
Effective Use of Boolean Satisfiability Procedures
in the Formal Verification of Superscalar and

VLIW Microprocessors 1

Miroslav N. Velev *

mvelev@ece.cmu.edu
http://www.ece.cmu.edu/~mvelev

*Department of Electrical and Computer Engineering

Randal E. Bryant *

randy.bryant@cs.cmu.edu
http://www.cs.cmu.edu/~bryant

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
lua
f
o-
ut-
nc
u-
th

tic
o

s
fi-
-
ea
r-
ala
g
h

ur
ide
s.
cid
e
to
be
or
ne

r
nd
e
-
We

o
er
to

se
W

n
-

84.

—
a
g
or-
d
e-
, or

ns-
ts

an
be

.
eg-
s of
F)

on-

ies

as
an
s,

a-
e
to

ion
”

e
, it
er
to
te
e
al

-
nd
Abstract
We compare SAT-checkers and decision diagrams on the eva
tion of Boolean formulas produced in the formal verification o
both correct and buggy versions of superscalar and VLIW micr
processors. We identify one SAT-checker that significantly o
performs the rest. We evaluate ways to enhance its performa
by variations in the generation of the Boolean correctness form
las. We reassess optimizations previously used to speed up
formal verification and probe future challenges.

1 Introduction
In the past few years, SAT-checkers have made a drama
improvement in both their speed and capacity. We compare 28
them with decision diagrams—BDDs [7] and BEDs [61]—a
well as with ATPG tools [21][52] when used as Boolean Satis
ability (SAT) procedures in the formal verification of micropro
cessors. The comparison is based on two benchmark suites,
of 101 Boolean formulas generated in the verification of 1 co
rect and 100 buggy versions of the same design—a supersc
and a VLIW microprocessor, respectively. Unlike existin
benchmark suites, e.g., ISCAS 85 [5] and ISCAS 89 [6], whic
are collections of circuits that have nothing in common, o
suites are based on the same correct design and hence prov
point for consistent comparison of different evaluation method

The correctness condition that we use is expressed in a de
able subset of First-Order Logic [10]. That allows it either to b
checked directly with a customized decision procedure [51] or
be translated to an equivalent Boolean formula [55] that can
evaluated with SAT engines for either proving correctness
finding a counterexample. The latter approach can directly be
fit from improvements in the SAT tools.

We identify Chaff [38] as the most efficient SAT-checker fo
the second verification strategy when applied to both correct a
buggy designs. Chaff significantly outperforms BDDs [7] and th
SAT-checker DLM-2 [48], the previous most efficient SAT pro
cedures for, respectively, correct and buggy processors.
reevaluate optimizations used to enhance the performance
BDDs and DLM-2 and conclude that many of them are no long
crucial on the same benchmark suites. Our study allows us
eliminate conservative approximations that might result in fal
negatives and thus consume precious user time for analysis.
also prioritize the optimizations that are still useful with Chaff i
the order of their impact on the efficiency of the formal verifica
tion.

1. This research was supported by the SRC under contract 00-DC-6
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copie
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00.

h

is-
s

-

e

e

f

ch

r

a

-

-

f

e

2 Background
The formal verification is done by correspondence checking
comparison of the superscalar/VLIW Implementation against
non-pipelined Specification, based on the Burch and Dill flushin
technique [10]. The correctness criterion is expressed as a f
mula in the logic of Equality with Uninterpreted Functions an
Memories (EUFM) [10] and states that all user-visible state el
ments in the processor should be updated in sync by either 0
1, or up tok instructions after each clock cycle, wherek is the
issue width of the design. The correctness formula is then tra
lated to a Boolean formula by an automatic tool [55] that exploi
the properties of Positive Equality [8], theeij encoding [18], and
a number of conservative approximations. The resulting Boole
formula should be a tautology in order for the processor to
correct and can be evaluated by any SAT procedure.

The syntax of EUFM [10] includes terms and formulas
Terms are used in order to abstract word-level values of data, r
ister identifiers, memory addresses, as well as the entire state
memory arrays. A term can be an Uninterpreted Function (U
applied on a list of argument terms, a domain variable, or anITE
operator selecting between two argument terms based on a c
trolling formula, such thatITE(formula, term1, term2) will evalu-
ate toterm1 whenformula= true and toterm2 whenformula=
false. The syntax for terms can be extended to model memor
by means of the functionsreadandwrite [10][59]. Formulas are
used in order to model the control path of a microprocessor,
well as to express the correctness condition. A formula can be
Uninterpreted Predicate (UP) applied on a list of argument term
a propositional variable, anITE operator selecting between two
argument formulas based on a controlling formula, or an equ
tion (equality comparison) of two terms. Formulas can b
negated and connected by Boolean connectives. We will refer
both terms and formulas as expressions.

UFs and UPs are used to abstract away the implementat
details of functional units by replacing them with “black boxes
that satisfy no particular properties other than that offunctional
consistency. Namely, that the same combinations of values to th
inputs of the UF (or UP) produce the same output value. Then
no longer matters whether the original functional unit is an add
or a multiplier, etc., as long as the same UF (or UP) is used
replace it in both the Implementation and the Specification. No
that in this way we will prove a more general problem—that th
processor is correct for any implementation of its function
units. However, that more general problem is easier to prove.

Two possible ways to impose the property of functional con
sistency of UFs and UPs are Ackermann constraints [1] a
nestedITEs [3][4][21]. The Ackermann scheme replaces eac
UF (UP) application in the EUFM formulaF with a new domain
variable (propositional variable) and then adds external cons
tency constraints. For example, the UF applicationf(a1, b1) will
be replaced by a new domain variablec1, another application of
the same UF,f(a2, b2), will be replaced by a new domain variable
c2. Then, the resulting EUFM formulaF’ will be extended as
[(a1 = a2) ∧ (b1 = b2) ⇒ (c1 = c2)] ⇒ F’ . In the nestedITEs

e

s.
f
ar

ive

ion

n
e
la
is
ith

ve
ed

n,

tiv

t
as
t o
es
es
th
int
ery
r,
te

d i
h-
n

ing
42

,

l
in

he
an
or
r
th

es,
me
a
ec
ot
ch
e

.

P
s,
a

bal
ha-
er

9]

1

-
-
g
-

r-
, a
a-
n,

-

t-0,
g
n
s)
an
y

st
of
in
a

g

n-
f a
ts,

he
ed
e

its

th
e
r

ed

st
r-

of

or,

h
e,
an
scheme, the first application of the UF above will still b
replaced by a new domain variablec1. However, the second one
will be replaced byITE((a2 = a1) ∧ (b2 = b1), c1, c2), wherec2 is
a new domain variable. A third one,f(a3, b3), will be replaced by
ITE((a3 = a1) ∧ (b3 = b1), c1, ITE((a3 = a2) ∧ (b3 = b2), c2, c3)),
wherec3 is a new domain variable, and so on. Similarly for UP

Positive Equality allows the identification of two types o
terms in the structure of an EUFM formula—those which appe
in only positive equations and are calledp-terms(for positive
terms), and those which appear in both positive and negat
equations and are calledg-terms(for general terms). A negative
equation is one which appears under an odd number of negat
or as part of the controlling formula for anITE operator. The effi-
ciency from exploiting Positive Equality is due to the observatio
that the truth of an EUFM formula under a maximally divers
interpretation of the p-terms implies the truth of the formu
under any interpretation. A maximally diverse interpretation
one where the equality comparison of a domain variable w
itself evaluates totrue, that of a p-term domain variable with a
syntactically distinct domain variable evaluates tofalse, and that
of a g-term domain variable with a syntactically distinct g-term
domain variable (a g-equation) could evaluate to eithertrue or
false and can be encoded with Boolean variables [18][40].

3 Microprocessor Benchmarks
We base our comparison of SAT procedures on a set of high-le
microprocessors, ranging from a single-issue 5-stage pipelin
DLX [23], 1×DLX-C, to a dual-issue superscalar DLX with mul-
ticycle functional units, exceptions, and branch predictio
2×DLX-CC-MC-EX-BP [56], to a 9-wide VLIW architecture,
9VLIW-MC-BP [57], that imitates the Intel Itanium [25] [49] in
speculative features such as predicated execution, specula
register remapping, advanced loads, and branch prediction.

The VLIW design is far more complex than any other tha
has been formally verified previously in an automatic way. It h
a fetch engine that supplies the execution engine with a packe
9 instructions, with no internal data dependencies. Each of th
instructions is already matched with one of 9 execution pipelin
of 4 stages: 4 integer pipelines, two of which can perform bo
integer and floating-point memory accesses; 2 floating-po
pipelines; and 3 branch-address computation pipelines. Ev
instruction is predicated with a qualifying predicate identifie
such that the result of that instruction affects user-visible sta
only when the predicate evaluates to 1. Data values are store
4 register files: integer, floating-point, predicate, and branc
address. The two floating-point ALUs, as well as the Instructio
and Data Memories, can each take multiple cycles for comput
a result or completing a fetch, respectively. There can be up to
instructions in flight. An extended version, 9VLIW-MC-BP-EX
also implements exceptions.

We created 100 incorrect versions of both 2×DLX-CC-MC-
EX-BP and 9VLIW-MC-BP. The bugs were variants of actua
errors made in the design of the correct versions and also co
cided with the types of bugs that Van Campenhout,et al. [54]
analyzed to be among the most frequent design errors. T
injected bugs included omitting inputs to logic gates, e.g.,
instruction is not squashed when a preceding branch is taken
stalling condition for the load interlock does not fully account fo
the cases when the dependent data operand will be used. O
types of bugs were due to using incorrect inputs to logic gat
functional units, or memories, e.g., an input with the same na
but a different index. Finally, lack of mechanisms to correct
speculative update of a user-visible state element when the sp
ulation is incorrect. Hence, the variations introduced were n
completely random, as done in other efforts to generate ben
mark suites [22][26][27][36]. The bugs were spread over th
entire designs and occurred either as single or multiple errors
s

l

e

f
e

n

-

a

er

-

-

4 Comparison of SAT Procedures
We evaluated 28 SAT-checkers: SATO.3.2.1 [44][63]; GRAS
[17][32] [33], used both with a single strategy and with restart
randomization, and recursive learning [2]; CGRASP [12][34],
version of GRASP that exploits structural information; DLM-2
and DLM-3 [48], as well as DLM-2000 [62], all incomplete SAT-
checkers (i.e., they cannot prove unsatisfiability) based on glo
random search and discrete Lagrangian Multipliers as a mec
nism to not only get the search out of local minima, but also ste
it in the direction towards a global minimum—a satisfying
assignment; satz [30][45], satz.v213 [30][45], satz-rand.v4.6 [1
[45], eqsatz.v20 [31]; GSAT.v41 [45][47], WalkSAT.v37 [45]
[46]; posit [16][45]; ntab [13][45]; rel_sat.1.0 and rel_sat.2.
[3][45]; rel_sat_rand1.0 [19][45]; ASAT and C-SAT [15]; CLS
[41]; QSAT [39] and QBF [42], two SAT-checkers for quantified
Boolean formulas; ZRes [11], a SAT-checker combining Zero
Supressed BDDs (ZBDDs) with the original Davis-Putnam pro
cedure; BSAT and IS-USAT, both based on BDDs and exploitin
the properties of unate Boolean functions [29]; Prover, a com
mercial SAT-checker based on Stålmarck’s method [50]; Hee
Hugo [20], also based on the same method; and Chaff [38]
complete SAT-checker exploiting lazy Boolean constraint prop
gation, non-chronological backtracking, restarts, randomizatio
and many optimizations.

Additionally, we experimented with 2 of the fastest (and pub
licly available) ATPG tools—ATOM [21] and TIP [52]—used in
a mode that tests the output of a benchmark for being stuck-a
which triggers the justification of value 1 at the output, turnin
the ATPG tool into a SAT-checker. We also used Binary Decisio
Diagrams (BDDs) [7] and Boolean Expression Diagrams (BED
[61]—the latter not being a canonical representation of Boole
functions, but shown to be extremely efficient when formall
verifying multipliers [60].

The translation to the CNF format [28], used as input to mo
SAT-checkers, was done after inserting a negation at the top
the Boolean correctness formula that has to be a tautology
order for the processor to be correct. If the formula is indeed
tautology, its negation will befalse, so that a complete SAT-
checker will be able to prove unsatisfiability. Else, a satisfyin
assignment for the negation will be a counterexample.

In translating to CNF, we introduced a newauxiliary Boolean
variable for the output of everyAND, OR, or ITE gate in the
Boolean correctness formula and then imposed disjunctive co
straints (clauses) that the value of a variable at the output o
gate be consistent with the values of the variables at the inpu
given the function of the gate. Inverters were subsumed in t
clauses for the driven gates. All clauses were conjunct
together, including a constraint that the only primary output (th
negation of the Boolean correctness formula) istrue. The vari-
ables in the support of the Boolean correctness formula before
translation to CNF will be calledprimary Boolean variables.

The experiments were performed on a 336 MHz Sun4 wi
1.2 GB of memory and 1 GB of swap space. CUDD [14] and th
sifting dynamic variable reordering heuristic [43] were used fo
the BDD-based runs. In the BED evaluations, we experiment
with converting the final BED into a BDD with both the
up_one() andup_all() functions [61] by employing 4 dif-
ferent variable ordering heuristics—variants of the depth-fir
and fanin [37] heuristics—that were the most efficient in the ve
ification of multipliers [60][61].

The SAT procedures that scaled for the 100 buggy variants
2×DLX-CC-MC-EX-BP are listed in Table 1. The rest of the
SAT solvers had trouble even with the single-issue process
1×DLX-C, or could not scale for its dual-issue version, 2×DLX-
CC (without exceptions, multicycle functional units, and branc
prediction). The SAT-checker Chaff had the best performanc
finding a satisfying assignment for each benchmark in less th

f th
er
st

.
0
er
s,

n.

PU
T
nd
ng

y
g
w-
ag
c-
he
ed
ss
on
ly

6
at

s of
un-
m

en

e
ile
h-
a

of
ed
rs
l-
x
the
to
-

go-
to

he
of
ot
a-

c-
e
-

he

to
-
g

er,
ua-
m
an

in
o

of
m-

ni-
3
re
nt

xi-
ds,
of
er
llel
axi-
r-
40 seconds (indeed, less than 37 seconds). We ran the rest o
SAT procedures for 400 and 4,000 seconds—one and two ord
of magnitude more, respectively. DLM-2 was the second mo
efficient SAT-checker for this suite, closely followed by DLM-3
CGRASP was next, solving only half of the benchmarks in 40
seconds, followed by QSAT with 49 of the benchmarks und
400 seconds. The rest of the SAT procedures, including BDD
performed significantly worse. DLM-2000 is slower than DLM-2
and DLM-3 because of extensive analysis before each decisio

When verifying the correct 2×DLX-CC-MC-EX-BP, Chaff
again had the best performance, requiring 40 seconds of C
time, followed by BDDs with 2,635 seconds [56], and QSA
with 14 hours and 37 minutes. CGRASP, SATO, GRASP, a
GRASP with restarts, randomization, and recursive learni
could not prove the CNF formula unsatisfiable in 24 hours.

Figure 1: Comparison of Chaff and BDDs on 100 buggy ver-
sions of 9VLIW-MC-BP. The benchmarks are sorted in ascend-
ing order of their times for the BDD-based experiment.

We then compared Chaff and DLM-2 on the 100 bugg
VLIW designs: Chaff was better in 77 cases, with DLM-2 bein
faster with more than 60 seconds on only 10 benchmarks. Ho
ever, Chaff took at most 355 seconds, and 79 seconds on aver
while DLM-2 did not complete 2 of the benchmarks in 3,600 se
onds (we tried 4 different parameter sets). When verifying t
correct 9VLIW-MC-BP, Chaff required 1,644 seconds, compar
to the 31.5 hours by BDDs [57], using a monolithic correctne
criterion in both cases. Figure 1 compares Chaff and BDDs
the 100 buggy VLIW designs, such that Chaff is evaluating on

SAT Procedure
% Satisfiable in

< 40 sec < 400 sec < 4,000 sec

Chaff 100 100 100
DLM-2 61 90 98
DLM-3 58 86 99
CGRASP 46 50 71
QSAT 40 49 52
SATO 22 39 71
rel_sat.1.0 13 20 22
WalkSAT 13 18 32
rel_sat_rand 10 27 34
DLM-2000 9 37 70
GRASP 6 27 48
GRASP + restarts 6 11 18
CLS 5 8 10
rel_sat.2.1 4 71 99
eqsatz 3 4 5
BDDs 2 2 5

Table 1: Comparison of SAT procedures on 100 buggy
versions of 2xDLX-CC-MC-EX-BP.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

100 Buggy VLIW Designs

Ti
m

e,
 s

ec
.

BDDs: 16 runs
Chaff: 1 run
e
s

e,

one monolithic correctness criterion, while BDDs evaluate 1
weak (and easier) criteria in parallel [57]. The assumption is th
there are enough computing resources to support parallel run
the tool. As soon as one of these parallel runs comes with a co
terexample, we terminate the rest, and consider the minimu
time as the verification time. As shown, the difference betwe
BDDs and Chaff is up to 4 orders of magnitude.

Applying the scriptsimplify [35] in order to perform
algebraic simplifications on the CNF formula for one of th
buggy VLIW designs required more than 47,000 seconds, wh
Chaff took only 14 seconds to find a satisfying assignment wit
out simplifications. This is not surprising, given the CNF formul
sizes of up to 450,000 clauses with up to 25,000 variables.

Hence, based on experiments with two suites consisting
100 buggy designs and their correct counterpart, we identifi
Chaff as the most efficient SAT procedure—more than 2 orde
of magnitude faster than other SAT solvers—for evaluating Boo
ean formulas generated in the formal verification of comple
microprocessors with realistic features. How does this change
frontier of possibilities? The rest of the paper examines ways
increase the productivity in formal verification of microproces
sors by using Chaff as the back-end SAT-checker.

5 Impact of Structural Variations in Gener-
ating the Boolean Correctness Formulas

Early reduction of p-equations. When eliminating UFs and
UPs that take only p-terms as arguments, the translation al
rithm introduces equations between argument terms in order
enforce the functional consistency property by nestedITEs
[8][55]. The argument terms consist of only nestedITEs that
select one among a set of supporting domain variables. If t
terms on both sides of an equation have disjoint supports
p-term domain variables, then the two compared terms will n
be equal under a maximally diverse interpretation and their equ
tion can be replaced withfalse. This is already done in the final
step of the translation algorithm [55]. However, an early redu
tion of such equations will result in a different structure of th
DAG for the final Boolean formula, i.e., in a different (but equiv
alent) CNF formula to be evaluated by SAT-checkers.
Eliminating UPs with Ackermann constraints. Ackermann
constraints [1] result in a negated equation for the outputs of t
eliminated UF or UP: [(a1 = a2)∧(b1 = b2) ⇒ (c1 = c2)] ⇒ F’,
which is equivalent to: (a1 = a2)∧(b1 = b2)∧¬(c1 = c2) ∨ F’ . The
negated equation for the output valuesc1 andc2 means that they
cannot be p-terms—something that we want to avoid in order
exploit the computational efficiency of Positive Equality. There
fore, Ackermann constraints should not be used for eliminatin
UFs whose results appear only in positive equations. Howev
they can be used when eliminating UPs—then the negated eq
tions will be over Boolean variables and that is not a proble
when using Positive Equality. Hence, Ackermann constraints c
be used instead of nested ITEs for eliminating UPs.

The data points for 4 runs with structural variations, shown
Fig. 2, are the minimum times among 4 parallel runs: one with n
structural variations (the data plotted for 1 run), one for each
the above variations used alone, and one for both variations co
bined. The data for 4 runs with parameter variations are the mi
mum among the 1 run with no structural variations and
additional runs where some of the input parameters to Chaff we
changed. The average time for finding a satisfying assignme
when using structural variations is 45.8 seconds, with the ma
mum being 278 seconds, compared to 45 and 254 secon
respectively, with parameter variations. Therefore, the effect
structural variations is almost identical with that of paramet
variations, as can be seen in the figure. Running them in para
(7 runs) reduces the average time to 37 seconds and the m
mum to 218 seconds. Hence, only a few parallel runs with diffe

th
o

ble

ar-
-
g
t
at
gy

tha
m
ity
of

g
nt

g.
on
ri-

o
r-
l-

ility
m

W
g,
nd
nd
-
ty

ns
om

es
08

m

e.
r-
ula

an
n-

ess

hat

xe-
ns

n
-
ut
is

er
es

n

ld
e
urs

he
nd

ter
r-
of

fect
ent structural and/or parameter variations can help reduce
time for SAT checking with Chaff. Structural variations als
accelerated the verification of correct designs with up to 20%.

Figure 2: Using structural vs. parameter variations in Chaff.
The benchmarks are sorted in ascending order of their times
for the experiment with 1 run.

6 Encoding G-Equations
The eij encoding.The equationgi = gj, wheregi and gj are g-
term domain variables, is replaced by a unique Boolean varia
eij [18]. Transitivity of equality, (gi = gj) ∧ (gj = gk) ⇒ (gi = gk)
has to be enforced additionally, e.g., by triangulating the comp
ison graph of thoseeij variables that affect the final Boolean for
mula and then enforcing transitivity for each of the resultin
triangles—sparse transitivity [9]. Although not every correc
microprocessor requires transitivity for its correctness proof, th
property is needed in order to avoid false negatives for bug
processors or for designs that do need transitivity.
The small domains encoding.Every g-term domain variable is
assigned a set of constant values that it can take on in a way
allows it to be either equal to or different from any other g-ter
domain variable that it can be transitively compared for equal
with [40]. If the set of constants for a g-term variable consists
N values, those can be indexed withlog2(N) Boolean variables.
Then two g-term domain variables are equal if their indexin
Boolean variables select simultaneously a common consta
Note that transitivity is automatically enforced in this encodin
Depending on the structure of the g-term variable comparis
graphs, the small domains encoding might introduce fewer p
mary Boolean variables than theeij encoding. That would mean a
smaller search space. However, now the equality comparison
two g-term domain variables gets replaced with a Boolean fo
mula—a disjunction of conjuncts, each consisting of many Boo
ean variables or their complements and encoding the possib
that the two g-term domain variables evaluate to the same co
mon constant—instead of just a single Boolean variable.

The two encodings are compared on the 100 buggy VLI
designs in Fig. 3. In a single run of the small domains encodin
the maximum CPU time for detecting a bug is 3,633 seconds a
the average is 394 seconds, compared to 355 and 79 seco
respectively, for theeij encoding (which was used for the experi
ments before this section). Constraints for transitivity of equali
were included when using theeij encoding. Structural variations
with 4 runs reduced the maximum time with the small domai
encoding to 1,240 seconds, and the average to 154 seconds, c
pared to 154 and 46 seconds, respectively, for theeij encoding.

When verifying the correct 9VLIW-MC-BP, the small
domains encoding resulted in 1,152 primary Boolean variabl
with 890 of them being indexing variables, and required 6,0
seconds of CPU time. On the other hand, theeij encoding
resulted in 2,615 primary Boolean variables, with 2,353 of the

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

100 Buggy VLIW Designs

Ti
m

e,
 s

ec
.

1 run
4 runs, structural variations
4 runs, parameter variations
e

t

.

f

-

s,

-

,

being eij variables, and required 1,644 seconds of CPU tim
Since this design does not need transitivity of equality for its co
rectness proof, such constraints were not included in the form
generated with theeij encoding. Adding these constraints
resulted in 705 extraeij variables due to triangulating the g-term
comparison graph, and in 2,680 seconds of CPU time—
increase of over 1,000 seconds. Hence, including transitivity co
straints for a design that does not need them for its correctn
proof might result in an increase of the verification time.

Figure 3: Comparison of the eij and small domains encodings
on 100 buggy versions of 9VLIW-MC-BP, using Chaff. The
benchmarks are sorted in ascending order of their times for
the experiment with the small domains encoding.

We also compared the two encodings on correct designs t
do require transitivity of equality for their correctness proofs—
superscalar processors with out-of-order execution that can e
cute register-register and load instructions. Because instructio
are dispatched when they do not have Write-After-Write (i
addition to Write-After-Read and Read-After-Write) dependen
cies [23] on instructions that are earlier in the program order b
are stalled due to data dependencies, transitivity of equality
required in proving the equality of the final states of the Regist
File reached after the Implementation and the Specification sid
of the commutative correctness diagram.

While the small domains encoding introduced fewer Boolea
variables—less than half of those required by theeij encoding for
the 5-wide design—it resulted in longer CPU times. Chaff cou
not prove the unsatisfiability of the CNF formula for the 6-wid
superscalar processor with either encoding in less than 24 ho
of CPU time—a direction for future work.

The efficiency of theeij encoding can be explained by the
impact of g-equations on the instruction flow, and hence on t
correctness formula. Such equations determine forwarding a
stalling conditions, based on equality comparisons of regis
identifiers, as well as instruction squashing conditions for co
recting branch mispredictions, based on equality comparisons
actual and predicted branch targets. Therefore, g-equations af

Issue
Width

G-Equation Encoding

eij small domains

Primary
Boolean

Variables

CPU Time
[sec]

Primary
Boolean

Variables

CPU Time
[sec]

2 95 3.5 81 3.7
3 201 54 127 64
4 346 810 194 2,358
5 530 2,500 249 3,804

Table 2: Comparison of the eij and small domains encodings
on correct out-of-order superscalar microprocessors that do
require transitivity of equality for their correctness proofs.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

100 Buggy VLIW Designs

Ti
m

e,
 s

ec
.

small domains encoding: 1 run
e

ij
 encoding: 1 run

le,
f
he

se
ny
f

te
is-
lly
ri-

ol-

y

-

ri-
t i
d.
et

n

ri-
d

n
t-
es

ces

sla
ti-
th
es
ot

ic

it-
y
i-
a

ly-
ht

al-
s

as

of
ve

ct
o
of
i-
ct

y
y.

ut
e-
r

t
al
ti-
i-
us
an
the
].
ar
-

s
g
er-

ed
—
y
l-
-
ins
to

r-
lts
st

.
ion
],
d

opti-
nt

ss
nn
as
ate

e

ry
n
a-
ut

en-
at
ue
d
r

e
the
the execution of many instructions. A single Boolean variab
introduced in theeij encoding, naturally fits the purpose o
accounting for both cases—that the equality comparison is eit
true or false. Transitivity of equality is never violated—as soon
as twoeij variables in a triangle becometrue then the thirdeij
variable in that triangle immediately becomestrue, due to the
imposed transitivity constraints and the effect of the unit clau
rule in SAT-checkers, and this is immediately extended to a
cycle of eij variables [9]—which avoids wasteful exploration o
infeasible portions of the search space.

On the other hand, the small domains encoding enumera
all mappings of g-term domain variables to a sufficient set of d
tinct constants, thus introducing more information than actua
required to solve the problem. Now, an auxiliary Boolean va
ablefij is introduced in place of each primaryeij Boolean variable
from the previous encoding, such thatfij represents the value of a
Boolean formula enumerating the cases when g-termsi andj will
evaluate to the same common constant. Therefore,fij depends on
the indexing Boolean variablesxil that encode the mapping of
g-termi to its set of possible constants, and on the indexing Bo
ean variablesxjk that encode the mapping of g-termj to its set of
possible constants. Note that the indexing variablesxil will affect
the value of eachfim auxiliary variable that encodes the equalit
between g-termi and some g-termm. If a SAT-checker assigns
values tofij variables before all their supporting indexing vari
ables, then thefij values might violate transitivity of equality.
Furthermore, it might take a while before enough indexing va
ables get assigned in order to detect the violation and to correc
by backtracking. The work done in the meantime will be waste
On the other hand, if all supporting indexing variables g
assigned before thefij variables that they affect, then thosefij
variables will flip every time when a single indexing variable i
their support flips. Note that each legal assignment toeij vari-
ables is a legal assignment tofij variables, except that now it can
be justified with many possible assignments to the indexing va
ables. Hence, multiple branches in the formula will be revisite
for what will be just one visit with theeij encoding. As a result,
the small domains encoding is less efficient than theeij encoding.

In a different application—encoding constraint satisfactio
problems as SAT instances—Hoos [24] similarly found that be
ter performance is achieved with an encoding that introduc
more variables but results in conceptually simpler search spa

7 Benefits of Conservative Approximations
and Positive Equality

Conservative approximations, such as manually inserted tran
tion boxes (dummy UFs or UPs with one input) [56] or automa
cally abstracted memories [57] have the potential to speed up
verification of correct designs, but might result in false negativ
that will require manual user intervention and analysis. N
exploiting such optimizations in the verification of 9VLIW-MC-
BP-EX resulted in CPU time of 2,542 seconds with monolith
evaluation of the correctness criterion and theeij encoding, com-
pared to 1,513 seconds with the optimizations. However, explo
ing structural variations in only one run—combining earl
reductions of p-equations and Ackermann constraints for elim
nating UPs—resulted in CPU time of 1,964 seconds. This is
negligible overhead, compared with the burden of manual ana
sis necessary to identify potential false negatives that mig
result when using these optimizations.

We then evaluated the benefits of exploiting Positive Equ
ity, given the extremely efficient SAT-checker Chaff. This wa
implemented by introducing aneij Boolean variable for the
equality comparison of two distinct p-term domain variables
done originally by Goel,et al. [18], instead of treating these
p-terms as different. We started with a buggy version
1×DLX-C: the bug was detected in 0.02 seconds with Positi
r

s

t

.

-

e

Equality, compared to 20 seconds without. Verifying the corre
1×DLX-C took 0.17 seconds with Positive Equality, compared t
3,111 seconds without. The bug in an erroneous version
2×DLX-CC-MC-EX-BP was detected in 1.6 seconds with Pos
tive Equality, compared with 661 seconds without. The corre
2×DLX-CC-MC-EX-BP was verified in 40 seconds with Positive
Equality, consuming 36 MB of memory, but ran out of memor
after 77,668 seconds without exploiting Positive Equalit
Finally, a bug in an incorrect version of 9VLIW-MC-BP was
detected in 173 seconds using 96 MB, compared to running o
of memory after 6,351 seconds without Positive Equality. Ther
fore, exploiting Positive Equality is still the major reason for ou
success in formally verifying complex microprocessors.

8 Conclusions
We found the SAT-checker Chaff [38] to be the most efficien
means for evaluating Boolean formulas generated in the form
verification of both correct and buggy microprocessors, drama
cally outperforming 27 SAT-checkers, 2 ATPG tools, and 2 dec
sion diagrams—BDDs [7] and BEDs [61]. Reassessing vario
optimizations that can be applied when producing the Boole
formula for the microprocessor correctness, we conclude that
single most important step is exploiting Positive Equality [8
Without it, Chaff would not have scaled for realistic superscal
and VLIW microprocessors with exceptions, multicycle func
tional units, branch prediction, and other speculative features.

Exploiting theeij encoding [18] of g-equations resulted in a
speedup of a factor of 4 for our most complex VLIW benchmark
compared to the small domains encoding [40] when verifyin
correct designs, and consistently performed better on buggy v
sions. Although theeij encoding results in more than twice as
many primary Boolean variables, its efficiency can be explain
with the conceptual simplicity of the resulting search space
with eacheij Boolean variable naturally encoding the equalit
between a pair of g-term domain variables. Transitivity of equa
ity is never violated, which avoids wasteful exploration of infea
sible portions of the search space. In contrast, the small doma
encoding enumerates all mappings of g-term domain variables
a sufficient set of distinct constants, thus introducing more info
mation than actually required to solve the problem. This resu
in revisiting portions of the search space for what would be ju
one visit with theeij encoding. Transitivity of equality is not
guaranteed to be always satisfied, also allowing wasteful work

Conservative approximations, such as automatic abstract
of memories [57] and manually-inserted translation boxes [56
are not as essential to the fast verification of correct VLIW an
dual-issue superscalar processors when using Chaff as these
mizations were when using BDDs—previously the most efficie
SAT procedure for correct designs.

Structural variations in generating the Boolean correctne
formulas—early reductions of p-equations and using Ackerma
constraints for eliminating uninterpreted predicates—as well
parameter variations for Chaff can help to somewhat acceler
the SAT checking, although no single variation performs best.

Applying algebraic simplifications [35] to the CNF formulas
resulting from realistic microprocessors is impractical, due to th
large number of clauses—hundreds of thousands.

To conclude, we showed that Chaff can easily handle ve
hard and big CNF formulas, produced in the formal verificatio
of microprocessors without applying conservative transform
tions that were previously needed in BDD-based evaluations b
have the potential to result in false negatives and to take ext
sive human effort to analyze. We identified the optimizations th
do help increase the performance of Chaff on realistic dual-iss
superscalar and VLIW designs—Positive Equality, combine
with the eij encoding, and possibly with structural/paramete
variations in multiple parallel runs. Our study will increase th
productivity of microprocessor design engineers and shorten

a
e

ng

to

l
s

f

-
-

g
i-

of

er
ns

/.
ch
n

-

e-
of

er-
.
st
a-

f

o,

rch

le
1:

ic

l

fi-

r

-

r
,

al

rn-
gn

i-

s

,

-

y

r-

-

ity
-

T:

ch
-

”

s
r-
. 5

a-

,

is
,

g
-

-
h

”

-
al
time-to-market for VLIW and DSP architectures that constitute
significant portion of the microprocessor market [53]. Th
benchmarks used in this paper are available as [58].

Acknowledgments
We thank M. Moskewicz for providing us with Chaff and for
fine-tuning it on our benchmarks.

References
[1] W. Ackermann,Solvable Cases of the Decision Problem, North-Holland,

Amsterdam, 1954.
[2] L. Baptista, and J.P. Marques-Silva, “Using Randomization and Learni

to Solve Hard Real-World Instances of Satisfiability,”2 Principles and
Practice of Constraint Programming (CP ‘00), September 2000.

[3] R.J. Bayardo, Jr., and R. Schrag, “Using CSP look-back techniques
solve real world SAT instances,”14th National Conference on Artificial
Intelligence (AAAI ‘97), July 1997, pp. 203-208.

[4] BED Package3, version 2.5, October 2000.
[5] F. Brglez, and H. Fujiwara, “A Neutral Netlist of 10 Combinationa

Benchmark Circuits,”International Symposium on Circuits and System
(ISCAS ’85), 1985.

[6] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles o
Sequential Benchmark Circuits,”International Symposium on Circuits
and Systems (ISCAS ’89), 1989.

[7] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary
Decision Diagrams,” ACM Computing Surveys, Vol. 24, No. 3 (Septem
ber 1992), pp. 293-318.

[8] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Usin
Efficient Reductions of the Logic of Uninterpreted Functions to Propos
tional Logic,”4 ACM Transactions on Computational Logic (TOCL),
Vol. 2, No. 1 (January 2001).

[9] R.E. Bryant, and M.N. Velev, “Boolean Satisfiability with Transitivity
Constraints,”4 Computer-Aided Verification (CAV ‘00), E.A. Emerson and
A.P. Sistla,eds., LNCS 1855, Springer-Verlag, July 2000, pp. 86-98.

[10] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Micro-
processor Control,”Computer-Aided Verification(CAV ‘94), D.L. Dill,
ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[11] P. Chatalic, and L. Simon, “Multi-Resolution on Compressed Sets
Clauses,”12th International Conference on Tools with Artificial Intelli-
gence (ICTAI ‘00), November 2000, pp. 2-10.

[12] CGRASP, http://vinci.inesc.pt/~lgs/cgrasp.
[13] J.M. Crawford, and L.D. Auton, “Experimental Results on the Crossov

Point in Random 3SAT,” Frontiers in Problem Solving: Phase Transitio
and Complexity, Artificial Intelligence, T. Hogg, B. A. Huberman and
C. Williams,eds., Vol. 81, Nos. 1-2 (March 1996), pp. 31-57.

[14] CUDD-2.3.0, http://vlsi.colorado.edu/~fabio.
[15] O. Dubois, “Can a Very Simple Algorithm be Efficient for SAT?”,

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/dubois
[16] J.W. Freeman, “Improvements to Propositional Satisfiability Sear

Algorithms,” Ph.D. thesis, Department of Computer and Informatio
Science, University of Pennsylvania, 1995.

[17] GRASP, http://vinci.inesc.pt/~jpms/grasp.
[18] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Proce

dures for a Theory of Equality with Uninterpreted Functions,”Computer-
Aided Verification (CAV ‘98), A.J. Hu and M.Y. Vardi,eds., LNCS 1427,
Springer-Verlag, June 1998, pp. 244-255.

[19] C.P. Gomes, B. Selman, N. Crator, and H.A. Kautz, “Heavy-Tailed Ph
nomena in Satisfiability and Constraint Satisfaction Problems”, Journal
Automated Reasoning, Vol. 24, Nos. 1-2 (February 2000), pp. 67-100.

[20] J.F. Groote, and J.P. Warners, “The propositional formula checker He
Hugo,” J. of Automated Reasoning, Vol. 24, Nos. 1-2 (February 2000)

[21] I. Hamzaoglu, and J.H. Patel, “New Techniques for Deterministic Te
Pattern Generation,” Journal of Electronic Testing: Theory and Applic
tions, Vol. 15, Nos. 1-2 (August 1999), pp. 63-73.

[22] J.E. Harlow III, and F. Brglez, “Design of Experiments for Evaluation o
BDD Packages Using Controlled Circuit Mutations,”Formal Methods in
Computer-Aided Design (FMCAD ’98), G. Gopalakrishnan and P. Wind-
ley, eds., LNCS 1522, Springer-Verlag, November 1998, pp. 64-81.

[23] J.L. Hennessy, and D.A. Patterson,Computer Architecture: A Quantita-
tive Approach, 2nd edition, Morgan Kaufmann Publishers, San Francisc
CA, 1996.

[24] H.H. Hoos, “SAT-Encodings, Search Space Structure, and Local Sea
Performance,”International Joint Conference on Artificial Intelligence
(IJCAI ’99), August 1999, pp. 296-302.

[25] IA-64 Application Developer’s Architecture Guide,5 Intel Corporation,
May 1999.

[26] K. Iwama, H. Abeta, and E. Miyano, “Random Generation of Satisfiab
and Unsatisfiable CNF Predicates,” Information Processing 92, Vol.
Algorithms, Software, Architecture, J. Van Leeuwen,ed., Elsevier Sci-
ence Publishers B.V., 1992, pp. 322-328.

[27] K. Iwama, and K. Hino, “Random Generation of Test Instances for Log
Optimizers,”31st Design Automation Conference (DAC ’94), June 1994.

[28] D.S. Johnson, M.A. Trick,eds., The Second DIMACS Implementation
Challenge, DIMACS Series in Discrete Mathematics and Theoretica
Computer Science. http://dimacs.rutgers.edu/challenges.

[29] P. Kalla, Z. Zeng, M.J. Ciesielski, and C. Huang, “A BDD-Based Satis
ability Infrastructure Using the Unate Recursive Paradigm,”Design,
Automation and Test in Europe (DATE ’00), March 2000, pp. 232 -236.

[30] C.M. Li, and Anbulagan, “Heurisitics Based on Unit Propoagation fo
Satisfiability Problems,”International Joint Conference on Artificial
Intelligence (IJCAI ‘97), August 1997, pp. 366-371.

2. http://vinci.inesc.pt/~jpms
3. http://www.it-c.dk/research/bed
4. http://www.ece.cmu.edu/~mvelev
5. http://developer.intel.com/design/ia-64/architecture.htm
[31] C.M. Li, "Integrating Equivalency Reasoning into Davis-Putnam Proce
dure," 17th National Conference on Artificial Intelligence (AAAI ‘00),
July – August 2000, pp. 291-296.

[32] J.P. Marques-Silva, and K.A. Sakallah, “GRASP: A Search Algorithm fo
Propositional Satisfiability,” IEEE Transactions on Computers, Vol. 48
No. 5 (May 1999), pp. 506-521.

[33] J.P. Marques-Silva, “The Impact of Branching Heuristics in Proposition
Satisfiability Algorithms,”2 9th Portuguese Conference on Artificial Intel-
ligence (EPIA), September 1999.

[34] J.P. Marques-Silva, and L.G. e Silva, “Algorithms for Satisfiability in
Combinational Circuits Based on Backtrack Search and Recursive Lea
ing,”2 12th Symposium on Integrated Circuits and Systems Desi
(SBCCI ‘99), September – October 1999, pp. 192-195.

[35] J.P. Marques-Silva, “Algebraic Simplification Techniques for Propos
tional Satisfiability,”2 Principles and Practice of Constraint Program-
ming (CP ‘00), September 2000, pp. 537-542.

[36] D. Mitchell, B. Selman, and H. Levesque, “Hard and Easy Distribution
of SAT Problems,”10th National Conference on Artificial Intelligence
(AAAI ‘92), July 1992, pp. 459-465.

[37] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentelli,
“Logic Verification Using Binary Decision Diagrams in a Logic Synthesis
Environment,” International Conference on Computer-AIded Design
(ICCAD ’88), November 1988, pp. 6-9.

[38] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik
“Engineering a Highly Efficient SAT Solver,”38th Design Automation
Conference (DAC ’01), June 2001.

[39] D.A. Plaisted, A. Biere, and Y. Zhu, “A Satisfiability Procedure for Quan
tified Boolean Formulae,” submitted for publication, 2000.

[40] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding Equalit
Formulas by Small-Domain Instantiations,”Computer-Aided Verification
(CAV ’99), N. Halbwachs and D. Peled,eds., LNCS 1633, Springer-Ver-
lag, June 1999, pp. 455-469.

[41] S.D. Prestwich, “Stochastic Local Search in Constrained Spaces,”Practi-
cal Application of Constraint Technology and Logic Programming
(PACLP ‘00), April 2000, pp. 27-39.

[42] J. Rintanen, “Improvements to the Evaluation of Quantified Boolean Fo
mulae,” International Joint Conference on Artificial Intelligence
(IJCAI ’99), August 1999, pp. 1192-1197.

[43] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Dia
grams,” International Conference on Computer-Aided Design
(ICCAD ’93), November 1993, pp. 42-47.

[44] SATO.3.2.1, http://www.cs.uiowa.edu/~hzhang/sato.
[45] SATLIB—Solvers, http://www.satlib.org/solvers.html.
[46] B. Selman, H. Kautz, B. Cohen, “Local Search Strategies for Satisfiabil

Testing,” DIMACS Series in Discrete Mathematics and Theoretical Com
puter Science, Vol. 26 (1996), pp. 521-532.

[47] B. Selman, and H. Kautz, “Domain-Independent Extensions to GSA
Solving Large Structured Satisfiability Problems,”International Joint
Conference on Artificial Intelligence (IJCAI ‘93), August – September
1993, pp. 290-295.

[48] Y. Shang, and B.W. Wah, “A Descrete Lagrangian-Based Global-Sear
Method for Solving Satisfiability Problems,” Journal of Global Optimiza
tion, Vol. 12, No. 1, (January 1998), pp. 61-99.

[49] H. Sharangpani, “Intel Itanium Processor Michroarchitecture Overview,5

Microprocessor Forum, October 1999.
[50] G. Stålmarck, “A System for Determining Propositional Logic Theorem

by Applying Values and Rules to Triplets that are Generated from a Fo
mula,” Swedish Patent No. 467 076 (approved 1992), U.S. Patent No
276 897 (1994), European Patent No. 0403 454 (1995), 1989.

[51] Stanford Validity Checker (SVC), http://sprout.Stanford.EDU/SVC.
[52] P. Tafertshofer, A. Ganz, and K.J. Antreich, “GRAINE—An Implication

GRaph-bAsed engINE for Fast Implication, Justification, and Propag
tion,” IEEE Transactions on CAD, Vol. 19, No. 8 (August 2000).

[53] D. Tennenhouse, “Proactive Computing,” Communications of the ACM
Vol. 43, No. 5 (May 2000), pp. 43-50.

[54] D. Van Campenhout, T. Mudge, and J.P. Hayes, “Collection and Analys
of Microprocessor Design Errors,” IEEE Design & Test of Computers
Vol. 17, No. 4 (October – December 2000), pp. 51-60.

[55] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Usin
Efficient Reductions of the Logic of Equality with Uninterpreted Func
tions to Propositional Logic,”4 Correct Hardware Design and Verification
Methods (CHARME ‘99), L. Pierre and T. Kropf, eds., LNCS 1703,
Springer-Verlag, September 1999, pp. 37-53.

[56] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Micro
processors with Multicycle Functional Units, Exceptions, and Branc
Prediction,”4 37th Design Automation Conference (DAC ’00), June 2000.

[57] M.N. Velev, “Formal Verification of VLIW Microprocessors with Specu-
lative Execution,”4 Computer-Aided Verification (CAV ‘00), E.A. Emer-
son and A.P. Sistla,eds., LNCS 1855, Springer-Verlag, July 2000.

[58] M.N. Velev, Benchmark suites4 SSS-SAT.1.0, VLIW-SAT.1.0,
FVP-UNSAT.1.0, and FVP-UNSAT.2.0, October 2000.

[59] M.N. Velev, “Automatic Abstraction of Memories in the Formal Verifica-
tion of Superscalar Microprocessors,”4 Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’01), T. Margaria and W. Yi,
eds., LNCS 2031, Springer-Verlag, April 2001, pp. 252-267.

[60] P.F. Williams, A. Biere, E.M. Clarke, A. Gupta, “Combining Decision
Diagrams and SAT Procedures for Efficient Symbolic Model Checking,3

Computer-Aided Verification (CAV ‘00), E.A. Emerson and A.P. Sistla,
eds., LNCS 1855, Springer-Verlag, July 2000, pp. 124-138.

[61] P.F. Williams, “Formal Verification Based on Boolean Expression Dia
grams,”3 Ph.D. thesis, Department of Information Technology, Technic
University of Denmark, Lyngby, Denmark, August 2000.

[62] Z. Wu, and B.W. Wah, “Solving Hard Satisfiability Problems: A Unified
Algorithm Based on Discrete Lagrange Multipliers,”11th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI ‘99),
November 1999, pp. 210-217.

[63] H. Zhang, “SATO: An Efficient Propositional Prover,”International Con-
ference on Automated Deduction (CADE ’97), LNAI 1249, Springer-Ver-
lag, 1997, pp. 272-275.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

