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ABSTRACT
We consider the problem of checking whether a partial implemen-
tation can (still) be extended to a complete design which is equiva-
lent to a given full specification.

Several algorithms trading off accuracy and computational re-
sources are presented: Starting with a simple 0,1,X-based simula-
tion, which allows approximate solutions, but is not able to find all
errors in the partial implementation, we consider more and more
exact methods finally covering all errors detectable in the partial
implementation. The exact algorithm reports no error if and only
if the current partial implementation conforms to the specification,
i.e. it can be extended to a full implementation which is equivalent
to the specification.

We give a series of experimental results demonstrating the effec-
tiveness and feasibility of the methods presented.

1. INTRODUCTION
Verification, i.e. the check whether a circuit implementation ful-

fills its specification, is a crucial task in VLSI CAD. Growing inter-
est in universities and industry has lead to new results and signifi-
cant advances concerning topics like property checking, state space
traversal and combinational equivalence checking [4, 7, 14, 11].

For the purpose of this paper combinational equivalence check-
ing is of particular interest. Here, the task is to check whether the
Boolean functions corresponding to the specification and the im-
plementation are the same. Besides functional validation by the
application of test patterns, mainly two approaches are used to per-
form the equivalence check: One possibility is to translate imple-
mentation and specification into one Boolean formula which is sat-
isfiable if and only if implementation and specification realize the
same Boolean function [18, 13, 8]. As an alternative, implemen-
tation and specification can be transformed into a canonical form
(e.g. BDDs [2]) such that the equivalence check reduces to a check
whether the canonical representations of implementation and spec-
ification are the same.

In this paper we address the problem of Black Box Equivalence
Checking, which occurs when the specification is known, but only
parts of the implementation are finished or known. (For an exam-
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ple see Figure 1.) Black Box Equivalence Checking enables the use
of verification techniques in early stages of the design. Design er-
rors can be already detected when only a partial implementation is
at hand – e.g. due to a distribution of the implementation task to
several groups of designers. Parts of the implementation, which are
not yet finished, are combined into Black Boxes. If the implemen-
tation differs from the specification for all possible substitutions
of the Black Boxes, a design error is found in the current partial
implementation, i.e. to detect an error in the current partial imple-
mentation it is necessary to find an assignment of zeros and ones to
the primary inputs, which produces erroneous values at the outputs
independently from the final implementation of the Black Boxes.

Another application of Black Box Equivalence Checking is the
abstraction of “difficult parts” of an implementation, which would
cause a large peak size in memory consumption during the con-
struction of a canonical form for the implementation. These “dif-
ficult parts” of the design can be put into a Black Box and Black
Box Equivalence Checking is performed. An exact statement about
the correctness of the full implementation is not possible, but it is
still possible to find errors in the partial implementation given to
the Black Box Equivalence Checker.

Black Box Equivalence Checking can also be used to verify as-
sumptions concerning the location of errors in implementations,
which do not fulfill their specifications: If there is some assumption
on the location of errors (produced by an automatic error diagno-
sis tool or found by hand), then these regions of the design are cut
off and put into Black Boxes. If Black Box Equivalence Checking
gives the information that no error can be found in the design con-
taining Black Boxes, we can conclude that the assumptions on the
error location were correct, otherwise we know that there must be
errors also in other regions of the design.

The present paper deals with algorithms for equivalence check-
ing of partial implementations under the assumption that a combi-
national circuit is given as specification and also all implementa-
tions and Black Boxes are of combinational nature. First methods
to handle this problem have been proposed in [10, 9]. While these
papers provide algorithms to find errors, it is not clear which errors
and how many of the potential errors are detected. If there is only
one Black Box in the implementation, also results from combina-
tional logic optimization concerning permissible functions [19] can
be used. In this paper we present a thorough analysis of the prob-
lem leading to several algorithms to attack the Black Box Equiva-
lence Checking problem. For the time being, our algorithms rely
on symbolic simulation [3] by using BDDs. An implementation us-
ing SAT-engines [12] to solve the corresponding Boolean formula
seems feasible, but is not the focus of the current paper. Our al-
gorithms need different amounts of resources (space and time) and
differ from their accurateness: They range from a simple algorithm
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Figure 1: Specification and partial implementation.

using symbolic simulation for an approximation of the solution to
an exact solution of the problem. Thereby the methods given in
[10, 9] are classified too. Approximate solutions are not able to
find all errors in the partial implementation, but they are correct
in the sense that they do not report an error if there is still a pos-
sibility to implement the Black Boxes leading to a correct overall
implementation. However, if we solve the Black Box Equivalence
Checking approximatively, the information, that no error can be
found, can be due to the approximative character of the approach
and does not necessarily imply that there is an implementation of
the Black Boxes leading to a correct overall implementation. E.g.
when Black Box Equivalence Checking is used to verify assump-
tions on the location of design errors, it cannot be guaranteed that
the information, that no error can be found, implies that the error
location is confined to the Black Boxes (since this information can
be due the approximative character of the approach). We performed
several experiments, which showed that improving the accuracy of
the algorithms indeed leads to a significant improvement of the er-
ror detection capabilities (paid with an increase of computational
resources).

The paper is structured as follows: In Section 2 we present sev-
eral algorithms for the Black Box Equivalence Checking problem.
The different approaches are compared for numerous partial imple-
mentations of benchmark circuits in Section 3. The paper ends with
concluding remarks and directions for further research in Section 4.
For shortness of the paper no formal proofs are given. They can be
found in [16].

2. EQUIVALENCE CHECKING AND PAR-
TIAL IMPLEMENTATIONS

In this section we provide several algorithms to handle Black
Box Equivalence Checking. We start with a simple symbolic sim-
ulation with respect to the 0,1,X logic (Sec. 2.1). Then we suc-
cessively increase the exactness (and the complexity) of the algo-
rithm resulting in a local check (Sec. 2.2.1), an output exact check
(Sec. 2.2.2) and an input exact check (Sec. 2.2.3).

In particular, in Section 2.2.3 we give an exact criterion to de-
cide for a given partial implementation and a specification whether
the partial implementation is correct or not. Unlike previous ap-
proaches [10, 9] we can guarantee that there is really an extension
of the partial implementation to a correct complete implementation,
if the criterion of Section 2.2.3 reports no error (and of course, vice
versa, there is no extension of the partial implementation to a com-
plete implementation, if it does report an error).

As a running example for the demonstration of our algorithms
we use the specification given in Figure 1(a). Figure 1(b) shows a
partial implementation containing two Black Boxes. Clearly, after
a suitable implementation of the two Black Boxes the final imple-
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Figure 2: 0,1,X–simulation and Zi–simulation.

mentation fulfills its specification.

2.1 Symbolic 0,1,X–simulation
A first algorithm for checking partial implementations is based

on the usual 0,1,X–simulation, which is well-known in the area of
testing [1].

To evaluate a partial implementation for some input vector a new
symbol X different from 0 and 1 is introduced. The value X means
an “unknown” value due to the unknown functionality of the Black
Boxes. To simulate a partial implementation with n primary inputs
for an input vector (ε1; : : : ;εn) 2 f0;1gn we assign the unknown
value X to all outputs of the Black Boxes. If all values for the
inputs of a gate are in f0;1g, then the output of the gate is computed
according to the gate function as usual. If some inputs of a gate
are set to X , the output is equal to X if and only if there are two
different replacements of the X values at the inputs by 0’s and 1’s,
which lead to different outputs of the gate.

We can take advantage of this simulation using 0, 1 and X to
detect errors in partial implementations. If the evaluation of the
partial implementation results in a value 0 (1) for some output, this
means that the output value is 0 (1) independently from the func-
tionality of the Black Boxes. If on the other hand the specification
produces 1 (0) for the same input vector, then we have found an
error in the partial implementation.

Figure 2(a) shows such a situation: Simulation with input vector
(1;0;0;0;0;0;0;0) leads to 0 for the first output, whereas for the
specification in Figure 1(a) the function value is 1.

To check for erroneous values for all input values, a symbolic
simulation [3] is performed. One possibility to do so would be to
use MTBDDs [6] with three terminal values 0, 1 and X . For our
experiments we simulate MTBDDs using a BDD package [16]. This
first method is the same as the method from [10] with the only
difference that [10] uses a two-bit-encoding of 0, 1 and X leading
to a duplication of the signals of the circuit.

2.2 Symbolic Zi–simulation
A disadvantage of symbolic 0,1,X–simulation lies in the fact that

not all errors, which are present in a partial implementation, can be
found due to well–known deficiencies of 0,1,X–simulation.

Figure 2(b) shows an example for such a situation. The partial
implementation of Figure 2(b) does not fulfill the specification of
Figure 1(a), i.e. there is no implementation for the Black Boxes
which leads to a correct overall implementation. However the ap-
proach of the previous section always computes X at the output of
the exor2 gate, since both inputs of the exor2 gate are X . There-
fore the first primary output is X , if x1 = 0, and 1, if x1 = 1. Since
the first output of the specification is 1 as well, if x1 = 1, no error
can be detected at the first output. Moreover it is easy to see that
the partial implementation of the second output is correct (replace
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Figure 3: Output exact check and input exact check.

BB2 by an or2 gate). So the method of the previous section cannot
detect an error in the partial implementation.

If we have a closer look at the partial implementation, we can
see, that the output of the exor2 gate is 0 independently from the
output of BB1, whereas the simple X–propagation does not take
into account that the X–information comes from the same output of
Black Box BB1. So input vector (0;0;0;1;1;0;0;0) leads to output
(0;1) which is different from the output (1;1) of the specification.

To consider the origin of X–informations we introduce differ-
ent variables Zi for each Black Box and perform a (conventional)
symbolic simulation to compute for each primary output j of the
circuit a function gj which depends on the primary input variables
x1; : : : ;xn and the l variables Z1; : : : ;Zl for the l outputs of Black
Boxes (“symbolic Zi–simulation”).

2.2.1 Local check
Now we consider cofactors of implementation and specification

with respect to all primary input variables. If such a cofactor of
some output function of the partial implementation is 0 (1), this
means that the output value is 0 (1) independently from the func-
tionality of the Black Boxes. If for the same output function of
the specification this cofactor is 1 (0), then we have found an error
in the partial implementation. Here the effect of the unknown val-
ues at the outputs of Black Boxes is evaluated more accurately in
contrast to 0,1,X–simulation.

A check whether there is such a distinguishing vector for an out-
put j of partial implementation and specification can be done ac-
cording to the following lemma. The correctness of the lemma fol-
lows from definitions and basic boolean manipulations. The check
according to the lemma is called “local check”, since the check is
done for each output separately.

LEMMA 2.1 (LOCAL CHECK). Let g j be the function of out-
put j obtained by symbolic Zi–simulation for a partial implemen-
tation with primary inputs x1; : : : ;xn and l outputs of Black Boxes
with corresponding variables Z1; : : : ;Zl. Let f j be output j of a
specification with primary inputs x1; : : : ;xn. There is no input vec-
tor (ε1; : : : ;εn) with g jjx1=ε1;::: ;xn=εn = 1 and f j(ε1; : : : ; εn) = 0 iff
((8Z1 : : :8Zl g j)! f j) = 1 and there is no input vector (ε1; : : : ;εn)
with g jjx1=ε1;::: ;xn=εn = 0 and f j(ε1; : : : ;εn) = 1 iff ((8Z1 : : :8Zl g j)

! f j) = 1.

2.2.2 Output exact check
The local check of the previous section based on Zi–simulation

is more exact than 0,1,X–simulation (see Fig. 2(b)). However im-
plications between different outputs are not taken into account. We
obtain an even more accurate check, if we use a more “global”
viewpoint.

This is illustrated by Figure 3(a). For the first output the only

possibility to fulfill the specification of Figure 1(a) is to replace BB1
by the function x4 �x5. However for the second output the only pos-
sibility to fulfill the specification is to replace BB1 by x4 � x5. This
implies that the partial implementation of Figure 3(a) is incorrect.
In spite of that, the error cannot be detected by the “local check” of
the previous section, since it is done for each output separately.

To detect errors of this type we have to compute “local condi-
tions” for each output, which guarantee correctness for the single
outputs, and then, we have to combine the local conditions to check,
if these local conditions can be fulfilled at the same time for all out-
puts.

The local conditions are computed based on the following con-
siderations: To obtain a correct implementation, for each primary
output j and each assignment (ε1; : : : ;εn) to the primary inputs an
assignment (δ1; : : : ;δl) to the Black Box outputs has to be chosen
such that gj(ε1; : : : ;εn;δ1; : : : ;δl) and f j(ε1; : : : ;εn) are identical.
Thus a characteristic function condj(ε1; : : : ;εn;δ1; : : : ;δl), which
equals 1, if and only if (δ1; : : : ;δl) at the Black Box outputs leads
to the correct function value f j(ε1; : : : ;εn) at output gj of the im-
plementation, can be easily computed by condj = (g j � f j).

For a correct partial implementation all conditions cond1; : : : ;

condm have to be true. If there is an input assignment (ε1; : : : ;εn)
such that for all assignments (δ1; : : : ;δl) to the Black Box outputs
at least one condition condj is false, then it is clear that the partial
implementation cannot be used to obtain a correct final implemen-
tation. This leads us to a new, more accurate check, which we call
“output exact”.

LEMMA 2.2 (OUTPUT EXACT CHECK).
If 9x1 : : :9xn8Z1 : : :8Zl

Wm
j=1 condj = 1 then the partial implemen-

tation does not fulfill its specification.

Note that our “output exact” check reports an error in exactly
the same cases as the check of [9]. However it is computed in
a different way and does not need a representation of the overall
circuit as a Boolean relation.

It is also easy to see that there is no error in the partial imple-
mentation (i.e. we can replace the Black Boxes to obtain a cor-
rect final implementation), if our check reports no error and we
are allowed to use all primary inputs as inputs of the Black Boxes.
The check reports no error iff 8x1 : : :8xn9Z1 : : :9Zl

Vm
j=1 condj =

1, i.e. iff for each assignment (ε1; : : : ;εn) to the primary inputs
there exists an assignment (δ1; : : : ;δl) to the Black Box outputs,
such the conditions condj for all outputs j are true, which means
that g j(ε1; : : : ;εn;δ1; : : : ;δl) and f j(ε1; : : : ;εn) are identical for all
1 � j � m. Thus we can choose these values δ1; : : : ;δl to de-
fine the function values for Black Box outputs 1; : : : ; l under input
(ε1; : : : ;εn).

2.2.3 Input exact check
The output exact check is able to find all errors which are already

present in the partial implementation only if we assume that all
primary inputs are also inputs of the Black Boxes. But this is not a
realistic assumption. If we have fixed sets of input signals for the
Black Boxes (which may be different from all primary inputs), it is
possible that the output exact check does not find all errors.

Figure 3(b) shows such a case. It shows a partial implementa-
tion (for the specification of Figure 1(a)) with one Black Box BB1.
If the Black Box is replaced by x8 � (x6 + x7) implementation and
specification are equivalent. However the inputs of the Black Box
are only x6 and x7 and it is easy to see that there is no correct
implementation for BB1, which does not depend on input x8 (for
x4 = x5 = 0, x6 = x7 = 1, x8 = 0 the output of BB1 has to be 0 and



for x4 = x5 = 0, x6 = x7 = 1 and x8 = 1 the output of BB1 has to be
1). Thus the partial implementation is incorrect.

Now we have to define an “input exact check”, which also re-
flects this problem.

Note that for the restricted case of only one Black Box in the par-
tial implementation, also the theory of Boolean relations given by
Cerny [5] could be used to provide an input exact check. Similarly,
in the case of one Black Box the theory of permissible functions
[19] is applicable, too. The implementation is incorrect, if and only
if for the Black Box the maximum set of permissible functions, as
computed in [19], is empty. However this check is implemented
in a different way (e.g. it needs a representation of the overall cir-
cuit as a Boolean relation) and it cannot be extended to the case of
several Black Boxes. 1

For the input exact check we use (among others) the condition
cond =

Vm
j=1 condj of the section before. cond can be interpreted

as the characteristic function of a Boolean relation between assign-
ments (ε1; : : : ;εn) to the primary input variables and assignments
(δ1; : : : ;δl) to the outputs of the Black Boxes: cond(ε1; : : : ;εn;

δ1; : : : ;δl) = 1 if and only if (δ1; : : : ;δl) is a “legal assignment” to
the outputs of the Black Boxes for primary input vector (ε1; : : : ;εn),
i.e. if and only if all output values of the partial implementation
with (ε1; : : : ;εn) assigned to the primary inputs and (δ1; : : : ;δl) as-
signed to the Black Box outputs are identical to the corresponding
output values of the specification for assignment (ε1; : : : ;εn) to the
primary inputs.

Now we have to take into account that the inputs of Black Boxes
can be internal signals of the partial implementation and not all
primary inputs are connected to the Black Box inputs. In the fol-
lowing we assume that we have b Black Boxes BB1 to BBb which
can have several outputs and inputs. The input signals of Black
Box BB j are connected to variables i j;1; : : : ; i j;l j

and the output

signals are connected to variables oj;1; : : : ;o j;pj (
Sb

j=1fo j;1; : : : ;

o j;pj g = fZ1; : : : ;Zlg). To simplify the notations we abbreviate
i j;1; : : : ; i j;l j

by I j , o j;1; : : : ;o j;pj by O j and the primary input vari-
ables x1; : : : ;xn by X . Moreover 8Ij means 8i j;1 : : :8i j;l j

and 8Oj
means 8oj;1 : : :8o j;pj (accordingly for 9).

We assume that the Black Boxes BB1 to BBb are topologically
ordered, i.e. BB1 is the first Black Box in topological order, BBb
the last Black Box. Consider the Boolean functions which com-
pute the assignments of the Black Box inputs. For Black Box BBj

there are l j such functions hj
1; : : : ;h j

l j
. Because of the topological

order of the Black Boxes, hj
1; : : : ;h j

l j
can depend (at most) on pri-

mary input variables X and the output variables O1; : : : ;O j�1 of
BB1; : : : ;BB j�1. The characteristic function of the Boolean rela-

tion for h j
1; : : : ;h j

l j
is computed by

Hj(X ;O1; : : : ;O j�1; I j) =
Vl j

k=1(i j;k � h j
k(X ;O1; : : : ;O j�1)).

Based on cond(X ;O1; : : : ;Ob), which is a Boolean relation be-
tween primary input assignments and output assignments of Black
Boxes, we compute the characteristic function of a Boolean relation
cond0(I1; : : : ; Ib;O1; : : : ;Ob) between input assignments of Black
Boxes and output assignments of Black Boxes.

cond0 is defined as cond0(I1; : : : ; Ib;O1; : : : ;Ob) = 8X(H1(X ; I1)

+ : : :+Hb(X ;O1; : : : ;Ob�1; Ib)+ cond(X ;O1; : : : ;Ob)).
cond0 computes 1 for an assignment (ι1; : : : ; ιb;ω1; : : : ;ωb) to

1For the case of several Black Boxes we see that the theory of per-
missible functions is only related to our problem. The computation
of permissible functions for one “cluster” (or Black Box) assumes
that the other parts of the circuit are fixed to an “original” imple-
mentation. But this means that a correct implementation is known
in advance.

the Black Box inputs and outputs iff for all assignments ξ to the
primary inputs

� ξ and (ι1; : : : ; ιb;ω1; : : : ;ωb) lead to a signal assignment,
which is not consistent with the circuit of the partial imple-
mentation (this is checked by the part

H1(X ; I1)+ : : :+Hb(X ;O1; : : : ;Ob�1; Ib)
of the formula above)
or

� (ω1; : : : ;ωb) is a “legal output” of the Black Boxes under in-
put ξ, i.e. ξ and (ω1; : : : ;ωb) result in correct values at the
primary outputs of the partial implementation
(this is checked by the part cond(X ;O1; : : : ;Ob) of the for-
mula above)

I.e. for cond0(ι1; : : : ; ιb;ω1; : : : ;ωb) to be 1, (ω1; : : : ;ωb) has to
be a “legal output” of the Black Boxes under input ξ, whenever
ξ and (ι1; : : : ; ιb;ω1; : : : ;ωb) lead to a signal assignment, which is
consistent with the circuit of the partial implementation.

It can be shown that there is a replacement of the Black Boxes
BB1; : : : ;BBb by totally specified Boolean functions with input vari-
ables I1; : : : ; Ib, respectively, leading to a correct overall implemen-
tation if and only if there is a appropriate decomposition of cond0

into b Boolean relations:

THEOREM 2.1 (INPUT EXACT CHECK). Let f1; : : : ; fm be
Boolean functions with input variables x1; : : : ;xn, which are used
as a specification for a partial implementation with input variables
x1; : : : ;xn and b Black Boxes BB1; : : : ;BBb. The input variables
of BB j are Ij, the output variables Oj, the characteristic function
cond0(I1; : : : ; Ib;O1; : : : ; Ob) is defined as given above. Then there
is a replacement of BB1; : : : ;BBb by completely specified Boolean
functions with input variables I1; : : : ; Ib, respectively, leading to a
correct overall implementation, if and only if cond0 can be decom-
posed into χ j(I j;O j), such that

8I j9O jχ j(I j;O j) = 1 and cond0 �
Vb

j=1 χ j .

The proof of Theorem 2.1 can be found in [16]. Theorem 2.1
gives us a necessary and sufficient condition for the correctness of
the partial implementation.

However, we can show using a non–trivial reduction from 3SAT
that for a number b� 2 of Black Boxes the check of Theorem 2.1 is
NP-complete, even if the characteristic function for cond0 in Theo-
rem 2.1 is given as a function table, which is already exponential in
the number of inputs and outputs of the Black Boxes. For this rea-
son, in practice we use a modified check which is exact for b = 1
(one Black Box) and an approximation for b � 2 (more than one
Black Box).

Our new check, which reflects that the inputs of the Black Boxes
are not necessarily equal to all primary input signals, reports no
error, if

8I19O18I29O2 : : :8Ib9Ob cond0 = 1 (1)

The following theorem holds:

THEOREM 2.2. The check of equation (1) is exact (in the sense
that it finds all errors in the partial implementation), if b = 1, i.e. if
there is only one Black Box in the partial implementation.

PROOF. The proof follows directly from the fact, that for b = 1
the checks of equation (1) and of Theorem 2.1 are the same, if we
choose χ1 := cond0 (cond0 �

V1
j=1 χ j is then trivial).



Table 1: 10% of the gates included in one Black Box
circuit in out #nodes detected errors #nodes implementation peak during check run time

spec. r:p: 0,1,X loc: oe ie 0,1,X loc:, oe ie 0,1,X loc: oe ie r:p: 0,1,X loc: oe ie

alu4 14 8 389 90% 95% 95% 96% 96% 458 455 490 86 88 96 159 1.17 0.06 0.06 0.06 0.06
apex7 49 37 314 92% 97% 97% 98% 98% 256 258 263 38 41 132 132 0.41 0.08 0.08 0.08 0.08
C17 5 2 8 84% 88% 88% 88% 96% 6 6 8 5 6 6 7 0.02 0.01 0.01 0.01 0.01
C432 36 7 1211 50% 62% 65% 68% 80% 796 3705 3725 123 257 5779 38411 3.22 0.13 1.77 0.42 0.99
C499 41 32 25866 26% 59% 59% 69% 80% 4377 12700 12672 487 496 28562 39142 6.29 4.46 5.54 7.19 7.76
C880 60 26 4870 78% 87% 91% 92% 92% 2956 5600 5553 247 658 105919 116561 3.84 0.75 1.62 37.94 49.16
comp 32 3 137 27% 63% 65% 67% 90% 82 90 111 39 41 105 124 1.57 0.04 0.04 0.04 0.04
term1 34 10 81 92% 95% 95% 95% 95% 97 97 108 31 32 34 69 1.44 0.07 0.07 0.07 0.07

average 63% 81% 82% 84% 91%

In the general case, when more than one Black Box is present,
the check of equation (1) is not exact, i.e. it is not equivalent to the
check of Theorem 2.1, but we can formally prove [16] that — if
the Black Boxes BB1; : : : ;BBb are given in topological order — it
is at least as good as our best check so far (see Section 2.2.2). In
Section 3 we present experiments to demonstrate that it is really
better also for examples with several Black Boxes. The method
needs no restriction on the number and the location of the Black
Boxes.

3. EXPERIMENTAL RESULTS
To evaluate the different equivalence checks for partial imple-

mentations we implemented the described procedures using CUDD
2.3.0 [17] as the underlying BDD package. Dynamic reordering
[15] was activated during all experiments. The experiments were
performed on a Pentium III PC with 550 MHz, 1 GB memory, run-
ning Linux 6.3.

For our experiments we generated partial implementations from
benchmark circuits: For each benchmark circuit a certain fraction
of the gates was included in Black Boxes. In a first experiment we
included 10% of the gates in one Black Box (with several outputs).
All reported results are an average on 5 different random selections
of Black Boxes.

Then we inserted errors into the partial implementations: We
randomly selected a gate, which did not belong to a Black Box,
and inserted an error. The error type was also selected randomly
between several choices: We added/removed an inverter for an in-
put or output signal of the gate, changed the type of the gate (and2
to or2 or or2 to and2) or removed an input line from an and or
or gate. Then we applied our check to detect errors in the partial
implementation. Note that an error is reported only if there is no
implementation for the Black Boxes such that the resulting circuit
fulfills its specification. (The original benchmark circuit is used
as the specification.) Each experiment was repeated for 100 error
insertions.

In Table 1 we give the results for the first experiment, when 10%
of the gates were included in one Black Box. In column 1 the name
of the benchmark is given, in columns 2 and 3 the number of inputs
and outputs of the benchmark are given. Column 4 shows the num-
ber of BDD nodes needed to represent the specifying benchmark
circuit. In columns 5–9 the error detection ratio for 100 error inser-
tions (per black box selection) using different equivalence checks
is reported. For comparison Column 5 (“r:p:”) shows the result of a
0;1;X-based non–symbolic simulation with 5000 random patterns.
Column 6 (“0,1,X”) shows the error detection ratio for symbolic
0,1,X–simulation, column 7 (“loc:”) for symbolic Zi–simulation
with local equivalence check (see Section 2.2.1), column 8 (“oe”)
for symbolic Zi–simulation with the “output exact” check of Sec-
tion 2.2.2 and column 9 (“ie”) for symbolic Zi–simulation with the
“input exact” check of Section 2.2.3. Note that in this experiment

the check of Section 2.2.3 is exact, since there is only one Black
Box; i.e., in all cases, when this check does not report any error,
there really exists an implementation, which can compensate the er-
ror insertion. The following columns indicate the resources needed
to achieve the results. Columns 10–12 give the numbers of BDD

nodes which are needed to represent the implementation. Columns
13–16 show the maximum number of additional BDD nodes, which
are needed the perform the four different checks which are based
on symbolic simulation. And finally, columns 17–21 show the run
times in CPU seconds for the random pattern simulation and the
four symbolic checks, respectively.

Note that the error detection ratios for symbolic 0,1,X–simula-
tion are equal to the error detection ratios of approach [10]. Al-
though our implementation differs (using symbolic 0,1,X–simula-
tion instead of signal duplication and conventional symbolic simu-
lation), errors are reported in the same cases. Similarly, the error
detection ratios for the output exact check (column “oe”) are the
same as in [9], although the implementation is different.

As a first result we can notice that the 0;1;X-based simulation
with 5000 random patterns cannot compete with the symbolic meth-
ods. The detection ratios are considerably smaller than for sym-
bolic 0,1,X–simulation (see columns 5 and 6) while the run times
are larger (columns 17 and 18). For the other methods we can re-
ally observe an improved error detection accuracy from method to
method (columns 6–9): With the exception of term1, which obvi-
ously is easy for Black Box Equivalence Checking, all other exam-
ples profit from a more sophisticated check in the sense that more,
sometimes significantly more errors are detected. In particular, we
observe, that the application of the input exact check leads to a con-
siderable improvement compared to the output exact check in many
cases (see e.g. comp, C499). The average numbers given in the last
line of the tables underline our observations made before2.

The experiments also show that the resources needed to perform
a check increase with its accuracy. Especially for the output and
input exact check the improved accuracy has to be paid by an in-
creased memory consumption and by larger run times. However
memory consumption and run times remain in a reasonable range.
The equivalence check needs at most a few seconds in the worst
case.

In a second experiment we varied the generation of partial imple-
mentations of our first experiment to obtain 5 different Black Boxes
instead of one. Results are given in Table 2. Memory consumption
and run times are about in the same range compared to the first ex-
periment with the exception of circuit C880 where time and mem-

2Since in the case of one Black Box the input exact check is exact,
an average of 91% detected errors means, that for the remaining
9% of the cases our circuit modification described above did not
really insert an error into the partial implementation, i.e. an imple-
mentation for the Black Box can be found, such that the overall
implementation fulfills its specification.



Table 2: 10% of the gates included in five Black Boxes
circuit in out #nodes detected errors #nodes implementation peak during check run time

spec. r:p: 0,1,X loc: oe ie 0,1,X loc:, oe ie 0,1,X loc: oe ie r:p: 0,1,X loc: oe ie

alu4 14 8 389 50% 92% 92% 94% 94% 346 372 548 83 85 103 419 4.93 0.08 0.08 0.08 0.10
apex7 49 37 314 88% 96% 96% 98% 98% 235 232 249 28 37 220 720 0.53 0.10 0.09 0.11 0.12
C17 5 2 8 84% 88% 88% 88% 96% 6 6 7 5 6 6 7 0.03 0.02 0.02 0.02 0.02
C432 36 7 1211 34% 54% 66% 72% 87% 417 5675 6065 104 463 6577 28471 4.47 0.18 1.39 0.61 1.40
C499 41 32 25866 20% 44% 46% 58% 75% 1858 8443 9246 199 207 190168 534687 6.75 3.23 4.40 41.82 68.52
C880 60 26 4870 61% 75% 80% 82% 88% 1276 3851 4055 207 444 1249899 1521876 6.16 1.22 1.10 1140.11 1369.16
comp 32 3 137 10% 43% 54% 57% 83% 46 89 125 29 35 170 209 2.10 0.04 0.04 0.04 0.05
term1 34 10 81 74% 87% 88% 88% 92% 139 144 184 33 43 241 291037 2.76 0.04 0.15 0.15 8.48

average 53% 72% 76% 80% 89%

ory consumption for output and input exact checks increase (about
22 minutes for the input exact check)3. However the comparison of
error detection ratios shows an interesting result: Although the in-
put exact check in this case is not exact, the advantage of the input
exact check compared to the other checks in this case is even larger
(compare e.g. the line giving the average values in the tables). This
obviously demonstrates the power of our heuristics.

Experiments with a varied method to generate partial implemen-
tations (40% instead of 10% of the gates included Black Boxes)
lead to comparable results. Results are omitted here and can be
found in [16].

Taken together, the high number of error detections for all sym-
bolic checks demonstrates the validity of the concept of checking
partial implementations already at a stage of the design process
where a significant portion of the design has still to be performed.

4. CONCLUSIONS AND FUTURE WORK
Experimental results showed that improving the accuracy of the

algorithms for Black Box Equivalence Checking indeed leads to
a significant improvement of the error detection capabilities. We
have defined a series of different algorithms with increasing accu-
racy and increasing consumption of computational resources. This
suggests to use these algorithms as a series of more and more exact
methods to detect errors in partial implementations: first use 0,1,X–
based simulation with only a few random patterns, then symbolic
0,1,X–simulation, Zi–simulation with local check, with output ex-
act check and finally with input exact check.

In the future we plan to compare our BDD based implementation
of the different checks to a version using SAT–engines. Another
interesting question is how the methods can be extended to verify
also sequential circuits containing Black Boxes.
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