths in
the MTBDD. Thus for circuits of this type, the delay MTBDD will
only be of quadratic size, rather than exponential. In our experi-
ence, pathological cases are extremely rare. In fact, we fairly easily
constructed the delay MTBDD for a 64-bit barrel-shifter containing
more than 8000 transistors in a single CCR.

2.4 Refining the Delay Values
As the results in Section 3 will demonstrate, the Elmore delay is

a fairly poor estimate of the stage delay. However, we have found
it to be quite effective at separating input patterns into equivalent
delay classes. Based on this observation, we have implemented
a methodology that refines the symbolic Elmore delay by select-
ing a sensitizing input assignment from each delay class and re-
computing the delay using a SPICE-like circuit simulator. In this
way, the symbolic Elmore delay becomes a heuristic pre-processing
routine for selecting input assignments.

The circuit simulator we have been working with is TETA [1, 7],
from Carnegie Mellon. It is essentially a fast, callable circuit sim-
ulator with accuracy comparable to SPICE. By using a successive
chord integration method and a table-lookup model for DE?�F cur-
rents, TETA can re-use expensive LU factorization results across
multiple timesteps and input stimuli. Thus, it is ideally suited to
quickly evaluating sets of delays on a single network under multi-
ple input assignments.

The algorithm for refining the symbolic Elmore delay MTBDD
is shown in Figure 8. For each terminal of the delay MTBDD, we
select a sensitizing assignment, evaluate the node values under that
assignment, and compute the delay using TETA. The refined delay
MTBDD is constructed with a series of MtbddITE operations, and
we terminate once we have refined each terminal of the Elmore
MTBDD.

This algorithm is perhaps deceptively simple, and we discov-
ered a number of difficulties in implementing it in practice. We
are effectively performing mixed-mode logic and circuit simula-
tion, where the conversion between the two modes is performed
at each CCR boundary. Since logic and circuit simulation operate
at such widely separated levels of abstraction, there are bound to
be substantial mismatches in results. While we found that the vast
majority of CCR analyses completed flawlessly, significant special
casing code was required to handle conflicts. Among other things,
we were forced to handle mismatching DC values, especially those
due to aggressively ratioed logic or charge-sharing glitches. In ad-
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Figure 9: Min/Max Stage Delay Computation

dition, circuit behavior ignored by the Elmore approximation (Sec-
tion 3.4) also resulted in refined delay values that were negative, or
transitions that occur outside the expected simulation time-window.
Since our initial application is in a symbolic simulation environ-
ment, we chose to be conservative by utilizing X’s wherever neces-
sary to cover the uncertainties. However, this special-casing code
will be highly dependent on the needs of the application in which
this delay-calculation scheme is embedded.

2.5 Applications
Armed with these tools, we can perform stage-delay calculation

for a number of applications. Each application will primarily differ
in the manner of initializing the input and internal nodes. In this
section we discuss how to apply these routines to symbolic timing
simulation and to static timing analysis.

2.5.1 Static Timing Analysis
For static timing analysis, path tracing will identify a transition

for which we need to calculate the minimum and maximum delay.
We will assume that transition is specified as the following tuple:

# � ��� 2 ���A.�� ��� 28���,��.��,����
��
� 2 � input node

�A.�� � output node

� 2 � � initial value of input node 3:9 � 

�A.��,� � initial value of output node 3:9 � 


 � logical restriction function

For example, # � � � ��; ��9 � 
 � �  -1� would represent the transi-
tion from a rising input node a to a falling output node z, assuming
that side inputs b and c are mutually exclusive.

The static timing analysis stage-delay algorithm is shown in Fig-
ure 9. To determine the setup conditions which enable a transition

of this form, we first compute the DC values that result from the
initial and final input stimuli. These are combined to determine the
conditions < under which the output node will switch as desired.
The switching constraint < is ANDed with the logical restriction
function 
 to obtain the final transition condition � . Lastly, the
inverse of � is XORed with all input node values to constrain the
acceptable input patterns.

For max delay calculation, we initialize all internal nodes to the
output initial value, and call SymbolicComputeDelay. The resul-
tant MTBDD contains the delay under each input assignment, so
we need only select the maximum terminal value. For min delay
calculation, we initialize all internal nodes to the output final value,
call SymbolicComputeDelay again, and select the minimum termi-
nal.

2.5.2 Symbolic Timing Simulation
For symbolic timing simulation (STS), we require the full gener-

ality of these two routines. This is not surprising, since STS was the
original motivation behind the development of our approach. Since
symbolic timing simulation is event-driven, we repeatedly select an
event from the event queue, update node state accordingly and com-
pute the resultant effects. In this way, input and internal node state
initialization is taken care of by the event-driven simulation engine.
After each event, we merely call SymbolicComputeDC to deter-
mine output and internal node DC values, and SymbolicComputeDelay
to obtain the symbolic delays. These delays are then scheduled as
new events according to the algorithms in [10].

3. RESULTS
We have implemented this methodology in the symbolic tim-

ing simulator STEED [10], and run it on a number of substantial
testcases. As a result, we have collected a large number of data
points over a wide range of circuit types, including static, domino,
DCVSL, pass-gate logic, and some bizarre custom topologies. We
generated some of the test cases ourselves, but the majority were
supplied by the Compaq Alpha microprocessor design team. The
TETA device models are for a 0.18um ST-Microelectronics pro-
cess.

In accordance with the potential applications of this methodol-
ogy, we have collected data with respect to three performance met-
rics. These metrics measure the Elmore delay’s absolute accuracy,
its ability to detect the min/max delay cases, and its classification of
delays into equivalence classes. In all three cases, the TETA delay
values are assumed to give the true delays, while the Elmore delay
is considered to be an approximation.

3.1 Absolute Accuracy
In terms of absolute accuracy, the Elmore delay does not perform

particularly well. Figure 10 shows the percentage errors in Elmore
delays vs TETA-based delays, over approximately 54000 simula-
tion cases. Only 50% of all Elmore delay values were within 50%
of the TETA-based value.

These inaccuracies are what we would obtain by simply utilizing
the Elmore estimate as our delay value, without applying a refine-
ment scheme based on a more accurate model.

3.2 Differentiation
The second performance metric we measured is differentiation.

Here we are attempting to determine how well the Elmore delay
groups different input assignments into equivalence classes. We
measured this by generating two additional random input assign-
ments within each equivalence class, and simulating them in TETA.
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Figure 10: Elmore Delay Accuracy
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Figure 11: Spread Within Elmore Equivalence Classes

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e 

of
 C

as
es

Percent Error

Error in Elmore Prediction for Max Delay Case

Figure 12: Errors From Maximizing Elmore Delay

The additional data points were compared with the one selected by
our algorithm, and the percentage error was computed.

Figure 11 shows a cumulative plot of these errors. Approxi-
mately 97% of the the additional data points obtained the same de-
lay value as the original representatives of their equivalence classes,
and 99% were within 20%.

This metric demonstrates the errors that can be expected when
applying our approach. For the vast majority of cases, the Elmore
estimate appears to correctly partition the input assignments into
equivalence classes. While there remain circuit effects that are not
accounted for by the Elmore estimate (see Section 3.4), they are
relatively rare and the frequency of their associated errors tend to
drop off quickly as their magnitudes increase.

3.3 Min/Max Selection
The final metric is min/max selection, which we measured by

comparing the true maximum delay over all input assignments with
the refined value of the maximum Elmore delay. This reflects the
way in which the Elmore delay is used to identify the maximum
delay case in previously published techniques.

Figure 12 shows the relative error due to assuming the maximum
Elmore delay case will yield the maximum true delay. Only in
about 74% of the cases did the maximum Elmore delay case give
the true maximum. Furthermore, in nearly 10% of the cases, the
maximum Elmore delay case produced a delay with more than 50%
error relative to the true maximum.

This metric highlights the errors associated with previously pub-
lished approaches, which attempt to maximize the Elmore estimate
and then refine that case alone. Since the absolute accuracy of the
Elmore estimate is so poor, it is not surprising that we would in-
cur errors by assuming the maximum Elmore delay will lead to the
maximum true delay.

3.4 Limitations of the Elmore Estimate
The previous section gives some quantitative information on the

potential inaccuracies associated with using the Elmore estimate.
Since large amounts of information are lost in constructing the El-
more equivalent circuit, we should expect some circuit-effects to be
ignored which could lead to significant errors.

In general, the circuit behavior on nodes that are reachable through
conducting transistors from the output node is modeled sufficiently
to allow the Elmore delay to identify equivalent assignments. From
analysis of a large number of error cases from our experiments, we
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have determined that the largest sources of errors are due to circuit
behavior on the far side of off or turning-off transistors. By far the
largest source of errors are capacitive coupling effects through non-
conducting source-drain connections and cross-over current flow-
ing through turning-off transistors. Both effects are inherently ex-
cluded by the nature of the Elmore estimate.

Figure 13 shows an example of the error induced by source-
drain capacitive coupling. While somewhat contrived, it serves
to demonstrate the circuit issues involved. Here we are attempt-
ing to determine the delay from in rising to out falling, given that
node c is low. Since c is low and its associated transistor is non-
conducting, the values of a and b will have no effect on the Elmore
delay estimate. However, using a circuit simulator such as SPICE
or TETA, we might see a considerable difference between the cases
� a � 
 � b � 
 � and � a � 9 � b=0 � . In the former, node b will be
falling, and through source-drain coupling, will accelerate the fall
of out. In the latter, node b will be stable and out will behave as
the Elmore delay predicts. In general, the effects of source-drain
coupling can be unbounded, and are heavily dependent on process
and transistor-sizing.

Figure 14 shows a case in which cross-over current through the
turning-off pFET connected to a will affect the stage delay. In
computing the Elmore delay, we set all inputs to their final values
(a � 9 in this case), replace conducting transistors with resistors,
and determine the settling time of the resulting RC network. There-
fore, any circuit behavior occurring in the top portion of the pFET
chain cannot affect the Elmore computation. However, under cir-
cuit simulation, we will see a delay difference between the cases
� b � 9 � c � 9 � and � b � 9 � c=1 � . The two cases differ only in the
resistance of the top portion of the pFET pullup chain, and thus in
the amount of cross-over current that will flow into node out while
a is rising. If a is rising slowly enough, and the difference in cross-
over current is large, we could see substantial variations in the true
delay of these sub-cases despite having the same Elmore estimate.

4. CONCLUSION
We have presented a new technique for computing logic-stage

delays in CMOS transistor networks. Our technique leverages MTB-
DDs to enable the computation of an Elmore delay estimate for all
possible input assignments, which effectively groups these assign-
ments in Elmore-equivalent classes. We can extract a representa-

tive from each of the classes for refinement of the delay value using
circuit simulation. This approach is applicable to a wide range of
EDA problems, and demonstrates the power of symbolic methods
even in dealing with largely real-valued domains such as timing.

Our approach represents an improvement in accuracy over pre-
viously published methods of delay calculation for static timing
analysis in that enables direct computation of the Elmore estimate
for all input assignments. Given this capability, we can avoid a ma-
jor source of errors by maximizing the refined delay values directly,
rather than assuming the maximal-Elmore case will maximize the
true delay.
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