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ABSTRACT

A software energy estimation methodology is presented that avoids
explicit characterization of instruction energy consumption and pre-
dicts energy consumption to within 3% accuracy for a set of bench-
mark programs evaluated on the StrongARM SA-1100 and Hitachi
SH-4 microprocessors. The tool, JouleTrack, is available as an online
resource and has various estimation levels. It also isolates the switch-
ing and leakage components of the energy consumption.
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1.  INTRODUCTION

Estimation of software energy consumption is becoming crucial in
embedded applications. Instruction level power estimation tools have
been proposed to computed the energy consumption of a given soft-
ware [1][2][3]. The basic idea is to run each instruction or short
sequences of instruction is a loop and measure the current/power con-
sumption. Their primary drawback, however, is that these tools rely on
exhaustive characterization of the energy consumption of the entire
ISA (Instruction Set Architecture) and inter-instruction effects. The
estimation model is compute intensive, requiring a complete trace
analysis of the program’s instructions and is therefore slow. Our exper-
iments on the StrongARM, SA-1100 [4] and Hitachi SH-4 [5] micro-
processors (two very popular low power embedded processor) show
that the variation in the current consumption is quite small. A lot of
overheads are common across instructions and as a result the overall
current consumption of a program is a weak function of the actual
instruction stream and to a first order depends only on the operating
frequency and voltage. Second order variations do exist but were mea-
sured to be less than 7% for a set of benchmark programs. Therefore, a
complete instruction level trace analysis is unnecessary and a simple
cycle accurate simulation can be used. We propose a simple fast tech-
nique to estimate software energy and estimate second order varia-
tions. Initial experiments indicate an accuracy within 3% of actual
measurements.

With increasing trends towards low power design, supply voltages are
constantly being lowered as an effective way to reduce power con-
sumption. However, to satisfy the ever demanding performance

requirements, the threshold voltage is also scaled proportionately
provide sufficient current drive and reduce the propagation delay.
the threshold voltage is lowered, the subthreshold leakage curr
becomes increasingly dominant. We also outline a methodology
separate the leakage current from the switching current. The leak
current model has less than 6% error for the entire working range
the StrongARM.

2.  INSTRUCTION ENERGY PROFILING

The experimental setup consisted of the Brutus SA-1100 Design V
fication Platform which is essentially the StrongARM SA-1100 micro
processor connected to a PC using a serial link. It can operate from
MHz to 206 MHz, with a corresponding core supply voltage of 0.8
to 1.5 V. The power supply to the StrongARM core was provide
externally through a variable voltage sourcemeter with the I/O pa
running at a fixed supply voltage. The ARM Project Manager (APM
was used to debug, compile and execute software on the StrongAR
Current measurements were performed using the sourcemeter b
into the variable power supply. The instruction and data caches w
enabled before the programs were executed. To measure the cu
that is drawn by a subroutine, the subroutine was placed inside a l
with multiple iterations till a stable value of current was measured.

Figure 1 shows the current consumption of all the instructions of t
ARM instruction set on SA-1100. Each of the 33 current values a
themselves the averages of the various addressing modes and inpu
which the instruction can be executed accounting for a total of ab
280 data points. The important point to observe is that the current c
sumptions are pretty uniform. On an average, arithmetic and logi
instructions consume 0.178A, multiplies 0.196A, loads 0.196A, sto
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Figure 1.  Strong SA-1100 instruction set current consumption
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0.229A while the other instructions consume about 0.170A. The total
variation in current consumption is 0.072A which is 38% of the overall
average current consumption. Figure 2 shows the core current con-
sumption for the Hitachi SH-4 processor running at 2.0V core power
supply. The average instruction current is 0.29A, with a variation of
0.11A, which once again is 38% of the average.

The current variation within an instruction (as a function of addressing
modes and data) is even smaller. Figure 3 shows the current consump-
tion of 3 different instructions as a function of various addressing
modes and data. In general, we observed that to a first order the
instruction current consumptions are independent of the addressing
modes or operands.

Based on the previous discussion, it is reasonable to conclude that the
common overheads (such as caches, decode logic etc.) in contempo-
rary microprocessors are large and overshadow any instruction specific
variations. Therefore, estimating software energy consumption with an
elaborate instruction trace and inter-instruction analysis is overkill.

3.  SOFTWARE ENERGY PROFILING

3.1  First Order Model
While the instruction level current consumption has a variation
about 38%, the variation of the current consumption in programs
much less. Figure 4 shows the current consumption of 6 differe
benchmark programs at different supply voltage and frequency lev
in the StrongARM. The maximum current variation is less than 8%
This implies that to a first order current consumption of a piece of co
is independent of the code and depends only on the operating volt
and frequency of the processor. The first order software energy esti
tion model is then simply

(1)

whereVdd is the supply voltage and∆t is the program execution time.

3.2  Second Order Model
While the current variation across programs is quite small in the Stro
gARM, it might be significant in datapath dominated processors. F
example, the current consumption of the multiply instruction in DSP
will be far greater than the current consumption of other instruction
In such cases a simple model like Equation 1 will have significa
error. The following second order model is proposed.

Let Ck ( ) denote theK energy differentiated instruction
classes in a processor. Energy differentiated instruction classes are
titions of the instruction set such that the average current consump
of any a class is significantly different from that of another class a
the current variation within a class is small. Class partitions can a
be done on the basis of different cycles, e.g. instruction, data acc
etc. Letck denote the fraction of total cycles in a given program th
can be attr ibute to instruct ions/cycles in the classCk, i .e.

.The proposed second order current consumption equat
is

(2)

Figure 2.  Hitachi SH-4 instruction set current consumption
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Figure 3.  Current variations within instructions
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Figure 4.  Program current consumption as a function of
operating point
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wherewk are a set of weights. LetW represent the vector [w0, w1, ..,
wK-1]. Let Pn ( ) represent a set ofN benchmark pro-
grams,Cn denote the cycle fractions vector for programPn i.e.

andIn denote its average current consumption.
Based on Equation 2, we can express the current vectorI in the fol-
lowing form.

(3)

whereI is the average current [I0, I1, ..., IN-1] for the N programs,C is
anNxK matrix with Cn as thenth row. The weights can be solved for
in an least mean square sense using the pseudo-inverse

(4)

If the instruction classes are a valid energy differentiated partition, the
weighting vectorW will reflect the energy differentiation. The maxi-
mum current prediction error will also go down considerably.

On the StrongARM SA-1100, we partitioned the cycles into 4 classes -
(i) Instruction, (ii) Sequential memory access (accesses which are
related to previous ones) (iii) Non sequential accesses and (iv) Internal
cycles. Current measurements were done for 6 benchmark programs
running at all possible frequency and voltage combinations. The
weighting vector is shown in Table 1. The average current drawn at
each operating frequency of the StrongARM is shown in Figure 5. The
StrongARM operates at 11 discrete frequency levels. The minimum
operating voltage required is also shown and is almost linear with fre-
quency. In fact the normalized operating voltage and frequency are
related as

(5)

whereVdd andf are the normalized to their respective maximum val-
ues.

The weighting factors can be interpreted as follows. For programs
where instruction cycles and non-sequential memory accesses domi-
nate the current consumption is higher than the average current at that

operating point. Internal cycles and sequential memory access do
nated programs will have a lower than average current consumptio

The current prediction error with a second order model can be redu
to less than 2%. The advantage is that this accuracy comes for free
elaborate instruction level profiling is required. Such cycle counts
the ones shown in Table 1 are easily obtained using simulators/deb
gers available with standard processors. Figure 6 shows the ove
improvement of current prediction accuracy on 66 test points. It can
seen that the current prediction is better in every case (the maxim
error of 4.7% using a first order model is reduced to 2.3%). The effe
tiveness of the current weighting scheme will become more pr
nounced in processors having a wider variation in average curr
consumption.

4.  LEAKAGE ENERGY MODELLING

4.1  Principle
The power consumption of a subroutine executing on a microproc
sor can be macroscopically represented as

(6)

wherePtot is the total power which is the sum of the static an
dynamic components,CL is the total average capacitance bein
switched by the executing program, per clock cycle, andf is the oper-
ating frequency (assuming that there are no static bias currents in
microprocessor core) [6]. Let us assume that a subroutine takest
time to execute. This implies that the energy consumed by a sin
execution of the subroutine is

n 0 N 1–,[ ]∈
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Figure 5.  Average current and supply voltage at each operating
frequency of the StrongARM SA-1100
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TABLE 1 : WEIGHTING FACTORS FOR K = 4 ON THE STRONGARM

Class Weight Value

Instruction w1 2.1739
Sequential memory access w2 0.0311

Non-sequential memory access w3 1.2366
Internal cycles w4 0.8289

Figure 6.  First and second order model prediction errors
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whereCtot is the total capacitance switched by executing subroutine.
Clearly, if the execution time of the subroutine is changed (by chang-
ing the clock frequency), the total switched capacitance,Ctot, remains
the same. Essentially, the integrated circuit goes through the same set
of transitions except that they occur at a slower rate. Therefore, if we
execute the same subroutine at different frequencies, but at the same
voltage, and measure the energy consumption we should observe a lin-
ear increase with the execution time with the slope being proportional
to the amount of leakage.

4.2  Observations
The subroutine chosen for execution was the decimation-in-time Fast
Fourier Transform (FFT) algorithm because it is a very standard, com-
putationally intensive, Digital Signal Processing (DSP) operation. The
microprocessor, therefore, runs at maximum ‘horsepower’. The execu-
tion time for anN = 1024 point FFT on the StrongARM is a few tenths
of a second and scales as . To obtain accurate execution
time and stable current readings, the FFT routine was run a few hun-
dred times for each observation. A total of eighty different data points
corresponding to different supply voltages between 0.8 V and 1.5 V
and operating frequencies between 59 MHz and 206 MHz were com-
piled.

Figure 7 illustrates the implications of Equation 7. When the operat-
ing frequency is fixed and the supply voltage is scaled, the energy
scales almost quadratically. On the other hand, when the supply volt-
age is fixed and the frequency is varied the energy consumption
decreases linearly with frequency (i.e. increases linearly with the exe-
cution time) as predicted by Equation 7. Not all frequency, voltage
combinations are possible. For example the maximum frequency of
the StrongARM is 206 MHz and it requires a minimum operating volt-
age of 1.4 V.

We can measure the leakage current from the slope of the energy char-
acteristics, for constant voltage operation. One way to look at the
energy consumption is to measure the amount of charge that flows
across a given potential. The charge attributed to the switched capaci-
tance should be independent of the execution time, for a given operat-

ing voltage, while the leakage charge should increase linearly with
execution time. Figure 8 shows the measured charge flow as a func
of the operating frequency for a 1024 point FFT. The amount of cha
flow is simply the product of the execution time and current drawn. A
expected, the total charge consumption decreases almost linearly
operating frequency (i.e. increases with execution time) and the sl
of the curve, at a given voltage, directly gives the leakage curren
that voltage.

The dotted lines are the linear fits to the experimental data in the m
mum mean-square error sense. At this point it is worthwhile to me
tion that the term “leakage current” has been used in an approxim
sense. Truly speaking, what we are measuring is the total static cur
in the processor, which is the sum of leakage and bias currents. H
ever, in the SA-1100 core, the bias currents are small and most of
static currents can be attributed to leakage. This assertion is furt
supported by the fact that the static current we measure has an e
nential behavior as shown in the next section.

From the BSIM2 MOS transistor model [7], the sub-threshold curre
in a MOSFET is given by

(8)

where

(9)

andVT is the thermal voltage,VTH0 is the zero bias threshold voltage
is the linearized body effect coefficient, is the Drain Induce

Barrier Lowering (DIBL) coefficient andVG, VSandVDSare the usual
gate, source and drain-source voltages respectively. The impor
point to observe is that the subthreshold leakage current scales e
nentially with the drain-source voltage.

The leakage current at different operating voltages was measure
described earlier, and is plotted in Figure 9. The overall microproc
sor leakage current scales exponentially with the supply voltag
Based on these measurements the following model for the ove
leakage current is proposed for the microprocessor core,

Etot Ptot∆t CtotVdd
2

VddI leak∆t+= =

O N Nlog( )

Figure 7.  FFT energy consumption
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Figure 8.  FFT charge consumption
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whereI0 = 1.196 mA andn = 21.26 for the StrongARM SA-1100.

4.3  Explanation of exponential behavior
The exponential dependence of the leakage current on the supply volt-
age can be attributed to the DIBL effect. Consider the stack of NMOS
devices shown in Figure 10. Equation 8 suggests that for a single tran-
sistor, the leakage current should scale exponentially withVDS=VDD
because of the DIBL effect. However since the ratioVDS / VT is larger
than 2, the term inside the brackets of Equation 8 is almost 1. It has
been shown in [8] that this approximation is also true for a stack of two
transistors. With three or more transistors, the ratioVDS / VT for at
least the lowest transistor becomes comparable to or even less than 1.
Therefore, the term inside the bracket of Equation 8 cannot be
neglected for such cases. The leakage current progressively decreases
as the number of transistors in the stack increases and for a stack of
more than three transistors the leakage current is small and can be
neglected. It has further been shown in [8] that the ratio of the leakage
currents for the three cases shown in Figure 10 can be written as

(11)

Therefore, the leakage current of a MOS network can be expresse
a function of a single MOS transistor (by accounting for the sign
probabilities at various nodes and using the result of Equation 11)
the number of stacked devices is more than three, the leakage cur
contribution from that portion of the circuit is negligible. If there ar
three transistors stacked such that two of them are ‘OFF’ and on
‘ON’ then the leakage analysis is the same as the stack of two ‘OF
transistors. For parallel transistors, the leakage current is simply
sum of individual transistor leakages. A similar argument holds f
PMOS devices. Since, the leakage current of a single MOS transis
scales exponentially withVDD, using the above arguments, we ca
conclude that the total microprocessor leakage current also sca
exponentially with the supply voltage.

4.4  Separation of current components
Table 2 compares the measured leakage current with the values
dicted by Equation 5. The maximum percentage error measured
less than 6% over the entire operating voltage range of the Str
gARM which suggests a fairly robust model.

Based on the leakage model described by Equation 10, the static
dynamic components of the microprocessor current consumption
be separated. The standby current of the StrongARM in the “idl
mode at 1.5 V is about 40 mA. This is not just the leakage current b
also has the switching current due to the circuits that are still bei
clocked. On the other hand, this technique neatly separates the p
leakage component (assuming negligible static currents) from all ot
switching currents.

5.  RESULTS

The estimation techniques described in the previous sections w
implemented in a web-based tool called JouleTrack. The tool is av
able at http://dry-martini.mit.edu/JouleTrack. The broad approach
the tool is summarized in Figure 11. The user uploads his C sou
code. The webserver uses Common Gateway Interface (CGI) script
create a temporary workarea for the user. His programs are comp
and linked with any standard C libraries. The user also specifies a
command line arguments that the program might need along wit
target operating frequency. Compiler optimization options are al
available. The user can choose the current prediction model. Comp
link time errors are reported back by the CGI to the user. If no erro
exist the program is executed on an ARM simulator which produc
the program outputs (which the user can view), assembly listi

I leak I 0e

Vdd

nVT
----------

=

Figure 9.  Leakage current variation
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Figure 10.  Effect of transistor stacking

Il1 Il2 Il3

VDD

VDD

VDD

M1

M1

M2

M1

M2

M3

VDS1>VDS2>VDS3

TABLE 2 : LEAKAGE CURRENT MEASUREMENTS

VDD

(V)

I leak (mA)
Error

(%)Measured Model

1.50 20.41 20.10 1.50
1.40 16.35 16.65 -1.84
1.30 13.26 13.80 -4.04
1.20 12.07 11.43 5.27
1.10 9.39 9.47 -0.87
1.00 7.96 7.85 1.40
0.90 6.39 6.53 -1.70
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(which can also be viewed) as well as run-time statistics like execution
time, cycle counts etc. These statistics are fed into an estimation
engine which computes the energy profile and charts the various
energy components using the methodology described in the previous
sections.

6.  CONCLUSIONS

Based on experiments done on the StrongARM and Hitachi SH-4 pro-
cessors we conclude that the common overheads present across
instructions result in the variation in current consumption of different
instructions being small. The variation in current consumption of pro-
grams is even smaller (less than 8% for the benchmark programs that
we tried). Therefore, to a first order, we can assume that current con-
sumption depends only on operating frequency and supply voltage and
is independent of the executing program. A second order model that
uses energy differentiated instruction classes/cycles is also proposed
and it was shown that the resulting current prediction error was
reduced to less than 2%. A methodology for separating the leakage
and switching energy components is also discussed. The proposed
leakage current model has less than 6% error. The techniques have
been implemented in an web-based software energy estimation tool
called JouleTrack.
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Figure 11.  JouleTrack block diagram
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