
Nuts and Bolts of Core and SoC Verification
Ken Albin

Motorola, Inc.
7700 W. Parmer Lane, MD PL31

Austin, TX 78729
1-512-996-6351

ken.albin@motorola.com
ABSTRACT
Digital design at Motorola is performed at design centers
throughout the world, on projects with different design objectives,
executed on different time scales, by different sized teams with
different skill sets. This paper attempts to categorize these diverse
efforts and identify common threads: what works, what the
challenges are, and where we need to go.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids
– simulation, verification. B.6.3 [Logic Design]: Design Aids –
simulation, verification. B.7.2 [Integrated Circuits]: Design Aids
– simulation, verification.

General Terms
Management, Documentation, Design, Economics, Verification.

Keywords
Verification, monitors, biased-random simulation, testbenches.

1. INTRODUCTION
Digital design at Motorola is performed at design centers
throughout the world, on projects with different design objectives,
executed on different time scales, by different sized teams with
different skill sets. This paper first attempts to categorize these
diverse efforts and then identifies some winning verification
strategies:

• getting the right people working on the problem

• creating interface monitors, and reusing them at different
levels of hierarchy

• the extensive use of constrained random stimulus

• automation to manage/navigate data

• appropriate use of abstraction

 The underlying problem that verification engineers must solve is
how to deal with the complexity of the design. We know of only
two basic techniques for dealing with complexity: divide-and-
conquer and abstraction. Most of the strategies discussed below
support divide-and-conquer, while some offer opportunities for

abstraction as well.

 2. VERIFICATION CATEGORIES
 Motorola design projects can be grouped into three general
categories: functional block, integration, and processor design.

 2.1 Functional Block Verification
 The most common design projects at Motorola and throughout
industry are relatively small units, designed and verified by a few
engineers. Examples are programmable timers, UARTs, DMA
blocks, interrupt controllers, etc. In some cases, these units are
components of a processor design such as a cache controller,
floating-point unit, bus interface, etc.

 These projects employ classic unit-level verification, with much
of the effort spent on creating custom testbenches and protocol or
signal level stimulus.

 2.2 Integration Verification
 With millions of transistors available for designs, there is
increasing emphasis on combining existing designs into System
on a Chips (SoCs), resulting in a staggering amount of
complexity. One recent SoC developed for the communication
market has a RISC processor, a DSP, a custom data movement
processor, embedded DRAM and more than 60 peripherals.

 In order for an SoC to reach market in a reasonable time, a
working assumption has to be made that the component designs
have been individually verified at the unit level. Based on this
divide-and-conquer assumption, the task of integration
verification is limited to 1) checking the basic interconnect of the
blocks and 2) checking for unexpected interactions between
blocks.

 Integration verification is enabled by the interface monitors
created during unit verification. We currently use these monitors
during simulation, but are working towards doing more static
analysis using formal verification techniques [1]. Biased-random
testing of the integration has also proven to be a powerful
technique for discovering unexpected interactions which may take
place outside of the obvious interface protocols.

 2.3 Processor Verification
 At the top of the verification food chain is processor verification.
This is a special case of integration verification, distinguished by
well-established interfaces and functionality, and substantial
existing infrastructure such as compilers, simulators, operating
systems, and available application code.

 Because many users depend on the specified functionality and
interfaces, because the designs are subjected to a wide variety of
uses, and because of their complexity, processors require the
highest level of investment in verification.

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
 Conference ’00, Month 1-2, 2000, City, State.
 Copyright 2000 ACM 1-58113-000-0/00/0000… $5.00.

 The strategy for processor verification is basically the same as in
other integration verifications (thorough unit-level verification,
with reuse of monitors in the integration) but additional
investment is made in test suites, golden reference models in C or
Verilog, and random instruction sequence generators. Existing
instruction-level infrastructure is leveraged extensively in creating
stimulus.

 3. KEYS TO SUCCESS
 3.1 Verification Teams
 At the unit-level, designers typically verify their own blocks,
possibly working with a verification engineer. At this level, the
verification engineer provides another set of eyes on the design,
simulation environment expertise, and coordination with
verification engineers on other units on integration issues.

 Processor design teams usually have dedicated verification teams,
part of which are assigned to work with block designers while
others perform processor-level verification or build and maintain
the design/verification infrastructure.

 The philosophy for selecting verification engineers varies from
one design center to another. It used to be that the least
experienced designer was assigned the task of verification, but
improvements in CAD tools and SoC complexity has lead to
verification dominating schedules and an increasing appreciation
for skilled verification engineers.

 3.2 Verification Engineer Skill Set
 Although it is useful for design engineers to first work in
verification (one Motorola design center only brings new
designers in through verification), we have found that it is
important to have a core verification team who have a
fundamentally different skill set than that of designers:

 3.1.1 the ability to shift levels of abstraction
 While design engineers focus more on optimizing the
implementation of their block, verification engineers must be
more concerned with the proper behavior of the unit in the context
of the integration. Tracking down errors often involves taking an
integration level problem and mapping it down to a unit-level
behavior.

 For example, an error in a processor when the prefetch queue is
full and an interrupt is received could be seen at the instruction set
level but has to be mapped all the way down to the prefetch
controller state machine’s implementation before the cause (an
incorrect transition) can be identified. Some people are much
more adept at this kind of mapping than others.

 3.1.2 a mix of hardware and software experience
 A mix of hardware and software or mathematical experience
seems to correlate with the ability to utilize different levels of
abstraction, but verification engineers also must write scripts to
analyze designs and automate tasks. Similarly, commercial
verification environments require a fair amount of software
sophistication to make use of their advanced features (object
orientation, parallel programming constructs, etc.).

 Finally, verification infrastructure is a significant part of a design
project’s IP creation, and good software development practices
are a key to its successful reuse (e.g., modular design,
configuration control, organized releases, etc.).

 It is not clear why, but most of the candidates we find with this

mixed hardware and software background started in hardware
design and expanded out into software. It is more rare to find
Computer Science graduates that feel comfortable working on
hardware design projects.

 3.1.3 the ability to organize large amounts of data
 SoC designs are large and complex, and so is the associated
verification data. Verification engineers must be able to filter the
data (often by crafting special purpose filter scripts) and quickly
sort out real problems from noise. They must also be able to
switch from one context to another (between blocks, between
design versions, etc.).

 3.1.4 good or excellent communication skills
 Many bugs are not due to deep technical challenges, but rather
miscommunication. Verification engineers must be able to clearly
describe abstract concepts, create concrete examples, and
recognize ambiguity.

 Because they must also work cooperatively with other design
groups, verification engineers must be able to adapt to different
terminology due to cultural, linguistic, and methodology
differences.

 3.1.5 internally motivated
 Although verification is an increasingly important part of any
design effort, it is unlikely to ever be considered glamorous. Part
of this may be due to cultural/educational biases: university
curriculum heavily biased towards design work; management with
experience from simpler days when verification was a smaller
effort. Another factor may be due to the difficulty in saying when
the verification is done or measuring its quality - often the quality
will not be evident until sometime much later.

 Our most successful verification engineers are those that find
personal satisfaction in improving the way things are done.

 3.2 Interface Monitors
 Figure 1 shows the basic components of a unit-level verification
testbench.

 Ideally, a unit will have a monitor on each interface that turns
signal-level behavior into a stream of protocol events. Monitors
do not reference internal signals and do not generate stimulus.
These monitors are developed based on written specifications of
the interfaces and are used by all blocks utilizing the interfaces.

 The behavioral module takes one or more streams of interface
events and performs some level of checking, ranging from
comparing event counts on interfaces to duplicating the entire

functionality of the block being verified.

 In the unit-level environment, a stimulus block stands in for
another design block in the integration. To ensure accuracy, the
stimulus block is developed by or at least reviewed by the other
block’s design team. The stimulus source has traditionally been
directed, but a constraint-based biased-random approach [2,3,4,5]
has recently produced very impressive results.

 There are several commercial tools which address this problem
space effectively, but more important than a particular tool is the
manner in which the tool is applied. Experience has shown that
projects which have followed the strict testbench partitioning
shown in Figure 1 have been more successful during integration
than projects which were not so careful.

 For example, the processor interface monitor of a cache controller
may be easier to implement by snooping internal signals, but the
monitor would only be usable when the cache controller is
present. If the monitor was implemented looking only at interface
signals, it could be shared with the processor unit verification
team, uncovering protocol violations before integration.

 Following the strict partitioning encourages well documented
interfaces, facilitates communication between teams working on
dependent units, and enables effective reuse of monitors and other
infrastructure during integration.

 3.3 Extensive use of Random Stimulus
 Biased-random instruction sequences have been the backbone of
processor verification for many years - utilizing existing
infrastructure, biased-random sequences are generated and the
design behavior compared with a suitably detailed reference
model.

 Recently, biased-random protocol-level or signal-level stimulus is
seeing more use in unit-level verification. Several commercial
tools provide some capability in this area. The engineering
challenge is to economically provide a means of recognizing
incorrect behavior.

 A common approach to determining correctness is to check only a
few key properties, but without some way of determining the
completeness of these properties, there are likely to be gaps which
allow errors to go unnoticed.

 A current focus of our efforts in both unit and processor
verification is to utilize abstract reference models to check
specification-level behavior, combined with monitors to check
interface protocols and low-level efficiency concerns such as dead
bus cycles. Note that this is the same separation of concerns
provided in the unit-level testbench shown in Figure 1.

 3.4 Automation to Manage/Navigate Data
 The design and verification of SoCs and Cores generates a large
amount of data. Many CAD tools can now produce HTML
reports and we have found that with a modest amount of effort
these HTML pages can be organized and linked, providing an
excellent way to track progress and facilitate communication
among team members. Examples of data put on our internal
website and automatically updated are: regression results,
verification plan status, coverage (state machine, source, and
functional), and equivalence checking results.

 3.5 More Aggressive Abstraction
 For some reason, engineers come naturally to the idea of divide-
and-conquer, but seldom utilize our only other tool for dealing

with complexity, abstraction. We currently do nearly all of our
implementation and verification at a very low level. The design
itself may often be conceptualized in the designer’s mind as an
algorithm or architecture, but current CAD tools require the
manual mapping of these concepts onto a low-level
implementation.

 An example of how abstraction can be used much more
extensively than just simulation reference models is shown in
Figure 2. CAD tools are available which allow the translation of
RTL down to mask data to be checked routinely and reliably, so
we spend most of our verification effort trying to show that our
RTL implements a top-level specification.

 The layers shown in the diagram above RTL are an example of
how a series of specific abstractions can be made to bridge the
gap between implementation and specification. Formal

verification of each of these abstractions has already been
demonstrated [6,7,8,9] but mostly as research. These techniques
are ready to be put into practice.

 4. How do you know when you are done?
 Many of the verification engineers I know are compulsively
honest, so the question “are we done?” sometimes gets them in
trouble.

 The truth is that despite some impressive progress (e.g., [10]), for
a design large enough for anyone to be interested in it, you cannot
be truly done: the state space is way too large to exhaustively test
it, and formally verifying that the entire design implements the
specification is not generally possible today. This is not what

project managers want to hear.

 Regardless of these truths, designs need to tapeout and some
criteria must be used. Some of the criteria used in Motorola are:

• 40 Billion random cycles without finding a bug

• directed tests in verification plan completed

• source and/or functional coverage goals met

• diminishing bug rate

• a certain date on the calendar reached

Most projects use some combination of these criteria, with project
specifics determining the weighting. Until we can formally verify
the design from the specification down we won’t have a
completely satisfactory answer.

5. CONCLUSIONS
The fundamental problem that SoC and Core verification efforts
deal with is design complexity. We have found two basic tools to
deal with complexity: divide-and-conquer and abstraction. Over
time standard practices have been worked out that provide the
mechanisms and communication necessary to apply divide-and-
conquer effectively, but we have largely ignored abstraction. This
paper identifies areas where we can begin leveraging abstraction.

6. ACKNOWLEDGMENTS
Special thanks to Carl Pixley for his comments on a draft of this
paper.

7. REFERENCES
[1] M. Kaufmann, A. Martin, C. Pixley. Design

Constraints in Symbolic Model Checking. CAV’98,
pp. 477-487, June 28-July 2,1998

[2] Yuan, Shultz, Pixley, Miller, Aziz. Modeling Design
Constraints and Biasing in Simulation Using , ICCAD.

November 1999.
[3] Yuan, Shultz, Pixley, Miller, Aziz. Automatic Vector

Generaion Using Constraints and Biasing. JETTA,
107-120. 16:1/2, 2000.

[4] Pixley. Integrating model checking into the
semiconductor design flow. Computer Design's
Electronic Systems journal, pp. 67-74, March 1999.

[5] Pixley, Shultz, Yuan. Integrated Formal and Informal
Design Verification of Commercial Integrated Circuits.
Proc. of the international Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA), pp. 1061-1067. June 28, 1999.

[6] Burch, Dill. Automatic verification of pipelined
microprocessor control. Computer-Aided Verfication
(CAV ’94), volume 818 of LNCS, pages 68-80.
Springer-Velag 1994.

[7] Bryant, German, Velev. Exploiting positive equality
in a logic of equality with uninterpreted functions.
Computer-Aided Verfication (CAV ’99), volume 1633
of LNCS, pages 470-482. Springer-Velag 1999.

[8] Brock, Kaufmann, Moore. ACL2 theorems about
commercial microprocessors. FMCAD ’96, pp. 275-
293. Springer-Velag, 1996.

[9] Srivas, Miller. Formal verification of an avionics
microprocessor. Technical Report CSL-95-04, SRI
International, 1995

[10] Aagaard, Jones, Melham,O’Leary, Seger. A
Methodology for Large-Scale Hardware Verification.
FMCAD 2000, pp.263-282, November 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

