
Creating and Exploiting Flexibility in Steiner Trees �

Elaheh Bozorgzadeh Ryan Kastner Majid Sarrafzadeh

Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095-1596
felib,kastner,majidg@cs.ucla.edu

ABSTRACT
This paper presents the concept of flexibility – a geometric property
associated with Steiner trees. Flexibility is related to the routability
of the Steiner tree. We present an optimal algorithm which takes
a Steiner tree and outputs a more flexible Steiner tree. Our ex-
periments show that a net with a flexible Steiner tree increases its
routability. Experiments with a global router show that congestion is
improved by approximately 20%.

1. INTRODUCTION
The main purpose of global routing is to find an approximate path

(route) for each net. The global router should consider a number
of different metrics including – but not limited to – minimizing the
delay of the each net, reducing the size of the chip, minimizing the
number of vias and distributing the routes equally across the routing
area. A global routing solution with minimum delay and chip size
accomplishes nothing if the detailed router can not find a solution.
We refer to this concept as the routability of the global routing solu-
tion. The routability of the circuit depends on the congestion of the
routing. Congestion is attributed to a number of factors e.g. number
of vias [1, 7], number of nets routed through a local area, etc. De-
pending on the constraints the congested areas produce, the detailed
router may not be able to find a feasible solution.

Typically, critical nets are a small subset of the overall number of
nets; as a rough estimate, 10% of the nets are critical in the MCNC
benchmark suite [6]. The delay of non-critical nets is not crucial
to the performance on the circuit. Therefore, these nets should be
routed in manner which increases the likelihood that the detailed
router can find a final, valid solution.

In this work, we study Steiner trees in terms of routability. We in-
troduce the notion of flexibility – a geometric property associated
with Steiner trees. [2] introduces a timing-driven global routing
while considering congestion by exploiting flexibility in routing trees.
We attempt to show that the flexibility of a Steiner tree is related to its
routability. Specifically, a flexible tree is less prone to being routed

�This work was partially supported by NSF under Grant #CCR-
0090203

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
38th DAC, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

through a congested region.
The main contribution of this paper is an algorithm which takes

a Steiner tree as an input and produces a more flexible Steiner tree.
The only restriction on the initial tree is that it must be stable (sta-
bility is defined in Section 2). The new flexible tree is guaranteed to
have the same total length. Any existing Steiner tree algorithm can
be used for the initial construction of the Steiner tree.

The paper proceeds as follows: Section 2 gives some definitions
used in this work. Section 3 presents an algorithm which takes an
existing Steiner tree and increases its flexibility. Section 4 gives ex-
perimental results which study the impact of flexibility during global
routing. We conclude and give some possibilities for future work in
Section 5.

2. PRELIMINARIES
We assume in global placement cells are placed into global bins

(rectangular regions on a chip) by top-down partitioning the chip.
Cells are located at the center of global bins.The global bins and
edges can be transformed into a possible irregular grid graph [9].

Congestion in layout means that there are too many nets routed in
a local area. Capacity (or supply) of an edge e, ce is maximum num-
ber of nets that can be routed over global bin edge. The routing de-
mand of an edge, de, is defined as the number of nets passing through
the bin edge. An edge is overflown if and only if the de > ce. The
total overflow reflects the shortage of routing resources for a partic-
ular set of capacities. A routing with a minimized total overflow is
one of the objectives of our global router [9]. Steiner tree construc-
tion is an essential part of global routing. Given a net embedded in
a grid graph, a Rectilinear Steiner Tree (RST) is a tree interconnect-
ing the terminals of the net and some arbitrary points called Steiner
points to reduce the cost of routing tree. Construction of steiner tree
with minimum cost is a hard problem [7]. Since we are focusing on
routability, we define the cost of the Steiner tree as a linear function
of the overflow and route length:

costtree = �� overflowtree + lengthroute

In order to use this definition of cost, we must determine a method
for assigning the route edges (routing) to the Steiner edges of the
tree. Specifically, we need to assign a routing to the edges which
are neither vertical nor horizontal. We choose to pattern route such
edges. Pattern routing is the notion of using predefined patterns to
route a two terminal net. We can view a Steiner edge as a two-
terminal net. Usually these are simple patterns such as a L-shaped
– 1-bend – or a Z-shaped pattern – 2-bends, route restricted within
bounding box. Pattern routing is shown to be useful for wireplanning
without affecting the overal quality[9].

Ho et al. introduced the notion of stability in an RST [5]. A RST
is stable if there is no pair of edges such that their bounding boxes

intersect or overlap except at a common endpoint (if any) of the two
edges. A stable tree is locally optimal when the edges are routed as
a Z or L-shaped pattern.

The topology of a RST is the vertices and edges of the Steiner tree.
The edges are the set of connections between any two vertices. As
long as the edges between the vertices remain consistent, the topol-
ogy is considered unchanged.

A flexible edge is an edge of a Steiner tree which has a non-zero
bounding box area. Equivalently, it is any edge which is neither
vertical nor horizontal.

Theorem 2.1. An unflexible Steiner edge has only one minimum
length routing. A flexible edge has more than one minimum length
route[3].

Assume that there is a Steiner tree which contains an edge that
passes through a congested region. A flexible edge has the opportu-
nity to choose another minimum length route in order to avoid the
congested region. Looking at Figure 1, we show two Steiner trees for
the same net. One tree has some flexible edges while the other has
only unflexible edges. Both trees have the same rectilinear length
and topology. Assume that the shaded area is congested. The flex-
ible tree is able to avoid the congested region while the unflexible
tree has no choice but to be routed through the congested area.

flip

s1

(a) (b)T1 T2

Figure 1: (a)RST with flexible edges. (b) RST with no flexible
edges.

We need to define a function which evaluates the flexibility of
a given Steiner edge. The function should reflect the routability
of the edge. Additionally, a function f should have the following
properties:1- f = 0 when l = 0 or w = 0. 2- f is a monoton-
ically increasing function of l and w. The definition of a function
expressing flexibility is not clear. Two possible flexibility functions
are shown in Equations 1 and 2.The flexibility of a Steiner tree is
found by summing the flexibility over all the edges.

f1 =

�
0 if l = 0, w = 0
l+ w Otherwise

(1)

f2 = l � w (2)

3. ALGORITHM
In this section, we introduce an algorithm which increases the

flexibility of a Steiner tree. Due to space constraints, the corollar-
ies and lemmas stated without proof; please see the technical report
[3] for further details.

Problem Formulation:
Given a stable RST, maximize the flexibility of the RST subject

to: 1� Topology (inherently wirelength) remains unchanged. 2�

No initially flexible edge is degraded in flexibility1.
Since the terminals of a net are fixed, the flexible edges can only be

generated by moving Steiner nodes. The Steiner point p in a stable
1The problem can easily be extended without this assumption by
considering them in overlap cases.

flexible

movable segment

h1

h2

flexible candidate

parallel edge

parallel edge

Figure 2: Movable Segment Set.

RST is movable if we can move p to any one other location while
keeping the RST stable and the topology unchanged. Similarly, an
edge e is movable if e can be moved and the resulting RST remains
stable with no change in topology.

Theorem 3.1. An edge in a stable RST is movable if both ver-
tices incident to the edge are Steiner points with edge degree 3 and
have an incident edge in same direction.

We define a set of movable segment s and adjacent edges to s,
Es, as a Movable Set (s; Es). Es is the set of all adjacent edges
to s including segment s. Es consists of two parallel edges and
set of flexible and unflexible candidates. Flexible candidate is an
edge that has the potential to become flexible by moving the movable
segement (Figure 2).

Figure 3 shows 3 different movable sets (s; Es). The movable set
in Figure 3 (a) has no flexible candidate. The other movable sets
have at least one flexible candidate. At least one flexible candidate
has to exist in a movable set in order to increase the flexibility of the
RST by moving the movable edge. When a movable set is found, the
movable segment can move along the parallel edges. The maximum
movement is `max = length(min(h1; h2)) � 1 (See Figure 2).
Since topology should not change, the segment can move as far as
one grid before it reaches the end node of any of the two parallel
edges.

s

(a)

s

(b)

s

(c)

Figure 3: Movable Set with movable edge s.

Lemma 3.1. In a stable RST, by moving a movable edge, flexible
edge(s) can be generated or flexibility of an edge(s) can increase if
at least one of the two vertices incident to the movable edge does not
have an edge in the opposite direction of moving direction.

According to the lemmas and definition of flexibility, we need to
search for movable sets which have the potential to generate flex-
ible edges. Finding such edges is shown in the first part of the
pseudocode of algorithm Generate flexible tree in Figure 4. First
movable sets of a RST are found. Function Is Movable(e) checks if
the edge e is movable according to Theorem 3.1. Flexible exist(e)
checks if there is any flexible candidate in movable edge set. Cre-
ate movable set(e) generates the movable set associated with edge
e.

Lemma 3.2. The complexity of finding movable edges is O(E),
where E is the number of edges in RST.

By maximizing the flexibility of each movable set, we may re-
strict the flexibility of another movable set. When there is no such a

ALGORITHM 1. Generate flexible tree

input: ERST : Edge set of an RST of a multi-terminal net.
output: RSTnew .

for each edge e 2 ERST

if Is movable(e) and Flexible exist(e)
Create movable set(e, MovableSetList)
Check overlap(movable set(e),overlapList)

for each movable set M = (s; Es) 2 MovableList
if No overlap(Es)

Move segment(s)
Solve overlap and move(overlapList)

Figure 4: Algorithm Generate flexible tree Pseudocode.

y

y2

w2

w1y1

(a) (b)

s1 w1 w2

x

w3

s1

s2

s2

D

Figure 5: Example of Overlap Type 1 and Overlap Type 2 for
Movable Set s1.

restriction, we easily compute the flexibility function for each mov-
ing segment. Since the flexibility function is monotonically increas-
ing in terms of length and width of the edges, the maximum of f
occurs if each moving edge is moved to its maximum limit. Un-
fortunately, the flexibility cannot be computed independently for all
movable segements if there are overlap between the segments. Two
movable segments have overlap with each other if the movable edge
s is limited by the movement of the other movable edge or the mov-
able edge s increases flexibility of an edge e while the movement of
some other movable segment t leads to a decrease in the flexibility
of e (See Figure 5).

Lemma 3.3. There are two types of overlap that can occur[3]:

� Overlap type 1: It occurs when one parallel edge of two mov-
able sets is the same, thier moving direction is opposite and
their range of move on the shared parallel edge has conflict
(Figure 5(a)).

� Overlap type 2: It occurs when flexible edge of a movable
segment is a parallel edge of the other moving set (Figure
5(b))..

Lemma 3.4. Each movable segment set can have at most two
overlaps of type 1 and two overlaps of type 2.

In Figure 6, movable set (s1; Es1
) overlaps with segments (s2; Es2

),
(s3; Es3

), (s4; Es4
) and (s5; Es5

). Two of the overlaps are overlap
type 1 and the other two overlaps are of type 2.

w1 w2

lx

w3

(2)

ly

s1

s2 s3

s4
s5

Figure 6: The case in which a movable segment has maximum
overlap with other movable sets.

Function Check overlap in Figure 4 finds the overlaps among the
movable set. Each edge can participate at most in 2 movable sets
according to Lemma 3.4. The complexity of the first loop still re-
mains O(E). In both types of overlap, we need to have a measure
for flexibility to decide on moving the movable segments. The be-
havior of the overlap will depend on the flexibility function. In [3]
we have shown how to resolve the overlap when flexibility functions
introduced in Section 2 are used. Consider moving sets shown in
Figure 5. In both figures, Segment s1 overlaps with segment s2. If
f1 is a flexibility function both types of overlap can be resolved in
linear time. If function f2 is used as a metric to evaluate flexibility,
the overlap type 1 can be similarly resolved. However for overlap
type 2 function f2 generates quadratic expressions of l and w. The
maximum of f2 occurs on the limits of movable segments s1 and s2.
When a segment has overlaps from both types on one parallel edge
as shown in Figure 6, the variable associated with movable set s2 can
be defined in terms of the variable associated with moving segment
s1. Therefore the problem will be reduced to finding a maximum of
a function of two variables with overlap type 2.

In Figure 4, the second “for” loop moves the independent movable
sets individually. solve overlap and move() resolves the conflict be-
tween overlapping sets while maximizing the flexibility of the RST.
The complexity of the second part depends on the complexity of the
flexibility function.

If there is a chain of configurations as shown in Figure 6 and f2

is used as a flexibility function, the expression of flexibility function
will include all the quadratic terms of overlapping sets. Finding the
maximum of f is exponential in terms of number of movable sets in
the overlapping chain. We expect these chains to be short in most
applications.

Lemma 3.5. The algorithm Generate flexible tree generates the
most flexible ST from a given RST under the defined flexibility func-
tion and constraints mentioned in Section 3. If f is a linear function,
the algorithm runs in polynomial time. If f is quadratic function
the algorithm complexity can be exponential in terms of number of
movable set in overlapping chain.

4. EXPERIMENTS
In this section, we perform experiments which attempt to show the

relationship between flexibility and routability. To perform our ex-
periments, we used MCNC standard-cell benchmark circuits [6] and
benchmarks from the ISPD98 suite [4]. The circuits were placed into
using the Dragon global and detailed placement engine [8]. We per-
formed our experiments using global router based on maze routing
[3].

Our experiments focused on 4-terminal nets. We choose the 4-
terminal nets which had only one movable edge. We refer to this
set of nets as considered nets. Initially all other nets routed by our
global router. Then, we produced two Steiner trees for each net, an
unflexible tree we call unflex and a flexible tree named flex. The
flexibility of the unflex is guaranteed to be less than the flexibility of
the flex. The final results of these two sets are compared as shown in
Table 1.

Before we discuss the results, we summarized the data categories
of presented in Table 1. ”Number of Nets” is the number of 4-
terminal flexible nets. ”Length of Routes” is the length of the routed
Steiner tree (net) summed over all the considered nets. Remember
that the route length for the flexible and unflexible tree is equivalent.
The overflow for one net is

P
e2Route

[demande � supplye]. ”To-
tal Overflow” is the summed overflow of the considered nets. ”Total

Demand” is the summed demand of the considered nets. ”Overflow
Improvement” is total overflow�flex overflow

unflex overflow
%. Finally, ”Demand

Improvement” is unflex demand�flex demand

unflex demand
%.

In our experiment, we compared the overflow and routing de-
mand of a flexible and unflexible tree. The edges of the Steiner tree
(both the flexible and unflexible) were routed in an Z-shaped pat-
tern. We compared two properties of the routing, the overflow and
the demand; both are related to the congestion of the circuit. Intu-
itively, overflow determines the amount of routing resources which
are needed, but can not be supplied. The demand is simply amount of
other routings which are competing for the same routing resources.

Number Length Overflow Demand
Circuit of of Improve Improve

Nets Routes % %
avql 18 151 73.69 15.16
avqs 4 26 7.69 5.49

avqs.2 14 127 22.98 7.44
biomed 5 170 3.09 2.78

biomed.2 8 318 22.29 1.58
ibm01.1 24 259 19.10 4.82
ibm01.2 66 1519 19.80 4.68
ibm05.1 4 94 7.69 3.37
ibmo5.2 16 485 5.40 1.72
ibm10.1 99 2437 11.88 2.97
ibm10.2 221 10707 23.60 5.11
Primary1 4 45 26.19 4.22
Primary2 21 652 19.44 5.00

Total 504 16990 - -
Average - - 20.17 4.49

Table 1: Overflow and Congestion Results when Z-shape pat-
terns are used for flexible edges.

Referring to Table 1, we can see that the flexible tree produces a
routing which has, on average, 20.17% less overflow than the un-
flexible tree (we want to minimize overflow). In fact, the flexible
tree was better in every benchmark except one (biomed). Addition-
ally, the flexible tree encouraged a routing which passed through less
demanded regions. The average demand was 4.49% better for the
flexible tree as compared to the unflexible tree. We conducted sim-
ilar experiments using L-shaped pattern-route for the steiner edges.
The results have a similar trend as the Z-shaped pattern results. In
both of the experiments, the flexible tree produced a routing which
has less overflow. Furthermore, the flexible tree routing tend to pass
though edges with less demand.

5. CONCLUSION AND FUTURE WORK
This paper studied the problem of routability in global routing

from a different perspective. Flexibility – a geometrical property of
a RST – was defined and discussed. We argued that flexibility has a
high correlation to the routability of the Steiner tree. An algorithm
was proposed to generate an optimally flexible RST given a stable
RST. Our initial experimental results supports our idea. We believe
that the proposed algorithm can be used in early stages to assign the
location of Steiner points while considering routability. As future
work we plan to study the flexibility functions in more detail and
integrate the flexibility algorithm into our existing global router.

6. ACKNOWLEDGEMENT
We wish to thank Dr. Dirk Stroobandt for his valuable feedback

regarding various aspect of this work.

7. REFERENCES
[1] A. Kahng, S. Mantik and D. Stroobandt. “Requirements for

Models of Achievable Routing”. In Proc. International
Symposium on Physical Design, April 2000.

[2] J. Hu, S. Sapatnekar. “A Timing-constrained Algorithm for
Simultaneous Global Routing of Mutiple Nets”. In ACM/IEEE
International Conference on Computer Aided Design,
November 2000.

[3] E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh.
“Flexibility in Steiner Trees”. Technical report, Computer
Science Department, UCLA, October 2000. URL:
http://www.cs.ucla.edu/˜elib/pub.html.

[4] C. Alpert. “The ISPD98 Circuit Benchmark Suite”. In Proc.
International Symposium on Physical Design, April 1998.

[5] J. Ho, G. Vijayan and C.K. Wong. “A New Approach to the
Rectilinear Steiner Tree Problem”. In Proc. ACM/IEEE
Design Automation Conference, June 1989.

[6] K. Kozminski. “Benchmarks for Layout Synthesis - Evolution
and Current Status”. In Proc. ACM/IEEE Design Automation
Conference, June 1991.

[7] M. Sarrafzadeh and C.K. Wong. An Introduction to VLSI
Physical Design. McGraw-Hill, New York, NY, 1996.

[8] M. Wang, X. Yang and M. Sarrafzadeh. “DRAGON: Fast
Standard-Cell Placement for Large Circuits”. In Proc. IEEE
International Conference on Computer Aided Design,
November 2000.

[9] R. Kastner, E. Borzorgzadeh and M. Sarrafzadeh. “Predictable
Routing”. In Proc. IEEE International Conference on
Computer Aided Design, November 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

