
Transformations for the Synthesis and Optimization of
Asynchronous Distributed Control�

Michael Theobald Steven M. Nowick

Department of Computer Science
Columbia University
New York, NY 10027

Abstract
Asynchronous design has been the focus of renewed interest. How-
ever, a key bottleneck is the lack of high-quality CAD tools for the
synthesis of large-scale systems which also allow design-space ex-
ploration. This paper proposes a new synthesis method to address
this issue, based on transformations.

The method starts with a scheduled and resource-bounded
Control-Data Flow Graph (CDFG). Global transformations are first
applied to the entire CDFG, unoptimized controllers are then ex-
tracted, and, finally, local transforms are applied to the individual
controllers. The result is a highly-optimized set of interacting dis-
tributed controllers. The new transforms include aggressive timing-
and area-oriented optimizations, several of which have not been pre-
viously supported by existing asynchronous CAD tools.

As a case study, the method is applied to the well-known differen-
tial equation solver synthesis benchmark. Results comparable to a
highly-optimized manual design by Yun et al. [26] can be obtained
by applying the new automated transformations. Such an implemen-
tation cannot be obtained using existing asynchronous CAD tools.

1. Introduction
Asynchronous design has been the focus of much recent interest

and research activity. Several commercial asynchronous chips have
been produced in the last couple of years (e.g., microcontroller chips
in Philips’ commercial pagers and other designs [12]), and a num-
ber of companies are designing experimental asynchronous chips
(e.g. [22] and [6]).

However, a key current limitation is the lack of high-quality CAD
tools for systematic design-space exploration and optimization of
large-scale asynchronous systems. Traditionally, a number of asyn-
chronous CAD tools are limited to the design of individual con-
trollers [10, 9, 25], and thus are only useful for one step in the overall
synthesis flow.

For large-scale asynchronous systems, two design approaches are
now widely-used: (i) manual design, and (ii) use of syntax-directed
CAD tools. Manual design allows a number of aggressive optimiza-
tions, but is cumbersome, slow and error-prone, and it does not pro-
vide systematic and automated exploration of the design space. For
example, the Intel asynchronous instruction-length decoder chip [22]
took over two years to complete, using a combination of manual
techniques and academic synthesis tools for designing individual
controllers.

Alternatively, several automated approaches have been proposed
for large-scale systems which are syntax-directed [4, 20]. These
methods start from a high-level abstraction, such as a concurrent
program, and obtain a circuit by translating each individual program
construct into a corresponding sub-circuit. For example, the Philips’
Tangram tool [20], developed by van Berkel et al., provides only one

� This work was supported by NSF ITR Award No. NSF-CCR-0086036,
NSF Award No. NSF-CCR-9988241, and a gift from Sun Microsystems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

implementation per specification. There are no options, other than
some simple peephole techniques, for design-space exploration. If
the user is dissatisfied with the circuit, the original program must
be manually restructured and re-compiled in the hopes of some im-
provement. Other CAD approaches allow only restricted and non-
systematic techniques for design-space exploration [17, 4]. Thus, a
huge potential for optimization has been overlooked for a long time.

Recently, there is increasing interest in alternative approaches to
the synthesis of large-scale asynchronous systems [2, 7, 15, 3, 5, 13,
16, 14, 21, 1]. Cortadella and Badia propose a synthesis style for the
control unit where each datapath block is controlled by a dedicated
sub-controller [7], while Kim et al.’s approach subdivides these sub-
controllers even further, assigning a sub-sub-controller to each of
the processes bound to a functional unit [13]. These approaches are
strictly deterministic and “template-based”. Only one approach [1]
considers design space exploration, but at a higher level: for resource
binding and allocation. Interestingly, some efficient manual designs
have been presented to which none of these methods has access.
Thus, there is still a serious lack of approaches providing system-
atic design space exploration.

The contribution of this paper is a new approach for the automated
synthesis and optimization of large-scale asynchronous systems. In
particular, this paper is the first to introduce, formalize and automate
a wide-ranging and powerful set of transformations, which can be
used for the synthesis of asynchronous distributed control. Unlike
previous approaches, these new transforms can be applied in a sys-
tematic way to explore the design space and find optimal distributed
controller implementations.1

The new method starts with a given scheduled and resource-
bounded Control-Data Flow Graph (CDFG) [18]. Global transforms
are first applied to the entire CDFG, unoptimized controllers are
then extracted, and, finally, local transforms are then applied to the
individual controllers. The result is a highly-optimized set of in-
teracting distributed controllers. The transforms include aggressive
timing- and area-oriented optimizations such as: global communi-
cation channel multiplexing and symmetrization; loop parallelism;
introduction of global “relative timing”-based simplification; mul-
tiplexor pre-selection; sharing of local signals; and the removal of
unnecessary handshaking wires. Several of these optimizations have
not been previously formalized or provided by any other existing
asynchronous CAD tool, or else in only a limited way. For example,
Kim et al.’s recent approach [13] is also based on CDFGs, however
their method does not do design space exploration, and is limited to
handling less concurrent specifications than our approach.

As a detailed case study, the transformations are applied to the
well-known differential equation solver high-level synthesis bench-
mark [26, 18]. A highly-optimized asynchronous implementation by
Yun et al. [26] was manually designed, using a number of aggressive
timing- and area-based optimizations. Such an implementation can-
not be obtained using existing CAD tools. We demonstrate that a
very similar optimized design can be simply and automatically de-
rived through systematic application of our new transformations.

2. Overview of Approach
This section presents a basic overview of the synthesis and op-

timization method. The initial CDFG specification (already sched-
uled, resource-bound) and the target architecture are first introduced.
Then, a brief summary of the synthesis flow is presented.

1These transforms, while at a much higher level of synthesis, are loosely
analogous to the powerful transforms of SIS (collapse, extract, etc.) used for
design-space exploration in multi-level logic synthesis.

LOOP C< 0

B:=2dx+dx C:=X<a

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

END

M2:=U*dx X:=X+dx

C:=X<a

START

START START STARTSTART

X1:=X

Y:=Y+M2

NOOP

ENDLOOP

1
2 3

4

5 6

7

Figure 1: CDFG for DIFFEQ
2.1 CDFG Specification

The synthesis method receives as an input a scheduled and
resource-bounded CDFG [18] as shown in Figure 1.

In the figure, all operation nodes bound to the same functional
unit are placed within the same column. For example, the three RTL
statementsB := 2dx+dx,A := Y +M1, and U := U�M1 are all
bound to the ALU1 unit. In total, there are four functional units: two
ALUs (ALU1 and ALU2, first and last column) and two multipliers
(MUL1 and MUL2). Note that the LOOP and ENDLOOP nodes are
both bound to ALU2. The START and END nodes are not bound to
any functional unit. In addition to the types of nodes in the example,
the approach also allows IF and ENDIF nodes.

The CDFG includes arcs that are typically present in synchronous
CDFGs, as well as new types of arcs that are specific to the asyn-
chronous case. The former includes the data-dependency arcs
(dashed arcs), as well as the control arcs going from and to the
LOOP, ENDLOOP, IF, ENDIF, START, and END nodes. In the syn-
chronous case, only these arcs would be used, as well as assignments
to time slices that indicate the scheduling of operations. In the asyn-
chronous case, however, scheduling information must be made ex-
plicit: precedence arcs are added between operations bound to the
same unit to enforce the schedule (dotted arcs). Finally, the correct
order of register writes and reads must be enforced (dashed arcs, like
data-dependency arcs). Details will be given below. An operation
node in a CDFG may “fire” if all its predecessors have “fired”.

For the proposed approach, the CDFG is assumed to be block-
structured: the set of nodes between IF and ENDIF nodes, and
LOOP and ENDLOOP nodes are considered a block. Data depen-
dency arcs, control flow arcs, and register allocation arcs may never
cross block boundaries; these arcs can only enter or exit at the block
root node (IF or LOOP). (This restriction simplifies the handling of
data dependency constraints and register resources, which are allo-
cated on a per-block basis.)

In the asynchronous case, where operations may take non-fixed
(i.e., variable) amounts of time, a legal schedule of operations is ob-
tained by a direct implementation of the constraint arcs. That is, each
constraint arc is implemented (in the basic case) by a single wire or
global channel, which is used to signal when the receiving CDFG
node is allowed to execute.

An operation node R1 := R2 opR3 has the following constraint
arcs that indicate when the operation node may fire and which con-
sequences the firing on other operation nodes has:
Control flow (solid arcs): control arcs from and to START, END,
IF, ENDIF, LOOP and ENDLOOP nodes.
Scheduling within a FU (dotted arcs): scheduling arcs to order the
operations assigned to a functional unit
Data dependency (dashed arcs): (i) incoming arcs from operations
that provide its operands R2 and R3, and (ii) outgoing arcs to oper-
ations that use the result R1.
Register allocation (dashed arcs): (i) incoming arcs from all oper-
ations that use the old register value ofR1, to avoid early overwriting
of R1, and (ii) outgoing arcs to the next writes to R2 and R3 to avoid
early writes of R2 and R3.
Example: A constraint arc that has source node a and destination
node b is denoted: (a; b). In Figure 1, the arc (LOOP; A := Y +

M1) is a control arc, and (A := Y + M1; U := U �M1) is a

Shared
resources

Datapath

Controller

Controller

Controller

Register

Mux

Register

Mux

Functional Unit
Mux Mux

Control

Dedicated
Muxes

5

4

3

2
1

6

Functional Unit
Mux Mux

Functional Unit
Mux Mux

local
communicationglobal

communication

Figure 2: Target Architecture
scheduling arc for ALU1. The arcs (M1 := U �X1; A := Y +M1)

and (A := Y +M1;M1 := A�B) illustrate the data dependencies
incident to the node A := Y +M1. The arc (M1 := U �X1; U :=

U �M1) is a register allocation constraint arc with respect to U ,
and it is a data dependency arc with respect to M1.
2.2 Target Architecture

The target architecture for the proposed approach is shown in Fig-
ure 2. The datapath consists of functional units (each with associated
dedicated input muxes), as well as registers (each with an associated
input mux). The distributed control consists of one controller per
functional unit. Each controller interacts with other controllers, with
its dedicated functional unit and input muxes, and with registers and
their input muxes. Note that the registers and their input muxes may
be shared by other controllers.

The basic operating protocol is as follows. A functional unit con-
troller waits for a set of “ready” signals from other controllers. These
signals indicate that the controller may execute the next RTL state-
ment bound to the corresponding functional unit. Once enabled, the
controller then interacts with the datapath according to the figure,
i.e. by selecting the appropriate source input muxes, then activating
its functional unit, then selecting the appropriate destination register
mux, and finally latching the result. As a last step, the functional
unit, in turn, signals to other controllers with “ready” signals that it
has completed execution of the RTL statement.

Controller-controller communication (using “ready” signals) is
implemented using a form of “transition signaling”. Unlike in stan-
dard 2-phase transition-signaling protocol [4], where a transition pair
on two wires (req + =ack+ or req � =ack�) completes a commu-
nication between sender and receiver, the proposed scheme is even
simpler: no acknowledgment wire is used. Thus, controllers com-
municate with each other by a a single transition (req+ or req�)
on one wire. (This scheme is based on the observation that such a
ready signal is typically the last event in executing an RTL state-
ment, and no acknowledgment is required.) “Ready” signals serve
thus two purposes: incoming signals to a functional unit are “re-
quest” signals, and outgoing signals are “done” signals. In contrast,
the controller-datapath communication uses a standard 4-phase pro-
tocol. In a 4-phase protocol, a standard return-to-zero handshake
protocol is used: req+; ack+; req�; ack�.
2.3 Synthesis and Optimization Approach

Asynchronous Distributed Control Synthesis

Given: Resource-bound and scheduled CDFG.
Result: Optimized set of interacting controllers.

1. Apply global transformations to optimize controller-
controller communication.

2. Extract one AFSM for each functional unit.
3. Apply local transformations for each AFSM to opti-

mize controller-datapath communication.

Before discussing the optimizing transforms, a basic unoptimized
synthesis method is presented. In an initial CDFG (see Figure 1),
all RTL statements bound to the same functional unit (i.e., shown in
the same column) will be controlled by a single functional unit con-
troller. A number of constraint arcs run between distinct columns
(RTL statements executed by different functional units). Each such
constraint arc will be translated into a a global communication chan-
nel between the corresponding functional unit controllers, in the tar-
get architecture (see Figure 2). In particular, each communication
channel is implemented by a single wire (“ready” signal). Note

LOOP C< 0

B:=2dx+dx C:=X<a

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

END

M2:=U*dx X:=X+dx

C:=X<a

X1:=X

Y:=Y+M2

NOOP

ENDLOOP

8

9

10
11

12

13

14

15

Figure 3: After GT1 and GT2. (Note: START and END nodes
are omitted.)
that while constraint arcs connect individual RTL statements in the
CDFG, communication channels connect functional unit controllers
(which may implement more than one RTL statement).

Each functional unit controller is formally extracted from the
CDFG (step 2), and can be synthesized using extended burst-mode
finite state machines (AFSM) [19, 25, 11, 10, 23]. Burst-mode is
a commonly-used approach to designing Mealy-like asynchronous
controllers. This step will be explained in detail below (Section 4).
Each constraint (arc) is translated into a single wire (channel). Each
CDFG node (e.g., RTL statement) is translated into a series of micro-
operations in the controller, where the controller interacts with and
sequences the datapath: setting of input muxes, performing opera-
tions, writing results, etc.

Using the above approach, however, the resulting implementation
may be quite poor. Therefore, this paper introduces optimizing trans-
formations, both global (at the CDFG level, Step 1) and local (on the
extracted AFSMs, Step 3), to further improve the design. Global and
local transformations are introduced below (Sections 3 and 5). The
global transformations (controller-controller) have two goals: reduc-
ing the number of communication channels between controllers, and
improving performance (increasing concurrency, reducing critical
path delays). These transformations are defined in such a way that
they preserve the precedence order of the original CDFG.

After the global transformations, one controller per functional unit
can then be extracted, as described above (Step 2; see Figure 11 for
a fragment of the burst-mode controller for ALU1). Finally, local
transformations improve the controller-datapath (Step 3) protocol for
both speed and area: they remove or share wires, increase parallelism
of operations, or reshuffle operations to initiate them earlier.

Note that the goal of this paper is to introduce the new set of trans-
formations, which can be used to optimize a system (much like the
transforms of SIS for multi-level logic synthesis). Each of the indi-
vidual transforms has been automated. In the future, this approach
will be extended by creating scripts that automatically apply (or de-
rive) a sequence of transforms to find an optimal implementation.
Also, note that the assumed architecture (e.g. one controller per
functional unit) somewhat limits the design space; this restriction
will be relaxed in the future (e.g. multiple controllers per functional
unit, or one controller for several functional units).

3. Global Transformations: Controller-Controller
In this section, the set of global transformations to optimize

controller-controller communication is described. (For more details
see [24].)
3.1 GT1: Loop Parallelism

The goal of the “loop parallelism” transform is to improve con-
currency of the distributed control. The transform re-structures the
CDFG to allow more parallelism between successive iterations of a
loop.

Compare Figures 1 and 3. In Figure 1, all four functional unit
controllers are synchronized with an ENDLOOP node — by the
arcs labeled 1 through 3. In contrast, in Figure 3 these arcs to the
ENDLOOP-node are removed, and replaced by more localized syn-
chronization constraints: the two backward arcs 8 and 9. As a con-
sequence, greater loop-level parallelism is achieved. Note that back-
ward arcs are special arcs in the sense that they are ignored during
the first execution of a loop body. Effectively, a backward arc is a
pre-enabled constraint for the first iteration of a loop.

The “loop parallelism” transform consists of four steps in se-
quence.
A. Remove synchronization at ENDLOOP. The goal is to allow the
overlap of successive loop body executions. The solution is to re-

move all arcs in the CDFG that are pointing to ENDLOOP; only the
FU scheduling arc that connects ENDLOOP to its predecessor node
in the FU schedule remains. Compare again Figures 1 and 3. In step
A the three arcs labeled 1, 2, and 3 are removed. The FU scheduling
arc 4 remains.
B. Add backward arcs: loop body variables. In the unoptimized
case, the loop body includes data and register dependency con-
straints to avoid early reads and writes of registers (cf. Section 2.1).
The goal of this step is to add constraints to extend these constraints
across the loop boundary. For each variable in the loop body, back-
ward arcs from all last instances (one write or multiple parallel reads)
of the variable to the first instances (one write or multiple parallel
reads) are added. In the example, step B adds the two backward arcs
8 and 9.
C. Add arcs: loop variable. In the unoptimized case, the synchro-
nization at ENDLOOP guarantees that the loop variable is updated
before the LOOP-node examines it. In the optimized case, this re-
quirement must be enforced explicitly. Thus, an arc from the last
write of the loop variable in the loop body to the ENDLOOP-node
is added. In the DIFFEQ example, step C does not need to add any
constraint. The candidate arc from the node C := X < a to the
ENDLOOP-node is implied by the path of constraint arcs 12, 13,
and 14. Thus, the candidate arc (C := X < a;ENDLOOP) is a
dominated constraint (cf. Section 3.2), and therefore not added.
D. Limit parallelism. In the unoptimized scheme, global controller-
controller communication is implemented by transition signaling
without explicit acknowledgments (cf. Section 2.2). Effectively,
there is always a chain of other events that provides an acknowl-
edgment. After removing the arcs pointing to ENDLOOP in step
A, this requirement may no longer hold for arcs from the LOOP-
node to the first use of a functional unit, so multiple requests may be
queued on the same wire, in the loop. The requirement is reinstated
by adding arcs from the first use of each functional unit in the loop
to the ENDLOOP-node. In effect, these arcs restrict parallelism to
two consecutive iterations of a loop: thus, the next loop iteration can
only be started after all functional units have completed the first op-
eration in the current loop. In the example, step D does, like step
C, not add any constraints. The first CDFG nodes of each functional
unit — ALU1: A : +Y +M1, MUL1: M1 := U � X1, MUL2:
M2 := U � dx, ALU2: X := X + dx — is already connected to
ENDLOOP through a path of constraints.

There is one timing assumption that must hold if this transform
is to be safely applied. This case concerns the final exiting from
the loop. After applying the loop transform, the final execution of a
LOOP-node examines the loop variable while other functional units
may still be executing statements of the previous iteration. Hence,
the LOOP-node “exits” possibly before the last iteration of the loop
is finished. In this scenario, the transform is safe as long as a system
timing constraint is satisfied: all loop components complete their
operation before needed.

3.2 GT2: Removal of Dominated Constraints
The goal of the transformation is to remove constraints that are

implied by other constraints. A constraint arc from node a to node
b is implied if there is a path of other constraints starting at node a
and ending at node b. More formally, the constraint is removed if it
is contained in the transitive closure of all other constraints.

Consider constraint arc 5 in Figure 1. This constraint is implied
by the path consisting of the two constraints 6 and 7. Thus arc 5 can
be removed.

3.3 GT3: Relative-Timing Optimization
In asynchronous design, “relative timing” refers to the exploita-

tion of knowledge about the relative occurrence of events in order
to simplify design. Relative timing assumptions have been effec-
tive [22, 8]. However, these approaches were limited to single con-
trollers. GT3 extends the use of relative-timing information to opti-
mize interacting controllers, and uses it to remove unnecessary arcs.

Consider Figure 3. There are two constraint arcs from other con-
trollers toU := U�M1, labeled 10 and 11. The former gets enabled
after one computation — M2 := U � dx — while the latter gets en-
abled after three computations — M1 := U �X1, A := Y +M1,
M1 := A �B. Thus, the latter constraint arc (11) is “slower” under
most assumptions. Hence, the former arc (10) is deleted in Figure 4.
A detailed timing analysis must be performed to determine where
this transformation can be applied: it must be verified that the re-
moved constraint arc is under no execution path the last to occur.

LOOP C< 0

B:=2dx+dx C:=X<a

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

END

M2:=U*dx X:=X+dx

C:=X<a

Y:=Y+M2; X1:=X

NOOP

ENDLOOP

A1M1_1

A1M2

A1M1_2

M1A1_1

M1A1_2

A1A2

M1A2 M
2A2

A2M
2A

2M
1

A2E

Figure 4: Channels after GT1 - GT4

ALU2-
Controller

C:=X<a
LOOP C< 0
X:=X+dx
C:=X<a

Y:=Y+M2;
X1:=X

ENDLOOP

ALU1-
Controller
B:=2dx+dx
A:=Y+M1
U:=U-M1

MUL1-
Controller
M1:=U*X1
M1:=A*B

MUL2-
Controller
M2:=U*dx

NOOP

A
1M

1_1

A1M
2

M
1A

1_1

M
1A

1_2

A1A2

M
1A

2

M
2A

2

A
2M

2

A2M
1

A. Before Channel Elimination B. After Channel Elimination

A
1M

1_2

ALU2-
Controller

C:=X<a
LOOP C< 0
X:=X+dx
C:=X<a

Y:=Y+M2;
X1:=X

ENDLOOP

ALU1-
Controller
B:=2dx+dx
A:=Y+M1
U:=U-M1

MUL1-
Controller
M1:=U*X1
M1:=A*B

MUL2-
Controller
M2:=U*dx

NOOP

A
1M

1

A1M

M
1A

1

M
2A

2

A
2M

2

Figure 5: GT5: Channel Elimination for DIFFEQ
3.4 GT4: Merging of Assignment Nodes

Merging of assignment nodes is aimed at improving the speed of
a functional unit controller. In the unoptimized scheme, each CDFG
node is assigned to a functional unit. However, assignment nodes,
i.e. Ri := Rj , simply examine and write registers, and thus do
not use the functional unit. Such nodes can therefore be executed in
parallel with the preceding or succeeding RTL operation assigned to
the same functional unit.

Compare Figures 3 and 4. In Figure 3, the two nodes Y := Y +

M2 and X1 := X are both assigned to the ALU2 functional unit.
Since the node X1 := X does not use the ALU2 functional unit,
the assignment can be executed in parallel with executing the RTL-
node Y := Y +M2. Thus, the two nodes are merged into one node
Y := Y +M2;X1 := X in Figure 4.
3.5 GT5: Communication Channel Elimination

After the first four transformations GT1 through GT4 have been
applied to optimize at the graph level (i.e. CDFG), each remaining
constraint arc is assigned to a distinct communication channel. Each
communication channel connects the two functional controllers that
correspond to the two CDFG nodes that the arc connects (see Fig-
ure 4). The goal of “communication channel elimination” is to delete
as many communication channels between controllers as possible.

Figure 5 gives a summary of the significant impact of the three
GT5 transforms on simplifying communication. On the left side the
communication channels before the application of GT5 transforms is
shown, and on the right side the communication channels after sev-
eral GT5 transforms — multiplexing, concurrency reduction, sym-
metrization — have been applied. In the example, GT5 transforms
reduce the number of channels from ten to five, including two multi-
way channels. The result is much simpler inter-controller commu-
nication. The CDFG corresponding to the left side of the figure is
shown in Figure 4, and the CDFG corresponding to the right side is
in Figure 6.
GT 5.1: Channel Multiplexing
The idea of “channel multiplexing” is to share communication chan-
nels to reduce the number of channels. Multiplexing can be ap-
plied to two channels that connect the same functional units and that
are never concurrently active. After multiplexing, the two different
events on the two channels typically become different phases on the
shared channel.

Consider Figure 7, where a CDFG fragment is shown on the left
side and the corresponding controller structure is shown on the up-
per right side. The CDFG fragment contains two nodes bound to
ALU1 and two nodes bound to MUL1. There are four arcs between
the two functional units, and initially each one is implemented by a
separate communication channel. Thus, there are two channels from
ALU1 to MUL1, and two from MUL1 to ALU1. “Multiplexing” the

LOOP C< 0

B:=2dx+dx C:=X<a

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

END

M2:=U*dx X:=X+dx

C:=X<a

Y:=Y+M2; X1:=X

NOOP

ENDLOOP

A2E

A1M

A1M

M1A M2A2

A2M

M2A2

A2M

M1A

Figure 6: After Channel Elimination
two channels from ALU1 to MUL1 leads to sharing one communi-
cation channel (and thus a wire, since each channel becomes a wire,
cf. Section 2.3) from ALU1 to MUL1 (bottom of right side). Simi-
larly, the two channels from MUL1 to ALU1 are multiplexed. As a
consequence, the number of channels is reduced from four to two.
GT 5.2: Concurrency Reduction
“Concurrency reduction” starts from a configuration where channel
multiplexing is not directly applicable, and re-structures constraints
so that multiplexing can be applied. The transform replaces a sim-
ple constraint from a node a to a node c by a chain of two other
constraints: a constraint from a to b, and a constraint from b to c.
Thus, the additional hub may reduce the concurrency of the system
(it possibly delays the start of executing node c), but it eliminates a
channel by re-using an existing channel. The goal of the transform
is to apply it to non-critical constraints, and to replace a constraint
in such a way with a chain that the resulting two constraints can be
multiplexed with existing constraints.

Consider the CDFG in Figure 8. The constraint arc 4old is re-
placed by the existing arc 3 and a new arc 4new . The new arc can
be multiplexed with the arc 1 since both arcs connect the same func-
tional units. Hence, the number of communication channels is re-
duced, and the overall communication structure is simplified: the di-
rect communication channel between the leftmost (ALU1) and right-
most (ALU2) controllers has been eliminated, as shown in Figure 8
(bottom).
GT 5.3: Channel Symmetrization
Like GT5.2, “symmetrization” starts from a configuration where
channel multiplexing is not directly applicable. Constraints are
added to the CDFG so that multiplexing becomes possible.

Unlike other transforms, the goal of symmetrization is to create
multi-way channels. A multi-way channel connects a single CDFG
source node to multiple CDFG destination nodes. Each node must
correspond to a distinct functional unit. Events sent by the “sender”
are seen by all receiving functional units. Given two sets of channels
that have the same sending functional unit, but have overlapping but
not identical sets of receiving functional units, the idea of the trans-
form is to first make the receiving sets symmetric, by “safe addition”
of arcs in the CDFG. Next, each set is transformed to a multi-way
channel. Finally, the pair of multi-way channels is multiplexed.

Figure 9 visualizes the symmetrization transform. Consider the
three constraints 1, 2, and 3 in the CDFG, where 1 and 2 form a set
of channels, and 3 is a singleton set. The first set connects ALU1 to
MUL1 and MUL2, while the second set connects ALU1 to MUL1.
The transform makes the two sets symmetric by adding constraint
4added to the CDFG, and also to the singleton set. The two sets
become two multi-way channels connecting ALU1 to MUL1/MUL2
(see bottom of the figure), which are then multiplexed.

4. Individual Controller Extraction
After the global transformations have been applied, an asyn-

chronous finite state machine (AFSM) is extracted for each func-
tional unit controller. The extraction algorithm is a direct determin-
istic translation from the CDFG (see Figure 6) into asynchronous
Burst-Mode Controllers [19, 25, 11, 10, 23].
4.1 Background on Burst-Mode FSMs

In a Burst-Mode AFSM, state transitions occur when a specified
input burst (set of variables before the “/”) has been received. A frag-
ment of a BM AFSM is shown in Figure 11. During the transition to
the next state, the corresponding output burst (set of variables after
the “/”) is generated. Extended Burst-Mode AFSMs (XBM) allow

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

1

2

3

4

ALU1
Controller

MUL1
Controller

1
2
3
4

Initial: Each constraint becomes a channel

ALU1
Controller

MUL1
Controller

1, 3

2, 4

Multiplexing reduces channels

CDFG

Bound to ALU1 Bound to MUL1

Figure 7: GT5.1: Multiplexing Constraints

A:=Y+M1

M1:=U*X1

M1:=A*B Y:=Y+M2; X1:=X

ALU1

MUL1

1

2
3

4_old

ALU2
1

2

3
4_old

4 _new

4 _new

Eliminate channel between ALU 1 controller and MUL1 controller.
Add Constraint 4: re-uses existing channel between MUL1 and ALU2.

CDFG:

Figure 8: GT5.2: Concurrency Reduction

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

M2:=U*dx

2

3

4_added

ALU1

MUL1

13

MUL2
2

4_added

Adding a constraint
allows to re-use an

existing forked wire.

1

Figure 9: GT5.3: Symmetrization

DIFFEQ CDFG

Start

A1M

M1A

A1M

M1A

B:=2dx+dx

A:=Y+M1

U:=U-M1

Start/-

- /A1M

M1A/ -

- /A1M

M1A/-
- /A1M

B:=2dx+dx

A:=Y+M1

U:=U-M1

M1:=U*X1

M1:=A*B

START

START START

M2:=U*dx

NOOP

“Symbolic” ALU1 AFSM

Figure 10: Burst-Mode Extraction
two important extensions. Selected inputs may arrive on earlier arcs
(directed don’t cares), and level inputs can be sampled (conditionals)
(see [19, 25] for details).

4.2 Burst-Mode Extraction: An Overview
The proposed extraction method is based on a direct translation

scheme for each CDFG node. Consider Figure 10, which illustrates
the extraction of the ALU1 controller. On the left side of the figure
a partial CDFG that includes all nodes bound to ALU1 is shown,
and on the right side is the corresponding “symbolic” AFSM. This
AFSM includes one symbolic node for each CDFG node.

Each node is then expanded into a Burst-Mode fragment which
implements the operation. In Figure 11, the left side shows the
ALU1 controller, and its communication with other controllers and
its datapath. The controller executes three RTL statements (B :=

2dx + dx, A := Y + M1, and U := U � M1), and it is now
waiting to execute the RTL node, A := Y + M1. The right side
of the figure shows the Burst-Mode fragment corresponding to the
RTL node A := Y +M1. This fragment will be explained in detail
below.

A BM fragment for an RTL node implements the basic protocol:
(a) wait for a set of ready signals (“requests”) from other controllers,
(b) perform the datapath operation, and finally (c) send “ready” sig-
nals (“dones”) to other controllers to indicate that it has finished ex-
ecuting the RTL statement. “Ready” signals are single transitions on
wires.

The given BM fragment in Figure 11 consists of a series of six
state transitions to implement the micro-operations: (i) wait for re-
quest and set input muxes, (ii) do operation, (iii) set register mux,
(iv) write register, (v) reset local signals, and (vi) send done signals.
Each of the micro-operations (i) through (iv) is done by a req+ and
ack+ pair, the first half of a 4-phase handshake. In the figure the
micro-operation labels are placed between the corresponding req+
and ack+ pair. In (v) all req/ack-pairs are then re-set to 0 in parallel
(req�, ack�). Micro-operation (ii) includes two tasks: (a) select-
ing the operation to be performed — FUs such as ALUs can execute
multiple operations, and (b) initiating the execution in the functional
unit.

The actual algorithm for BM extraction is summarized as follows.
First, each CDFG node is directly translated into a corresponding
BM fragment. Second, BM fragments are stitched together to obtain
a near-complete specification for the controller. Third, signal phases
to global communication signals are assigned. Each basic stitched
template assumes all “ready” (“request”) signals arrive just when
needed. However, in reality, the system may be more concurrent and
thus the fourth step modifies the BM specification to “back-annotate”
the early arrival of requests. (For more details see [24].) Figure 11

M1A+ / mux_sel_Y_M1 +

eval_ack + / reg_A_mux_sel +

reg_A_mux_ack + / reg_A_latch +

mux_Y_M1_ack + / eval + alu_sel_op +

mux_Y_M1_ack - eval_ack -
reg_A_mux_ack - reg_A_latch_ack -
/ A1M+

reg_A_ack + / mux_sel_Y_M1 - eval -
alu_sel_op- reg_A_mux_sel- reg_A_latch-

ALU1-Controller:

B:=2dx+dx

A:=Y+M1

U:=U-M1

Controller

Controller

ready signals
(“request”)

ready signals
(“done”)

local
signals:

set input muxes

do operation

write reg

set reg mux

[wait for request]

[do operation]

[set reg mux]

[write reg]

[reset local signals]

[send ready (“done”) signals]

BM Fragment for A:=Y+M1ALU1-Controller

[set input muxes]

1

3

4

5

7

6

2

7

Figure 11: BM Expansion of RTL-Node A:=Y+M1

shows the translation of a single CDFG node (for A := Y +M1)
into a BM fragment with global signal phases assigned (e.g. M1A+,
A1M+).

5. Local Transformations: Controller-Datapath

The outcome of controller extraction (Section 4) is a BM speci-
fication for each functional unit controller. In particular, the global
interaction between controllers (“ready signals”) is now fixed. Local
transformations can now be applied to each of the individual con-
trollers. (For more details see [24].)

5.1 LT1: Move-Up
The transformation “move-up” safely moves an output signal of

the Burst-Mode controller to an earlier burst. The output can be ei-
ther a local signal (triggering a micro-operation) or a global ready
(“done”) signal. The primary aim of the transform is to reduce the
critical path delay to start the execution of an operation. A secondary
aim of the transform is to provide further opportunities for applying
other transforms. When “move-up” is applied to a global “done”
signal, it effectively shortens the execution time of the current RTL
operation. As an example, consider the transform applied to the final
A1M+ ready (“done”) signal in the transition from state 6 to state 7
in the BM fragment in Figure 11. Under most local timing require-
ments, it is safe to “move-up” the global “done” signalA1M+ to the
state transition from state 4 to 5, i.e. latching the result (reg U latch)
and sending a global “done” signal to other controllers (A1M+) are
now performed in parallel.

5.2 LT2: Move-Down
The “move-down” transformation moves output signals that are

not on the critical path to a later burst. The motivation is that moving
signals to later bursts provides opportunities for the application of the
“signal sharing” transform (LT5). “Move-down” is typically applied
to the reset phases of local signals (req�, or ack�).

5.3 LT3: Mux-Preselection
Mux selection is often on the critical path for a system. Tradi-

tionally, muxes are selected on demand, that is, at the time they are
needed. The idea of “mux-preselection” is to break with that concept
and pre-select muxes early. For a functional unit executing the cur-
rent RTL operation, it is typically deterministic which RTL operation
is next, so its controller can start pre-selecting the muxes for the next
operation at the end of the current RTL operation’s execution.2

2“Mux-preselection” can be viewed as an important special case of “move-
up”.

#comm. ALU1 ALU2 MUL1 MUL2
channels #states #trans #states #trans #states #trans #states #trans

unoptimized 17 26 29 45 52 21 24 12 14
optimized-GT 5 16 18 26 32 12 14 8 10
optimized-GT-and-LT 5 7 9 11 13 6 6 4 5
YUN (manual) 5 7 9 14 16 4 4 3 3

Figure 12: State Machine Comparison

Yun (manual) our method
#prod #lits #prod #lits

ALU1 18 110 14 83
ALU2 46 141 40 113
MUL1 19 41 11 30
MUL2 10 15 8 18
total 93 307 73 244

Figure 13: Gate-Level Comparison
5.4 LT4: Remove Acknowledgments

The transform LT4 removes local acknowledgment wires that
are not essential for the correct behavior of the controller. In
the unoptimized approach, communication between the controller
and its datapath uses a 4-phase standard handshake protocol:
req+; ack+; req�; ack�. The transform replaces the req=ack
wire pair by just a req-wire whenever possible. User-supplied tim-
ing information is used to verify that the controller operates cor-
rectly once the acknowledgment wire has been deleted. In the
simple case, the transformation leaves events in order, but simply
deletes acknowledgments. As an example, the signals reg A ack
and reg A mux ack might be removed from the BM fragment in Fig-
ure 11.

5.5 LT5: Signal Sharing
Finally, “signal sharing” aims at reducing the number of outputs

of a controller. Eliminating outputs is achieved by merging distinct
control wires into a single forked wire. The forked wire then acti-
vates several datapath operations concurrently. This transformation
can be applied to two wires that carry the same signal value at all
times, i.e., if their corresponding signals appear in precisely the same
set of output bursts in a BM specification across all RTL statements
executed by the controller.

6. Experimental Results
A prototype version of the presented method has been imple-

mented. As a case study, the method is applied to the well-known dif-
ferential equation solver synthesis benchmark. A highly-optimized
implementation was manually designed by Yun et al. [26]. Their
circuits used many aggressive optimizations which have been inac-
cessible to existing asynchronous CAD tools.

Our automated tool has been applied to this example in three ex-
periments, as shown in Figure 12. The unoptimized controllers were
generated directly from the original CDFG with no global or local
transformations applied; the optimized-GT controllers only after the
application of global transformations, and the optimized-GT-and-LT
controllers after application of both sets of transformations.

Column 1 of Figure 12 compares the number of communication
channels. For the DIFFEQ example, the number of channels was re-
duced from 17 (unoptimized) to 5 (optimized-GT), thus showing the
impact of the global transformations. Columns 2 through 9 focus on
the state machines of the four functional controllers. The impact of
the transformations is immense. For example, for ALU2, the num-
ber of states and transitions are reduced from 45 to 11 and 52 to 13,
respectively. In comparing the final optimized-GT-and-LT controller
specifications to Yun’s, on average the specifications are comparable
in terms of number of states and transitions.

Figure 13 compares the gate-level implementations of our best ex-
periment (optimized-GT-and-LT) with Yun. All functions are imple-
mented by two-level logic. For each of the methods, the number of
products and literals are listed. For ALU1 Minimalist [10] was used,
but for the other controllers we used 3D [25] to synthesize the burst-
mode specification, since only ALU1 is a “pure” burst-mode speci-
fication; the other ones are extended burst-mode specifications, and
currently cannot be handled by Minimalist. Unfortunately, 3D does
single-output logic minimization only, and thus does not share prod-
ucts among functions as Minimalist does. Figure 13 clearly shows
that our approach of applying systematic transforms leads to very
efficient implementations: the total number of literals is reduced by
almost 30% when compared to Yun’s controllers.

7. Conclusions and Future Work
A key bottleneck in the synthesis of large-scale systems has been

the lack of high-quality CAD tools which allow design-space ex-
ploration. This paper is the first to introduce and automate a wide-
ranging and powerful set of optimizing transformations, which al-
low systematic design space exploration for the synthesis of asyn-
chronous distributed control.

The transforms implement techniques such as the exploitation of
global relative timing assumptions and loop parallelism, channel
multiplexing and symmetrization, and the pre-selection of muxes.
We have shown that this set of transformations is powerful enough
to derive controllers that are similar to or even better — up to 30%
less area — than controllers that have undergone a labor-intensive
manual design to make them highly-optimized.

Algorithmic heuristics and scripts based on the set of transfor-
mations presented in the paper are forthcoming. We also plan to
broaden the targeted architecture to allow multiple controllers per
functional unit, as well as one controller for several functional units.
8. REFERENCES
[1] B. M. Bachman, H. Zheng, and C. J. Myers. Architectural synthesis of timed

asynchronous systems. In ICCD, 1999.
[2] R. M. Badia and J. Cortadella. High-level synthesis of asynchronous systems:

Scheduling and process synchronization. In EDAC, 1993.
[3] I. Blunno and L. Lavagno. Automated synthesis of micro-pipelines from

behavioral verilog HDL. In Intl. Symp. Adv. Res. in Asynchronous Circ. and Sys.,
2000.

[4] E. Brunvand. Translating Concurrent Communicating Programs into
Asynchronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[5] E. Brunvand, H. Jacobson, and G. Gopalakrishnan. High-level asynchronous
system design using ack. In Intl. Symp. Adv. Res. in Asynchronous Circ. and Sys.,
2000.

[6] B. Coates, J. Ebergen, J. Lexau, S. Fairbanks, I. Jones, A. Ridgway, D. Harris,
and I. Sutherland. A counterflow pipeline experiment. In Intl. Symp. Adv. Res. in
Asynchronous Circ. and Sys., 1999.

[7] J. Cortadella and R. M. Badia. An asynchronous architecture model for
behavioral synthesis. In EDAC, 1992.

[8] J. Cortadella, M. Kishinevsky, S. Burns, K. Stevens. Synthesis of asynchronous
control circuits with automatically generated relative timing assumption. In
ICCAD, 1999.

[9] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev. Petrify: a tool for
manipulating concurrent specifications and synthesis of asynchronous controllers.
IEICE Trans. on Fundamentals of Electronics Communications and Comp. Sci.,
Mar. 1997.

[10] R. Fuhrer, S. Nowick, M. Theobald, N. Jha, and L. Plana. MINIMALIST: An
environment for the synthesis and verification of burst-mode asynchronous
machines. Technical Report CUCS-020-99, Columbia University, 1999.
Download site is http://www.cs.columbia.edu/async.

[11] R. M. Fuhrer. Sequential Optimization of Asynchronous and Synchronous
Finite-State Machines: Algorithms and Tools. PhD thesis, Columbia University,
1999.

[12] H. v. Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A. Peeters, and
G. Stegmann. An asynchronous low-power 80c51 microcontroller. In Intl. Symp.
Adv. Res. in Asynchronous Circ. and Sys., 1998.

[13] E. Kim, J.-G. Lee, and D.-I. Lee. Automatic process-oriented control circuit
generation for asynchronous high-level synthesis. In Intl. Symp. Adv. Res. in
Asynchronous Circ. and Sys., 2000.

[14] T. Kolks, S. Vercauteren, B. Lin. Control resynthesis for control-dominated
asynchronous designs. In Intl. Symp. Adv. Res. in Asynchronous Circ. and Sys.,
1996.

[15] P. Kudva, G. Gopalakrishnan, and H. Jacobson. A technique for synthesizing
distributed burst-mode circuits. In DAC, 1996.

[16] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous
design using commercial HDL synthesis tools. In Intl. Symp. Adv. Res. in
Asynchronous Circ. and Sys., 2000.

[17] A. J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in
Concurrency and Communication, UT Year of Programming Series,
Addison-Wesley, 1990.

[18] G. D. Micheli. Synthesis And Optimization Of Digital Circuits. McGraw-Hill,
1994.

[19] S. M. Nowick. Automatic synthesis of burst-mode asynchronous controllers.
Ph.D. Thesis. CSL-TR-95-686, Computer Systems Laboratory, Stanford
University, 1993.

[20] A. M. G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eindhoven
University of Technology, June 1996.

[21] M. A. Peña and J. Cortadella. Combining process algebras and Petri nets for the
specification and synthesis of asynchronous circuits. In Intl. Symp. Adv. Res. in
Asynchronous Circ. and Sys., 1996.

[22] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike,
M. Roncken, and B. Agapiev. RAPPID: an asynchronous instruction-length
decoder. In Intl. Symp. Adv. Res. in Asynchronous Circ. and Sys., 1999.

[23] M. Theobald and S. M. Nowick. Fast heuristic and exact algorithms for two-level
hazard-free logic minimization. IEEE Trans. on Computer-Aided Design, Nov.
1998.

[24] M. Theobald and S. M. Nowick. Transformations for the Synthesis and
Optimization of Asynchronous Distributed Control. Technical Report, Columbia
University, 2001 (to appear). Download site is http://www.cs.columbia.edu/async.

[25] K. Yun and D. Dill. Automatic synthesis of 3D asynchronous finite-state
machines. In ICCAD, 1992.

[26] K. Y. Yun, A. E. Dooply, J. Arceo, P. A. Beerel, and V. Vakilotojar. The design
and verification of a high-performance low-control-overhead asynchronous
differential equation solver. In Intl. Symp. Adv. Res. in Asynchronous Circ. and
Sys., 1997.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

