
Parallelizing DSP Nested Loops on Reconfigurable
Architectures using Data Context Switching

Kiran Bondalapati
Chameleon Systems, Inc.

161 Nortech Parkway
San Jose, CA 95134, USA

kiran@cmln.com

ABSTRACT
Recon�gurable architectures promise signi�cant performance
and exibility advantages over conventional architectures.
Automatic mapping techniques that exploit the features of
the hardware are needed to leverage the power of these ar-
chitectures. In this paper, we develop techniques for par-
allelizing nested loop computations from digital signal pro-
cessing (DSP) applications onto high performance pipelined
con�gurations. We propose a novel data context switch-
ing technique that exploits the embedded distributed mem-
ory available in recon�gurable architectures to parallelize
such loops. Our technique is demonstrated on two diverse
state-of-the-art recon�gurable architectures, namely, Virtex
and the Chameleon Systems Recon�gurable Communica-
tions Processor. Our techniques show signi�cant perfor-
mance improvements on both architectures and also per-
form better than state-of-the-art DSP and microprocessor
architectures.

Keywords
Con�gurable Computing, Mapping Techniques, Loops

1. INTRODUCTION
Current and future signal processing applications have

signi�cant performance and exibility demands. Algorith-
mic performance demands in future wireless communication,
voice and video processing, etc. are evolving at a faster rate
than the performance of computational platforms. Rapidly
changing dynamic performance requirements and frequently
changing application features and standards demand exible
hardware architectures. Recon�gurable hardware promises
to deliver the required performance, exibility, and cost by
combining aspects of microprocessors, ASICs, and DSPs.
Automatic mapping of applications onto con�gurable hard-

ware is necessary to deliver high performance for applica-
tions. Pipelining and parallelizing are the two main tech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
38th DAC, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

niques employed to exploit recon�gurable hardware. Loops
with simple control and no data dependencies between dif-
ferent iterations of the loop are easy to compile/synthesize
for high performance on a variety of architectures. Map-
ping loops onto various con�gurable architectures has been
studied extensively in research. In this paper, we focus on
mapping nested loops that have dependencies. These de-
pendencies do not permit existing parallelization techniques
to be applied. The dependencies in such computations limit
the throughput of the pipelined computations. Some exam-
ples of such loops are In�nite Impulse Response (IIR) Filters
and adaptive �lters. We will use the IIR as a motivating ex-
ample in the remainder of the paper.
In this paper, we develop an approach to map nested loops

by using a combination of pipelining, parallelization and our
proposed optimization - data context switching. Each itera-
tion of the outermost loop in the computations de�nes a data
context. Data context switching interleaves the execution of
the iterations of the loops. The data dependency in the inner
loop reduces the throughput that can be achieved due to the
inherent pipeline delays. We use embedded memory blocks
in the architecture to parallelize the outer loop of the com-
putation to increase the throughput. The resulting designs
have the optimal throughput of one output per cycle, utiliz-
ing reduced hardware. The mapping scales with the number
of loop iterations and the amount of hardware resources. We
compare the performance bene�ts of experimental mappings
using our approach with performance that can be achieved
on state-of-the-art microprocessors and DSPs.
Section 2 describes the nested loop mapping problem and

our data context switching approach. Section 3 illustrates
the performance bene�ts that can be achieved on the re-
con�gurable architectures using our approach and Section 4
draws conclusions.

2. PARALLELIZING NESTED DSP LOOPS
Loop computations provide an opportunity for paralleliz-

ing the computations on recon�gurable architectures. Re-
con�gurable architectures have a large number of functional
units which can be utilized for concurrent computations
(parallel or pipelined). Pipelined functional units support
high clock frequency and hence high performance. The
rich dynamic interconnection network provides enough data
bandwidth for parallel and pipelined computations. We �rst
clarify some of the nomenclature used in the remainder of
the paper by introducing some de�nitions.

2.1 Nested Loops
Loops which have loop carried dependencies are di�cult

to execute concurrently. In this paper, we focus on the par-
allelization and pipelining of nested loop computations that
have loop carried dependencies. Such loops occur in several
classes of applications including signal processing. An ex-
ample of such a computation is an In�nite Impulse Response
(IIR) �lter:

y(n) = a0 � x(n) � �10

k=1ak � y(n� k)

In typical signal processing applications, this �lter is ex-
ecuted for a frame (a speci�ed set of samples such as 80)
and for a large number of channels (e.g. 100). The �lter
coe�cients are di�erent for each channel and the sampled
waveform is di�erent for each channel. The complete code
where the i loop denotes di�erent channels is given below:

for i=1 to 100 do

for j=1 to 80 do

sum = 0;

for k=1 to 10 do

S1: sum = sum + a[i,k]*y[i,j-k-1];

endfor

S2: y[i,j] = a[i,0] * x[i,j] - sum;

endfor

endfor

In the following sections, we show how such loops can be
mapped onto recon�gurable architectures by using pipelin-
ing and data context switching. The source code for the
example will be used as a running example to illustrate our
techniques.

2.2 Pipelining
In the �rst phase, the inner loops are transformed into

a pipelined datapath. The datapath is constructed for the
body of the innermost loop. In the absence of loop-carried
dependencies, the loop will have a data ow graph with no
cycles. The single stage datapath itself can have internal
pipeline registers and internal pipeline delay. This delay is
referred to as the single stage pipeline delay, �. The example
shows a datapath with a delay of two.
The innermost loop is unrolled to generate the pipelined

datapath for loops with feedback. The depth of the pipeline
is the number of iterations of the innermost loop. As shown
in Figure 1, unrolling the example results in a depth of ten
stages. If there was no loop-carried dependency in the j

loop then this pipeline can be mapped and executed on the
hardware to generate results at a throughput of one out-
put/cycle. But, the loop-carried dependency results in a
feedback path from the last stage of the pipeline to the �rst
stage. This feedback path and the multiplexer to accommo-
date the selection of the feedback and the input are shown
in Figure 1.

2.3 Limitations on the Throughput
In the sample code, there is a loop-carried dependency in

the j loop. Each pipeline stage has inherent delay bu�ers
(registers) to satisfy timing constraints of the functional
units and the routing. The design operates at a much lower
frequency without these delay bu�ers. A new sample cannot
be fed into the pipeline every cycle due to this dependency.
Hence, the throughput of the pipeline reduces to the delay

of each pipeline stage. Also, the outermost loop (i loop) will
have to be executed sequentially after �nishing the complete
j loop. The computation cannot be interleaved due to the
loop-carried dependency.
Let � denote the pipeline stage delay and Nr denote the

number of iterations of the iterations of the r loop (r 2

fi; j; kg). The throughput of the pipeline is 1

�
and total

time to execute the loop in number of cycles is given by

Tpipe = � � (Nk +Nj) �Ni

On typical DSP engines and microprocessors, loop trans-
formation does not provide any performance bene�ts. Loop
unrolling of the k loop can provide additional instructions
in the basic block for more Instruction Level Parallelism
(ILP). But, the memory bandwidth required for executing
each computation, S1, limits the performance even if there
are multiple functional units. Simple mapping onto recon-
�gurable architectures will also face similar limitations in
spite of multiple functional units. The embedded memory
in recon�gurable architectures is exploited to perform data
context switching to eliminate the memory bandwidth prob-
lem.

2.4 Data Context Switching (DCS)
The outermost loop (i loop) in the example does not have

any loop-carried dependencies. Using the pipelined datap-
ath, the outermost loop can be executed sequentially. The
loop can be parallelized by replicating the hardware map-
ping and executing a subset of the iterations on each repli-
cated pipeline. But, there is a limit on the hardware re-
sources that are available on most recon�gurable architec-
tures, including Virtex and Chameleon RPF. We developed
an alternate technique to improve the throughput of the
pipelined datapath - data context switching.
Each iteration of the outermost loop de�nes a di�erent

data context. Each data context di�ers in the data inputs
and constants that are used in the computation. In the ex-
ample computation, each context di�ers in the x and y in-
put data and the �lter coe�cients a. By using data context
memories, we simulate multiple versions of the pipeline com-
puting on distinct data sets. Data context switching uses the
embedded and distributed local memory to store the context
information and retrieve it at appropriate cycles in the com-
putation. Data context switching is achieved by using three
steps:
I. Rescheduling input data: The pipelined design in the
previous section computes the full frame (j loop) for one
channel (i loop) at a time. In our data context switching
approach we compute one sample of each channel at a time.
This interleaves the execution of the iterations of the out-
ermost loop (i loop) with the execution of the j loop. In
conventional architectures this increases the memory band-
width requirements. In recon�gurable architectures, the in-
herent pipeline registers in each stage and the data context
memories are utilized to store intermediate results. The in-
herent pipeline delays in each stage are exploited to switch
the data context on which the pipeline is operating in each
cycle.
II. Memories for constants: The constants used in com-
putations of all the outer loop iterations (such as �lter coef-
�cients) are stored in local on-chip memories. This necessi-
tates additional logic for addressing the local memories and
accessing the correct constants for each operation in each

*

+

*

+

*

+

*

_

a[i,1] a[i,2] a[i,10]

0

x[i,j] a[i,0]

y[i,j-k-1]

y[i,j]

Figure 1: Pipelined datapath of all ten stages

stage. Since these are in local distributed memories, they
can be updated by using distributed computational units.
This can be exploited for computations in which the con-
stants change, such as adaptive �lters.
This memory for constants is shown in Figure 2. A context

index counter is utilized to extract the correct constants for
each step of the computation as shown in the �gure.
III. Data context memories: At any cycle in the com-
putation, the corresponding functional unit in each pipeline
stage operates on the same data context (iteration of out-
ermost loop). The intermediate results ow through the
pipeline stage and arrive at the next stage in the pipeline
after a delay �. To compute on the same data context in the
corresponding functional unit in each stage, this pipeline
stage delay should equal the number of contexts that are
being computed. To match these, we introduce distributed
memories as FIFO bu�ers which store the context infor-
mation in each pipeline stage. The re-timed data ow en-
sures that the correct constants and input operands for each
context appear at the inputs of each functional unit in the
pipeline.
The resulting datapath of one pipeline stage after apply-

ing the data context switching optimization is shown in Fig-
ure 2. The single pipeline stage shows how the data context
information is distributed throughout the single stage.

*

+

Constants

Memory

Data Context

Memory

REG

R
E
G

Context
Index Counter

Context 2

Context 3

Contexts 4 to 100

Next Stage

Contexts 1 to 100

R
E
G

REGContext 1

Figure 2: Optimized datapath for one stage

The latency of the pipeline increases to Nk � Ni but the
total number of computation cycles becomes:

Tdcs = (Nk +Nj) �Ni

The speedup achieved for executing all the iterations of
the loops using data context switching is �. On the Chameleon
RPF, the most aggressive pipelined design has a � of 6.
In typical recon�gurable hardware (such as Virtex FPGAs)
implementations � is usually much higher due to pipelined
functional units with several stages (such as 5-stage pipelined
multiplier).

2.5 DSP/Microprocessor Implementations
The instruction schedule that can be obtained on a RISC

or DSP processor is limited by the bandwidth that can be
achieved from memory/registers. The number of data values
operated on in the nested loop computation make it di�cult
to store all values in registers. The �lter coe�cients in the
example computation are the values typically expected to be
available in registers. If the innermost loop body is mapped
onto a schedule of delay Tbody then the computation on a
DSP or microprocessor will run in the following number of
cycles:

Tdsp = Tbody �Nk �Nj �Ni

where Ni,Nj, and Nk denote the number of iterations of
the i,j and k loop respectively. On a microprocessor the
example loop body can take up to 20 cycles to execute. Re-
con�gurable architectures attain considerable speedup over
DSPs and microprocessors as evident from the number of
cycles.

3. PERFORMANCE RESULTS
We performed experiments on various platforms to vali-

date the performance bene�ts of data context switching. The
example DSP nested loop discussed in Section 2 is a 10-tap
In�nite Impulse Response (IIR) �lter that occurs in sev-
eral signal processing applications including the Voice over
IP (VoIP) standards. Examples of similar computations in-
cluded cryptographic engines that use multiple rounds with
feedback and iterative encoders and decoders for compres-
sion and error correction.
We mapped the nested loop onto di�erent architectures

to obtain performance results. Chameleon Systems Recon-
�gurable Communications Processor (RCP) [3, 4] integrates

Table 1: Performance Results and Speedups

Platform Frequency Approach Cycles Speedup Time Speedup
MHz (in cycles) (�sec) (in time)

UltraSPARC-II 450 800000 1.0 2000 1.0
DSP 300 200000 4.0 660 3.0
Virtex 56.7 Standard 81000 9.8 1426 1.4
Virtex 56.7 DCS 9000 88.9 158 12.7

Chameleon 125 Standard 54000 14.8 432 4.6
Chameleon 125 DCS 9000 88.9 72 27.8
Chameleon 125 DCS+Double 4500 177.8 36 55.6

a custom recon�gurable coarse-grain datapath with a 32-
bit ARC RISC processing core. The recon�gurable process-
ing fabric consists of 32-bit programmable arithmetic units
and 16x24 multipliers in addition to distributed local storage
memories (LSM). Virtex is a �ne-grain FPGA from Xilinx
that provides a lookup table based architecture. Virtex also
supports distributed memory, either as BlockRAM memory
blocks or distributed RAM which is built using the lookup
table logic.
Table 1 shows the performance of various architectures

and the di�erent mapping techniques on the recon�gurable
architectures. The results marked as DCS indicate the re-
sults obtained using data context switching. The base case
for comparing the speedup is the UltraSPARC-II implemen-
tation. The basic loop body timing, Tbody, for the micropro-
cessor and DSP is 10 and 2 cycles, respectively. This was
obtained based on the most aggressive scheduling of the in-
structions.
The mapped design on the Virtex had a pipeline single

stage delay of 9 cycles. The design runs at 56.7MHz on a
-6 speed grade part which is the fastest Xilinx device. The
local memory blocks were implemented as a combination
of distributed logic cells and the BlockRAM available on
the Virtex. This was necessary to balance the usage of the
BlockRAM and the distributed memory. A design using
only BlockRAMs would �t only on the largest Virtex device,
V1000. On a V600 device, 91% of the BlockRAMs and 43%
of the logic cells are utilized by combining distributed RAMs
and BlockRAMs.
The Chameleon implementation was developed using the

C�SIDE software tools [4]. Two stages of the pipeline (with
one multiply-accumulate each) are mapped onto one tile
achieving maximum tile usage. The complete design was
mapped onto two slices of the Chameleon chip. The de-
sign uses 50% of the DPUs and 31% of the LSM memories.
The control FSM is simple and is the same for each pipeline
stage. Two versions of the design can be mapped onto the
Chameleon chip with the available recon�gurable resources.
These can operate in parallel to achieve twice the speedup.
This speedup is reected in the last row (DCS+Double) in
Table 1.
Using standard pipelining approach on recon�gurable ar-

chitectures, we obtain speedup of 4.6 over UltraSPARC-
II. Using our dynamic context switching (DCS) approach,
we obtain speedup of up to 27.8 over UltraSPARC-II im-
plementation in actual execution timings (in spite of lower
clock speed). The optimized Chameleon mapping achieves a
speedup of 9.2 over state-of-the-art DSP architecture which
is extensively optimized for such nested loops. By fully
utilizing the resources and using two duplicate versions of
the mapping, it is possible to further improve the perfor-
mance by a factor of 2. This is illustrated in the last row

(DCS+Double) of Table 1. Chameleon chip can achieve a
speedup of 55.6 over UltraSPARC-II implementation.
The results indicate that recon�gurable architectures can

achieve impressive speedups over microprocessors by exploit-
ing the recon�gurable logic resources. Our novel data con-
text switching approach can signi�cantly enhance the speedup
that can be obtained on recon�gurable architectures by ex-
ploiting the distributed memory resources. The class of sig-
nal processing computations we considered are word-oriented.
Chameleon architecture has coarse-grain functional units
and performs better than Virtex architecture for such signal
processing applications.

4. CONCLUSIONS
We propose a novel data context switching technique to

map nested DSP loops onto recon�gurable architectures.
Nested loops with feedback dependencies occur in several
signal processing applications. Data context switching over-
comes this feedback limitations by switching between di�er-
ent contexts of the outermost loop. Embedded local mem-
ory found in most recon�gurable architectures is utilized for
data context switching. We demonstrate speed-ups using our
technique on diverse recon�gurable architectures.

5. ACKNOWLEDGMENT
I am grateful to several of my colleagues at Chameleon

Systems (http://www.chameleonsystems.com) who provided
signi�cant inputs in developing the above techniques. The
techniques developed have been built on the foundation de-
veloped while doing my Ph.D. work at University of South-
ern California. Special thanks go to my mentor at Chameleon
Systems, Michael Raam, and my advisor at USC, Prof. Vik-
tor Prasanna.

6. REFERENCES
[1] K. Bondalapati and V.K. Prasanna. Mapping Loops

onto Recon�gurable Architectures. In 8th
International Workshop on Field-Programmable Logic
and Applications, September 1998.

[2] K. Bondalapati and V.K. Prasanna. Loop Pipelining
and Optimization for Recon�gurable Architectures. In
Recon�gurable Architectures Workshop (RAW '2000),
May 2000.

[3] L. Caglar and B. Salefski. Recon�gurable Computing
in Wireless. In 38th Design Automation Conference,
June 2001.

[4] Chameleon Systems.
http://www.chameleonsystems.com/.

[5] Xilinx Inc.(www.xilinx.com). Virtex Series FPGAs.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

