
n.
ng
-
g
k

n-
ro
ay
ks.

ce
ks
e,
er
nd
t

.

er
ing
k
ed

se.
d
rs
os
f

nd
his
ce
tes
ot
le
IP

ck
e
a
e
ny

y
al-
to
an

A Practical Methodology for Early Buffer and Wire
Resource Allocation

Charles J. Alpert, Jiang Hu, Sachin S. Sapatnekar*, Paul G. Villarrubia
IBM Corporation, 11400 Burnet Road, Austin, TX 78758

*University of Minnesota, ECE Dept., 200 Union SE, Minneapolis, MN 55455
Abstract
The dominating contribution of interconnect to system per-
formance has made it critical to plan for buffer and wiring
resources in the layout. Both buffers and wires must be con-
sidered, since wire routes determine buffer requirements and
buffer locations constrain wire routes. In contrast to recent
buffer block planning approaches, our design methodology
distributes buffer sites throughout the layout. A tile graph is
used to abstract the buffer planning problem while also
addressing wire planning. We present a four-stage heuristic
called RABID for resource allocation and experimentally
verify its effectiveness.

1. Introduction
Interconnect’s domination of system performance has made
buffering a critical component in modern VLSI design
methodologies. The number of buffers needed to achieve
timing closure continues to rise with decreasing feature size.
Achieving timing closure becomes more difficult when
buffering is deferred until near the end of the design process;
buffers must be squeezed into any remaining space. The
problem is particularly acute for custom designs with large
IP core macros and custom data flow structures that block
out significant areas. ASIC designs can also run into similar
headaches if they are dense, or have locally dense hot spots.

Buffers must be planned early in the design, so that the rest
of the design flow may account for the required buffering
resources. In addition, routability is also a critical problem;
one must make sure that an achievable routing solution
exists during the physical floorplanning stage. Global wiring
must be planned to minimize routing congestion, hot spots,
and crosstalk problems later in the flow.

1.1 Buffer Block Planning Methodology
A new body of research onbuffer block planninghas
recently established itself [3][4][5][6][7] in response to these
issues. These works focus on “physical-level interconnect
planning” [2]. The works of [3][6][7] all propose creating
“buffer blocks” (top-level macro blocks containing only
buffers) that are inserted into the floorplan. Conget al. [3]
constructs buffer blocks usingfeasible regions. The feasible
region for a net is the largest polygon in which a buffer can
be inserted on the net such that the timing constraints are
satisfied. Sarkaret al. [6] adds the notion of independence to

feasible regions and also tries to relieve routing congestio
Tang and Wong [7] proposed an optimal algorithm assumi
only one buffer per net. Finally, the multi-commodity flow
based approach of [4][5] allocates buffers to pre-existin
buffer blocks. There are two key problems with buffer bloc
planning:

1. Since buffers connect global wires, there will be conte
tion for routing resources in the regions between mac
blocks where buffer blocks are placed. The design m
not be routable due to congestion between macro bloc

2. Buffers sometimes must be placed in poor locations sin
the better locations are forbidden. Some macro bloc
may be so large that routing over the block is infeasibl
even if buffers are inserted immediately before and aft
the block, e.g., the signal integrity could degrade beyo
recovery. Using wide wires on thick metal may help, bu
this further exacerbates the wiring congestion problem

These problems are not a result of buffer block planning p
se; rather, it is a reasonable approach for pre-plann
buffers for current design flows. However, buffer bloc
planning is really an interconnect-centric idea being appli
to a device/logic-centric flow. Ultimately this methodology
is not sustainable as design complexity continues to increa
A different methodology is required! Ideally, buffers shoul
be dispersed throughout the design. Clumping buffe
together, e.g., in buffer blocks or between abutting macr
invites routing headaches. A more uniform distribution o
buffers naturally spreads out global wires.There must be a
way to allow buffers to be inserted inside macro blocks.

1.2 Buffer Site Methodology
We argue that block designers must permit global buffer a
wiring resources to be interspersed wherever possible. T
resource allocation need not be uniform; a low performan
block may be able to allocate more resources for buffer si
than a high performance block. Meanwhile, a cache may n
be able to allocate any of its resources. Ideally, as this “ho
in a macro” methodology becomes widespread, future
blocks will have to contain buffer sites.

A designer can allocate a buffering resource within a blo
by inserting abuffer site, i.e., a physical area that can denot
either a buffer, inverter, or decoupling capacitor. Until
buffer site is assigned to a net, no logical gate from th
technology is inserted, nor is the buffer site connected to a
net.

Unused buffer sites can still be utilized in other ways. The
can be populated with spare circuits to facilitate late met
only engineering changes or with decoupling capacitors
enhance local power supply and signal stability. One c
afford to allocate more buffer sites than will ever be used.

on

ints
ur

as

es.

n
n
e
wn
e

he
e
h

ll

er,
a
t.
Buffer sites can also be used within data paths. A data path
typically contains regular signal buses routed across
collections of data path elements. If the strands of the data
bus require buffers, one needs buffer locations within the
data path itself. Designing buffer sites into the original data
path layout makes it possible to add buffers late in the
design cycle while maintaining straight wiring of the buses.

Buffer sites can also be used for flat designs, e.g., a “sea of
buffer sites” can be sprinkled throughout the placement. For
hierarchical designs, one can flatten the buffer sites to
derive a similar sprinkling. The flat view enables a resource
allocation algorithm to make assignments to global routes
based on buffer site distribution.

2. Problem Formulation
There are two fundamental characteristics of buffer and
wire planning which drive our formulation.

1. Finding the absolute optimal location for a buffer is not
necessary. Conget al. [3] showed that one can move a
buffer considerably from its ideal location and incur
only a small delay penalty.

2. At the floorplanning stage, net by net timing constraints
are not available since macro block designs are incom-
plete and global routing and extraction have not been
performed. Timing analysis could be performed, but the
results can be grossly pessimistic because interconnect
synthesis has not occurred. One needs to globally insert
buffers while tracking wire congestion to enable floor-
plan evaluation. For example, in a 200 Mhz design, say
that floorplans A and B have worst slacks of -40 and -43
ns, respectively. The designer cannot determine the bet-
ter floorplan because the slacks are both absurdly far
from their targets. Only after buffer and wire planning
are performed can the design be timed to provide a
meaningful worst slack value.

The first characteristic suggests that precise buffer site
locations are unnecessary. Designers can freely sprinkle
buffer sites into their blocks so that performance is not
compromised; there just needs to be enough buffer sites
altogether. We use atile graph to represent the buffer sites,
which can potentially run into the thousands. Figure 1(a)
shows a chip containing 68 buffer sites and Figure 1(b)
abstracts each individual buffer site as one of a set of buffer
sites at the tile’s center. After a buffer is assigned to a
particular tile, an actual buffer site within the tile can be
allocated. The tile graph reduces complexity and can be
used to manage wire congestion across tile boundaries. The
granularity of the tiling depends on the desired accuracy/
runtime trade-off and the current stage in the design flow.

The tile graph for a set of tiles contains edge
if and are neighboring tiles. For a tile , let

be the number of buffer sites within . The set of global
nets is given by . Let be the
maximum number of wires that may cross between and
without causing overflow. If denotes the number of
buffers assigned to , the buffer congestion for is given
by . Similarly, let denote the number of

wires which cross between and . The wire congesti
for is given by .

The second characteristic suggests that timing constra
are not dependable in the early floorplanning stage. O
formulation relies on a global rule of thumb for the
maximum distance between consecutive buffers which w
also used by Draganet al. [4]. They note that for a high-end
microprocessor design in 0.25µm CMOS technology,
repeaters are required at intervals of at most 4500µm to
ensure a sufficiently sharp slew rate at the input to all gat

Figure 1 (a) A set of 68 buffer sites can be tiled and (b) abstract-
ed to the total number of buffer sites lying within each tile.

For net , let be the maximum number of tiles that ca
be driven by either the source of or a buffer inserted o

. One might alternatively constrain as the tile distanc
from a source to a sink, but this causes the problem sho
in Figure 2. The figure shows a six-sink net where th
distance from the driver to each sink is three tiles, yet t
source gate drives nine tiles of wire. Our more restrictiv
constraint will force buffers to be inserted on this net, whic
are likely needed to fix weak slew rates at the sinks.

Figure 2 A six-sink net where each source-sink path has length
three, yet the source must drive nine tiles of wire.

Problem Formulation: Given a tiling of the chip,
nets , buffer sites , and length
constraints , assign buffers to nets such that

• for all , where is the number of
buffers assigned to tile .

• Each net satisfies its tile length constraint, .1

• There exists a routing after buffering such that for a
, .

G V E,() V
eu v, u v v B v()

v
N n1 n2 … nm, , ,{ }= W eu v,()

u v
b v()

v v
b v() B v()⁄ w eu v,()

1 One typically uses the same value of for each net; howev
nets on higher metal layers will have larger values. Also,
larger value of can be used with wider wire width assignmen

u v
eu v, w eu v,() W eu v,()⁄

(a)

0 0 6 14 2

2 2 4 33 6

2 8 2 50 0

2 2 3 23 0

0 0 1 00 1

0 0 1 12 0

(b)

ni Li
ni

ni Li

G V E,()
N n1 n2 … nm, , ,{ }= B v()

Li

b v() B v()≤ v V∈ b v()
v

ni N∈ Li

Li
Li

Li

eu v, E∈ w eu v,() W eu v,()≤

ph

f
of
as
g

rce
n.
the
ch

his
ing
st
et

f
he

n
st

te
ed
is
f
d

e
van
,
of

.
d
ath
of
s

tly
The formulation seeks a solution which satisfies constraints,
though secondary objectives can also be optimized (e.g.,
total wirelength, wire congestion, buffer congestion, and
timing). Our heuristic seeks a solution which satisfies the
formulation while also minimizing secondary objectives.

Note that the formulation’s purpose is not to find the final
buffering and routing of the design. Rather, it can be used to
estimate buffering and routing resources or as a precursor to
timing analysis for floorplan evaluation. Once deeper into
physical design, suboptimal or timing-critical nets should be
re-optimized using more accurate timing constraints and
wiring parasitics.

3. Buffer and Wire Planning Heuristic
We propose a heuristic called RABID (Resource Allocation
for Buffer and Interconnect Distribution) which proceeds in
four stages: (1) initial Steiner tree construction, (2) wire
congestion reduction, (3) buffer assignment, and (4) final
post-processing. The algorithm’s innovations are contained
in the last two stages which handle buffer site assignment.
Stages 1 and 2 use traditional rip-up and re-route to deliver
an initial congestion-aware global routing solution. One
could alternatively start with the solution from any
congestion-aware global router.

3.1 Stage 1: Initial Steiner Tree Construction
The purpose of this stage is to construct an initial routing of
each net. The route should be timing-driven, yet timing
constraints are not necessarily available. We adopt the Prim-
Dijkstra construction [1] which generates a hybrid between
a minimum spanning tree and shortest path tree. The result
is a spanning tree which trades off between radius and
wirelength. The spanning tree is then converted to a Steiner
tree via a greedy overlap removal algorithm. The algorithm
iteratively searches for the two tree edges with the largest
potential wirelength overlap. A Steiner point is introduced
to remove the overlap. The algorithm terminates when no
further overlap removal is possible.

3.2 Stage 2: Wire Congestion Reduction
The purpose of this stage is to rip-up-and-reroute the initial
Steiner trees to reduce wire congestion. We first construct
the tile graph from the existing Steiner routes and
compute for each edge . Instead of
ripping up only nets in congested regions, we rip-up and re-
route every net, as in [6]. Each net is processed in turn
according to a fixed net ordering (sorted from shortest to
longest delays). This allows nets which do not actually
violate congestion constraints to be further improved,
thereby helping subsequent nets that do violate constraints
to be successfully re-routed. The algorithm terminates when

for all or after three
complete iterations. We observe only nominal potential
improvement exists after the third iteration.

A net is re-routed by first deleting the entire net, then re-
routed using an approach similar to [2], as opposed to re-
routing one edge at a time. The new tree is constructed on
the tile graph using the same Prim-Dijkstra algorithm from
Stage 1, except the cost function for each edge is no longer

Manhattan distance. The routing occurs across the tile gra
using the following congestion-based cost function:

(1)

and otherwise. The cost is the number o
wires that would be crossing divided by the number
available tracks. The cost function increases the penalty
the edge comes closer to full capacity. The re-routin
procedure performs a wave-front expansion from the sou
tile, updating to the lowest tile cost with each expansio
The procedure terminates after reaching each sink, and
tree is recovered by tracing back to the source from ea
sink.

3.3 Stage 3: Buffer Assignment
This stage allocates buffers to each net. We perform t
assignment one net at a time in order of net delay, start
with the longest delay. Before assigning buffers, we fir
estimate the probability of a net occupying a tile. For a n

crossing tile , the probability of a buffer site from
being used for is given by . Let be the sum o
these probabilities for tile over all unprocessed nets. T
cost for using a particular buffer site is defined as

(2)

and otherwise. Observe the similarity betwee
Equations (2) and (1). Both significantly increase the co
penalty as resources become more contentious.

Figure 3 shows an example buffer cost computation. No
that the values do not include the currently process
net. The cost is computed for each tile, and
included in the net’s cost if a buffer is inserted at . I

, the minimum cost solution has buffers in the thir
and fifth tiles, resulting in a total cost of .

Figure 3 Example of buffer cost computation. For , the
optimal solution is shown, having total cost 1.5.

An optimal solution can be revealed in linear tim
(assuming that is constant). The approach uses a
Ginneken (VG) [8] style dynamic programming algorithm
but has lower time complexity because the number
candidates for each node is at most .

We begin with a net with source and a single sink
Let be the parent tile of each tile in the route. an
assume that has been computed for all tiles on the p
from to . For each , the array stores the costs
the solutions from to . The index of the array determine
the distance downstream from to the most recen

G V E,()
w eu v,() eu v, E∈

w eu v,() W eu v,()⁄ 1≤ eu v, E∈

cost eu v,() w eu v,() 1+
W eu v,() w eu v,()–--- if

w eu v,()
W eu v,()-------------------- 1<=

cost eu v,() ∞=
eu v,

ni v v
ni 1 Li⁄ p v()

v
q v()

q v() b v() p v() 1+ +
B v() b v()–------------------------------------- if b v()

B v()----------- 1<=

q v() ∞=

p v()
q v() q v()

v
Li 3=

0.5 1.0+ 1.5=

B(v) 8 5 12 3 5 0
b(v) 3 4 2 3 0 0
p(v) 2.5 3.6 2 0.8 4 5
q(v) 1.3 8.6 0.5 ∞ 1.0 ∞

Li 3=

Li

Li

ni s t
par v() v

q v()
s t v Cv

v t
v

.

is
le
ted
d
ay
he
ep
.4
m
k

tion
th
t is
ed.

h
and
o-
m)
r

.

d.
inserted buffer. Thus, the array is indexed from to ,
since cannot be at distance more than from the last
available buffer. The full algorithm is shown in Figure 4.

Step 1 initializes the cost array to zero for sink . Step 2
iteratively computes the cost array for given the
cost for . The value of for is simply

since no buffer is being inserted at for this
case. If a buffer is to be inserted at , then the cost

is the sum of the current cost for insertion,
and the lowest cost seen at . Step 3 returns the

lowest cost; the solution can be recovered by storing at
 the index in used to generate the solution.

Figure 4 Single-sink buffer insertion algorithm.

Figure 5 shows how the cost array is computed for the 2-pin
example in Figure 3 (with) and the dark lines show
how to trace back the solution. Observe from the table that
costs are shifted down and to the left as one moves from
right to left, with the exception of entries with index zero.

Figure 5 Execution of the single source algorithm on the exam-
ple in Figure 3. The optimal solution has cost 1.5 and the dark

lines show how this cost is obtained.

Optimality follows from the fact that once a buffer is
inserted (i.e., a is computed), only the best
solution downstream from the buffer needs to be recorded.
Since the number of possible candidates at each tile is no
more than a space and time complexity of , is
obtained, where is the number of tiles spanned by the net.
This is a significant advantage over similar approaches
[6][8][8] which have at least time complexity.

For multi-sink nets, one still keeps a cost array at each tile,
but updating the cost becomes a bit trickier when a tile has
two children. For this case, there are three possible
scenarios as shown in Figure 6. A buffer may be used to
either (a) drive both branches, (b) decouple the left branch,
or (c) decouple the right branch.2 Let and denote

the two children of . If has only one child, let it be

Figure 7 presents the complete algorithm. The algorithm
equivalent to Figure 5, except Step 4 handles multip
children. Step 4.1 computes costs when no buffer is inser
at . Since one tile of wire is driven for both the left an
right branches, no buffering at implies that the cost arr
only should be updated for . Step 4.2 considers t
case of Figure 6(a) where a buffer drives both children. St
4.3 initializes the cost array for index 1, and finally, Step 4
updates the cost array with a potentially lower cost fro
decoupling either the left or right branches. The multi-sin
variation has time complexity, due to Step 4.2.

Figure 6 For a tile with two children, a buffer can either (a)
drive both branches or (b) decouple the left ((c) right) branch.

Figure 7 Multi-sink buffer insertion algorithm.

3.4 Stage 4: Final Post-Processing
The last stage attempts to reduce buffer and wire conges
and the number of nets which fail to meet their leng
constraint. Using the same flow as in Stage 2, each ne
ripped up and re-routed, and the buffers are also remov
However, for multi-pin nets, the net is ripped up onetwo-
pathat a time, where a two-path is a path in the tree whic
begins and ends at either a Steiner node, source, or sink
contains only vertices of degree two. The ends of the tw
path are then reconnected (using a maze routing algorith
via the path that minimizes the sum of wire and buffe

1. Set for and sink . Set .
2. while do
 for to do
 Set
 Set
 Set .
3. Let be such that .
 Return .

2 A tile could have up to three children yielding seven different sce-
narios. This case is a straightforward extension of Figure 7.

0 Li 1–
v Li

Ct t
par v()

v Cpar v() j[] j 0>
Cv j 1–[] v

par v()
Cpar v() 0[]
q par v()() v

par v() Cv

Ct j[] 0= 1 j L i<≤ t v t=
v s≠
j 1= Li 1–

Cpar v() j[] Cv j 1–[]=
Cpar v() 0[] q par v()() min Cv j[] 0 j L i<≤||{ }+=
v par v()=

v par v() s=
min Cv j[] 0 j L i<≤||{ }

Li 3=

q(v) 1.3 8.6 0.5 ∞ 1.0 ∞
Cv[0] 2.8 9.6 1.5 ∞ 1.0 ∞ 0

Cv[1] 9.6 1.5 ∞ 1.0 ∞ 0 0

Cv[2] 1.5 ∞ 1.0 ∞ 0 0 0

source sink

Cpar v() 0[]

Li O nLi()
n

O n2()

l v() r v()

1. Pick unvisited s. t. all descendents of have been visited
 while do
2. if is a sink then
 Set for .
3. if has one child then
 for to do
 Set
 Set
4. if has two children and then
4.1 for to do

4.2
 Set
4.3
4.4 for to do
 Let
 Set
5. mark as visited

pick unvisited s. t. all descendents of have been visite
6. Return .

v v l v()

v
v

j 2≥

O nLi
2()

(a) (b) (c)

v v
v s≠

v
Cv j[] 0= 1 j L i<≤

v l v()
j 1= Li 1–

Cv j[] Cl v() j 1–[]=
Cv 0[] q v() min Cl v() j[] 0 j L i<≤||{ }+=

v l v() r v()
j 2= Li 1–

Cv j[] min Cl v() j l[] Cr v() j r[]+ j l j r 2+ +|| j={ }=
Cv 0[] min Cl v() j l[] Cr v() j r[]+ j l j r 2+ + Li≤||{ }=

Cv 0[] Cv 0[] q v()+=
Cv 1[] ∞=

j 1= Li 1–
Dv min Cl v() j 1–[] Cr v() j 1–[],{ }=
Cv j[] min Cv j[] q v() D+ v,{ }=

v
v v

min Cs j[] 0 j L i<≤||{ }

ink,

um
for

In
m

s.
ut

e
of
et
.

ge

0

1

1

0

1

5

6

7

0

7

4

congestion costs (Eqs. (1) and (2)).

4. Experimental Results
We implemented our heuristic in C++ on an RS6000/595
machine with 1 Gb of memory. We tested our code on ten
benchmarks which we obtained from the authors of [3] and
embedded the designs in the same 0.18µm technology used
in [3]. The first six circuits are from the Collaborative
Benchmarking Laboratory and the other four were
randomly generated. The circuits’ characteristics are
summarized in Table 1. The nets and sinks columns present
slightly smaller values than in [3] since they reflect only the
nets on which Conget al. actually inserted buffers.

Table 1: Test circuit characteristics and parameters.

4.1 General Performance
First, we study the performance of each of RABID’s four
stages. The grid size and number of buffer sites are shown
in Table 1. We chose the grid size to have 30 tiles on the
shorter side of the chip, then derived the number of tiles for
the longest side, so that each tile was roughly square. The
tile area is given in square millimeters; except for the last
two random test cases, no tile is more than one millimeter
long on a side. The number of buffer sites for each test case
was chosen so that the total chip area occupied by buffer
sites was less than 2%. For each test case, a random nine by
nine set of tiles were prohibited from having any inserted
buffer sites to correspond to a large cache-like block. The
buffer sites were randomly distributed among the other tiles.

The floorplans were supplied by the authors of [3] and were
generated from the output from their buffer block planning,
with the buffer blocks. removed. The results for each stage
and each CBL benchmark are summarized in Table 2. We
present only the cumulative results for the four random
circuits. The statistics presented are:

• the maximum wire congestion (MWC) over all ,
• the maximum buffer congestion (MBC) over all tiles,
• wiring overflows (OV), i.e., the sum over all of

, for whenever ,
• the number of buffers inserted (bufs),
• the number of nets for which the tile length constraint

was not satisfied (fail),

• total wirelength in millimeters,
• maximum and average delay (picoseconds) to each s
• and CPU time in seconds.

Table 2: Stage by stage experimental results for ten test
circuits. Only summaries are shown for the random test cases.
Since no timing constraints are used, average and maxim
source-to-sink delays are reported to give an indication
the timing quality. We make several observations:

• The wire congestion constraint is always satisfied.
Stage 1, which ignores wire congestion, the maximu
wire congestion is typically a factor of two to three
above capacity and there are several hundred overflow

• The algorithm never violates buffer site constraints, b
typically utilizes at least one tile to full buffer capacity.

• The number of buffers, fails, and delays all improv
from Stage 3 to Stage 4, illustrating the effectiveness
post-processing. The number of nets which fail to me
the length constraint is typically small, but not zero
These fails typically cannot be removed due to the lar

test
case

blocks nets pads sinks grid
size

tile
area

buffer
sites

%chip
area

apte 9 77 73 141 30x33 0.36 6 1200 0.13

xerox 10 171 2 390 30x30 0.35 5 3000 0.38

hp 11 68 45 187 30x30 0.42 6 2350 0.25

ami33 33 112 43 324 33x30 0.46 5 2750 0.24

ami49 49 368 22 493 30x30 0.67 5 11450 0.75

plyout 62 1294 192 1663 33x30 0.75 6 27550 1.47

ac3 27 200 75 409 30x30 0.49 6 3550 0.32

xc5 50 975 2 2149 30x30 0.54 6 13550 1.11

hc7 77 430 51 1318 30x30 1.04 5 7780 0.33

a9c3 147 1148 22 1526 30x30 1.08 5 12780 0.52

Li

euv E∈

euv E∈
w euv() W euv()– w euv() W euv()>

test case MWC MBC OV bufs fail wire
length

 delay cpu
(s)max avg

apte 1 2.00 0.00 225 0 77 1410 5029 1700

2 0.62 0.00 0 0 77 1706 5390 2156 12

3 0.62 1.00 0 401 7 1706 3256 959 1

4 0.62 1.00 0 364 5 1718 1854 863 34

xerox 1 2.00 0.00 466 0 171 2537 3361 1529

2 0.80 0.00 0 0 171 3449 5836 2010 25

3 0.80 1.00 0 1032 6 3449 3216 1326 1

4 0.60 1.00 0 800 12 3028 1594 692 72

hp 1 3.25 0.00 368 0 68 1405 5672 1995 0

2 1.00 0.00 0 0 68 1818 6723 2440 11

3 1.00 1.00 0 432 8 1818 4794 832 0

4 0.75 1.00 0 335 9 1699 3483 815 38

ami33 1 2.50 0.00 365 0 112 2471 9016 4413

2 1.00 0.00 0 0 112 3028 12735 5690 22

3 1.00 1.00 0 798 6 3028 5379 1297 1

4 0.83 1.00 0 704 6 2952 2553 1094 43

ami49 1 2.18 0.00 887 0 368 5881 7601 1730

2 1.00 0.00 0 0 368 8720 28784 3200 54

3 1.00 0.90 0 1887 17 8720 21150 1164 1

4 1.00 0.75 0 1277 10 7075 3884 875 103

plyout 1 1.19 0.00 230 0 1294 22555 8633 1989

2 0.34 0.00 0 0 1294 29520 19160 2789 27

3 0.34 1.00 0 4542 125 29520 12446 1253

4 0.44 1.00 0 3716 44 25881 3405 937 402

ac3 1-4 0.67 1.00 0 855 24 4640 2982 888 13

xc5 1-4 0.90 1.00 0 2941 28 17022 2415 777 52

hc7 1-4 1.00 1.00 0 2015 61 13512 4944 1128 27

a9c3 1-4 1.00 1.00 0 4193 39 28945 3895 1183 71

rs
%

ts
n
e
t

e

ig-

s,

2
ut

of
at-
he

ce
les
th
s
.

ve

nd
t
.

-

-

-

9 by 9 region with no buffer sites.

4.2 Comparisons with Buffer Block Planning
Our next experiments attempt to compare RABID with the
BBP/FR buffer block planning algorithm [3], though
RABID does not use buffer blocks. Hence, one cannot
simply compare to previously published results. Instead, we
obtained code from the authors of [3] and implemented
routines to gather statistics from the data. Our results were
generated using the same number of buffer sites as in
Table 1, but without the 9 by 9 region of blocked tiles.

Table 3: Comparisons of RABID to BBP/FR [3].
As in [3], but unlike the experiments in Table 2, we
decomposed each multi-pin net into several 2-pin nets.
Cong et al. [3] report timing results by measuring the
number of nets which fail to meet their delay constraint and
chose the timing constraint to be between 1.05 and 1.20 of
the optimum achievable delay. This constraint generation is
unrealistic since they imply that all constraints are tight, yet
potentially satisfiable. In practice, some of the 1.05x-1.20x
timing constraints will be so tight that buffer insertion is
insufficient to satisfy timing. For these cases, feasible
regions are not well defined. In addition, some nets may
have such loose constraints that detours can be taken while
still meeting delay constraints. Since RABID and BBP/FR
have different criteria for buffer insertion, we use source-
sink delays to quantify timing performance.

Table 3 presents comparisons with BBP/FR. The statistic
MTP (maximum tile percentage) is the maximum percent,

over all tiles, of the tile area occupied by inserted buffe
(e.g., for ami49, buffers inserted by BBP/FR occupy 4.15
of the area of one of the tiles). We observe the following:

• RABID always satisfies the wire congestion constrain
while BBP/FR does not. The BBP/FR results eve
include a post-processing step which tries to minimiz
congestion for the current buffering solution withou
increasing wirelength.

• RABID inserts more buffers than BBP/FR due to wir
congestion avoidance.

• Because our methodology invites spreading, MTP is s
nificantly less for RABID. In the worst case, BBP/FR
has one tile with 16.40% of its area devoted to buffer
while RABID never has an MTP higher than 0.81%.

• The CPU time for BBP/FR is significantly less. Stages
and 4 of our algorithm cause much greater runtimes, b
they are not prohibitive.

• The delays for RABID are quite comparable to those
BBP/FR despite using a length-based algorithm and s
isfying wire congestion constraints. In some cases t
delays are even better.

5. Conclusions
We proposed a methodology for buffer and wire resour
allocation that uses pre-distributed buffer sites. This enab
one to model the problem via a tile graph and also plan bo
wires and buffers. Our four stage RABID heuristic include
a novel algorithm for length-based buffer insertion
Experimental results show that RABID generates effecti
solutions in terms of several practical criteria.

Acknowledgments
The authors sincerely thank Jason Cong, David Pan, a
Tianming Kong for not only supplying code and circuits bu
for also running experiments and helping with debugging

References
[1] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng and D.

Karger, “Prim-Dijkstra Tradeoffs for Improved Performance
Driven Routing Tree Design”,IEEE Trans. on Comput.-
Aided Design, 14(7), 1995, pp. 890-896.

[2] J. Cong, “An Interconnect-Centric Design Flow for Nanome
ter Technologies”,Int. Symp. on VLSI Technology, Systems,
and Applications, Taipei, Taiwan, June 1999, pp. 54-57.

[3] J. Cong, T. Kong and D.Z. Pan, “Buffer Block Planning for
Interconnect-Driven Floorplanning”,Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, 1999, pp. 358-363.

[4] F. F. Dragan, A. B. Kahng, I. Mandoiu, S. Muddu, “Provably
Good Global Buffering Using an Available Buffer Block
Plan”, IEEE/ACM ICCAD, 2000, pp. 104-109.

[5] F. F. Dragan, A. B. Kahng, I. Mandoiu, S. Muddu, “Provably
Good Global Buffering by Multiterminal Multicommodity
Flow Approximation”,ASP-DAC, 2001, pp. 120-125.

[6] P. Sarkar, V. Sundararaman and C.-K. Koh, “Routability-
Driver Repeater Block Planning for Interconnect-Centric
Floorplanning”,Intl. Symp. Phys. Design, 2000, pp. 186-191.

[7] X. Tang and D.F. Wong, “Planning Buffer Locations by Net-
work Flows”, Intl. Symp. Physical Design, 2000, pp. 180-185.

[8] L.P.P.P. van Ginneken, “Buffer Placement in Distributed RC
tree Networks for Minimal Elmore Delay”,Proc. IEEE Int.
Symp. Circuits Syst., 1990, pp. 865-868.

test
case

Algo-
rithm

MWC MTP OV bufs wire
length

 delay cpu
(s)max avg

apte BBP/FR 2.00 2.87 23 233 1827 2026 721 14

RABID 1.00 0.33 0 417 2010 1935 787 95

xerox BBP/FR 1.15 5.57 14 508 4096 1486 575 29

RABID 0.93 0.57 0 957 4541 1531 643 167

hp BBP/FR 2.50 1.89 107 264 2194 1948 645 16

RABID 0.83 0.28 0 450 2403 2029 707 67

ami33 BBP/FR 1.19 3.31 34 654 4923 2329 852 44

RABID 0.69 0.44 0 1150 5232 2256 900 138

ami49 BBP/FR 4.64 4.15 1034 862 6787 2359 768 65

RABID 0.93 0.36 0 1339 7592 2635 859 167

plyout BBP/FR 0.99 10.34 0 3422 25930 2727 880 198

RABID 0.45 0.64 0 3840 27601 3310 947 813

ac3 BBP/FR 1.23 2.86 37 718 5586 1928 763 87

RABID 0.58 0.33 0 1037 5954 2095 807 208

xc5 BBP/FR 4.70 16.40 3528 3186 25241 2194 655 181

RABID 0.84 0.81 0 4410 27060 2343 700 694

hc7 BBP/FR 3.82 4.88 1363 2684 20011 2935 861 174

RABID 0.82 0.35 0 2983 21523 3349 941 386

a9c3 BBP/FR 2.54 4.79 1329 4041 29060 2726 1093 222

RABID 0.60 0.44 0 4225 30723 2786 1170 502

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

