
Re-Configurable Computing in Wireless
Bill Salefski

Chameleon Systems, Inc.
161 Nortech Parkway

San Jose, CA 95134 USA
+1 408 240 3400

salefski@cmln.com

Levent Caglar
Chameleon Systems, Inc.

161 Nortech Parkway
San Jose, CA 95134 USA

+1 408 240 3401

levent@cmln.com

Abstract
Wireless communications requires a new approach to implement
the algorithms for new standards. The computational demands of
these standards are outstripping the ability of traditional signal
processors, and standards are changing too quickly for
traditional hardware implementation. In this paper we outline
how reconfigurable processing can meet the needs for wireless
base station design while providing the programmability to allow
not just field upgrades as standards evolve, but also to adapt to
much more dynamic factors in the environment such as traffic mix
and the weather. We outline how a designer works with the
Chameleon reconfigurable processor from algorithm design to
prototyping on a development module.

1. Introduction
System designers require new architectures to meet the signal

processing demands for today’s wireless applications. There are
at least three design dilemmas driving this need for change: the
gap between what traditional processing architectures can provide
and what wireless equipment needs for signal processing, the
dynamics of wireless communication standards, and the realities
of building large system on chip (SOC) solutions.

Designers looking to extract transmission capacity from a
relatively limited amount of spectrum are placing rapidly
increasing demands on the required signal processing to support
new standards. Jan Rabey showed in [1] how the computing
requirements for new standards are exceeding the forecast
processing capacity available through semiconductor process
improvements.

Wireless communication standards evolve quickly and
demands for new features and services within these standards
arise much more rapidly than in the past. This dynamic
environment drives the equipment manufacturers towards
programmable solutions that they can update in the field. The
ideal is a base station platform that service providers can deploy
and then upgrade in the field with only software changes over its
operational life.

Mark Horowitz outlined in [2] the realities of CMOS process
technology, pointing the direction for the use of specific
architecture requirements that match process realities. In his
presentation, Horowitz shows how modular computers, arrays of
computational elements with regular interconnect and localized
programming, provide substantial value when implemented in the
new technologies.

Reconfigurable computing has gained significant attention of
late as a commercially viable and available alternative to
conventional processing schemes. Chameleon’s Reconfigurable
Communications Processor (RCP) architecture delivers an array
of computational elements with a programmable interconnect.
This allows designers to essentially create a custom-designed data
path and memory structure for their application that they can
instantly alter to implement the desired algorithm.

This paper provides an overview of the Chameleon RCP,
how designers use it, and its performance relative to other
solutions. Section 2 examines the major architecture features of
the RCP. Section 3 shows how to structure algorithms to
efficiently execute on the processor. Section 4 outlines the
specifics of the design methodology to program the processor.
Section 5 compares the performance of the processor to existing
DSP, FPGA, and ASIC approaches.
2. Chameleon Architecture

Configuration
Subsystem

DMA
Subsystem

PCI
Controller

Memory
Controller

ARC
Processor

64-bit Memory Bus32-bit PCI Bus

160-pins Programmable I/O

128-bit RoadRunner Bus

Reconfigurable
Processing Fabric

Figure 1. Chameleon RCP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
38th Design Automation Conference, June 18-22, 2001, Las Vegas,
Nevada, USA.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

The RCP architecture (Figure 1) comprises three major
subsystems: the Reconfigurable Processing Fabric (RPF) which
contains the bulk of the computational elements, the
programmable input and output (PIO) banks to stream the data
through the fabric, and an embedded processor subsystem. These
system modules are linked with a high-performance 128-bit bus
that provides the bandwidth to move data among them.

2.1 Reconfigurable Processing Fabric
The RPF consists of data processing units, local storage, and

the interconnect structure among these elements. The RPF’s
architectural objective is to match the fast, distributed data
processing with a fast, localized memory. Data are streamed into
the local memories, processed, and streamed out.

The RPF for the CS2112 is arranged in a hierarchy as shown
in Figure 2. The top-level of the RPF is divided into four slices,
each of which can be reconfigured independently of the other
slices. Each slice is subdivided into three tiles, and each tile
consists of seven 32-bit datapath units (DPU), two multipliers
(MPU), four local-store memories (LSM), and a Control Logic
Unit (CLU).

Figure 2. Reconfigurable Processing Fabric

2.1.1 Processing Elements
The DPU shown in Figure 3 is the fundamental

computational element in the fabric. It has a basic word length of
32 bits, but has special operations that allow it to operate in SIMD
fashion on four 8-bit data streams or two 16-bit data streams.

The core of the DPU is the 32-bit Operator that performs
arithmetic and logical operations. Operations include ADD,
ADD16 (two 16-bit additions performed in parallel), MAX,
SADD (saturating addition), and so forth. One branch of the
operand data path contains a barrel shifter for performing shifting,
word swapping, byte swapping, or word duplication on an
operand. All registers have conditional enables to allow
pipelining and to allow the data in registers to be preserved
between reconfigurations or initialized to constant values.

The MPUs can perform 16x24-bit or 16x16-bit single-cycle
multiplications. The multipliers have a similar input and output
configuration to the DPUs, but only perform multiplication.

Register

Register

Instruction

Routing
Mux

Routing
Mux

Barrel
Shifter

Register
&

Mask

Register
&

Mask

OP

Figure 3. Datapath Unit

2.1.2 Local-Store Memory
The LSMs form the basic building blocks for the localized

memory architecture. Each LSM is a multi-ported, 32-bit by 128-
word RAM. Through programming, LSMs can be assembled into
different memory configurations to match the data stream they are
capturing or sourcing. For example, two LSMs can be
programmed to form a wide-word memory structure providing 64-
bit by 128-word RAM, or the same two can be assembled to form
32-bit by 256-word RAM. Data in the LSM are retained during
these configuration changes.

A common use of this memory reconfigurability is to load
the data very quickly with wide words and then process it through
the DPUs and MPUs as narrower data. For example, the designer
can load the four LSMs in a tile as a 128-bit by 128-word RAM,
and then reconfigure them into 16-bit buffers to feed DPUs for the
actual signal processing.
2.1.3 Control Logic

Each DPU is programmed with eight user-definable
instructions stored in the Instruction memory. Each instruction
specifies the complete configuration for the DPU. This includes
the input and output routing, shifting, masking, register enables,
LSM read and write instructions, flag generation, and the DPU
Operator. So each instruction creates a custom datapath, data
flow, and memory architecture for the particular operation.

The Control Logic Unit (CLU) is shown in Figure 4. The
CLU directly implements a finite-state machine to select the DPU
and MPU instructions stored in the instruction memory.

Figure 4. Control Logic Unit Connection

Slice 0

Tile 0

Tile 1

Tile 2

Slice 1

Tile 0

Slice 2

Tile 0

Tile 1

Tile 2

Slice 3

Tile 0

Tile 1

Tile 2

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

16x24 Multiplier 16x24 Multiplier

Local Store Memory
(LSM)

32-bit x 128 deep

Local Store Memory
(LSM)

32-bit x 128 deep

Local Store Memory
(LSM)

32-bit x 128 deep

Local Store Memory
(LSM)

32-bit x 128 deep

Control
Logic
Unit

(CLU)

8-word Instruction Memory

DPU
Instruction Select

Control
Logic
Unit
PLA

REG

REG

State Register Feedback

DPU Flags

Done Control
Interconnect

Start
Control

Interconnect

The CLU consists of a PLA containing the next-state and
combinational functions, state registers, and routing multiplexers.
The PLA inputs come from state bits, the DPU flags, and control
bits sent from CLUs in adjacent tiles. The state bits are used to
index the instruction memory to select the instruction for the DPU
to perform. The PLA also outputs control information to adjacent
CLUs in other tiles. The start and done bits are used by
convention to initiate fabric processing and to signal when the
processing is complete.

2.2 Dynamic Interconnect
The interconnection of DPUs consists of 32-bit data buses

and individual control lines. These busses do not have a signaling
protocol; they are direct connections among the DPUs chosen for
interconnection. Nearby DPUs are connected to each other in a
full crossbar connection. More distant DPUs are connected with
routing with a one-clock pipeline delay. Routing multiplexers
control the routing selection for the DPUs so the interconnect can
change on a clock-by-clock basis to implement the optimal
dataflow for the algorithm.

2.3 Programmable I/O
The RCP has four banks of 40 programmable input and output
pins that provide the bandwidth for streaming data through the
reconfigurable fabric. The PIOs can clock at the system clock
rate, providing a raw data bandwidth of about 2.0 Gbits/sec to
enable high-speed, data-streaming applications.

The PIOs can be programmed to interface to a variety of external
data sources, including SRAM, A/D converters, and FPGAs.

2.4 Embedded Processor Subsystem
The embedded processor subsystem provides the components

for a complete system, and provide the management for
reconfiguring and streaming data for the fabric. The processor is
an ARC processor with minor changes to tailor it for wireless
applications. It has an 8K-instruction cache and an 8K-data
memory. The system also contains a 32-bit PCI interface, a
DMA, and a 64-bit memory controller to interface to external
SDRAM, SSRAM, and flash memories.

A unique aspect of the RCP is that all storage elements in the
fabric are mapped to the ARC address space for both reading and
writing. This enables the designer to use the ARC to control the
fabric during processing, and gives the designer complete
visibility into the fabric for system debug and bring up.

2.5 Reconfiguration
2.5.1 System Reconfiguration

The reconfiguration system for the entire RCP consists of a
configuration controller and two configuration planes. The active
configuration actually controls the fabric, and the background
plane is used to hold another configuration.

The controller can load a new configuration into the
background plane while the fabric is running with the active plan.
To program all four slices, less than 50,000 bits are required, so a
new configuration can be loaded in less than 3 microseconds.

The entire system can be reconfigured in one clock cycle by
switching the data from the background plane to the active plane.

Each slice in the RCP can be reconfigured independently,
although most applications configure all four slices as a group.

The reconfiguration changes the contents of the CLU, but
data in the LSMs is retained. Therefore, data can be stored in
LSMs from one configuration to be used as input data in the next
configuration.

2.5.2 Instruction-Based Reconfiguration
Since the DPUs and the Dynamic Interconnect are both

completely specified in the instruction memory and controlled by
the CLU, it is possible to have different configurations on a clock-
by-clock basis built into the programming. Designers use this
level of reconfiguration to fine-tune algorithms or switch to
different processing based on data values.

3. Design Methodology
Chameleon’s RCP serves as a reconfigurable platform that

enables customers to design, debug and deploy their proprietary
algorithms. Therefore, the design methodology and tools
Chameleon provides to enable its customers to program the RCP
are critically important for successful implementations.

There are two key aspects of the Chameleon design
methodology that are unique for the RCP. The first requires the
customer to consider the massive amount of parallelism and
programmability that the RCP makes available to the designer.
The second introduces the potential of effectively using the power
of reconfiguration as an aspect of the design process. These are
totally new design parameters, but their effective utilization can
greatly increase the capacity of the algorithms implemented on the
RCP over traditional programmable approaches.

The design process follows three basic steps. The first is to
define the data flow through the system, the second is to map the
operations to the architecture elements, and the last is to enter the
design into the RCP programming tools.

3.1 Dataflow Design
The designer first encounters the power and flexibility

provided by the RCP architecture when designing the dataflow
through an RCP-based. Some traditional design constraints
necessary on other programmable systems are relaxed when
designing on the RCP. The steps basically include establishing
the data set size, structuring the parallelism in the algorithms, and
determining the control needed to manage the data flow.
3.1.1 Data Set

The first step for the designer is to determine the data set size
for the RCP. The most effective method is to use streaming
dataflow, i.e., to consider the input as an unbounded array of data
to be processed. The PIOs can be configured to directly load the
data into the LSMs in the fabric and transfer the data out when the
processing is complete. Although streaming dataflow is the best
match for the RCP, frame-based data sets also work well, with
larger sets being more efficient.
3.1.2 Parallelism

The next step is to map the algorithm onto the array of
DPUs. The amount of computing resources and the flexibility for
their connection allows the designer to design the optimal mix of
task-level parallelism and instruction-level parallelism for the
particular algorithm. The designer is not constrained by fixed
data paths or relatively small numbers of processing elements.

The designer extracts the instruction-level parallelism to
determine the number of operations that can execute in parallel
for a particular processing task, such as FIR taps computed at the
same time. Task-level parallelism is extracted to determine
processes that can execute in parallel. Since these are both
programmable, it is possible for the designer to develop several
processes that run in parallel to execute in the same number of
clock cycles, so they start and finish in unison.

To effectively use the quantity and flexibility of the parallel
operations available on the RCP, the designer generally
approaches the algorithm design from a signal-flow graph or C
code that is structured like a signal-flow graph. This is best
achieved by taking the original signal flow graph or dataflow
specification of the algorithm from tools like Mathworks’
MatLab, Cadence’s VCC, or Synopsys’s Concentric System
Studio.

Because of the number of computational resources made
available by the RCP, it is sometimes more efficient for the
designer to compute results that are redundant or to speculatively
compute results even if they may not be needed. For example, it
may be more efficient to compute the same result in two different
parts of the algorithm rather than trying to compute it once and
then communicate the result to both places. It can also be more
efficient to compute both outcomes of a conditional computation
and then select the result at the end.
3.1.3 Control

To minimize the disruption on the dataflow and processing
pipelines, the design should reduce the amount of control and
feedback. Several designs have been done in which an inherently
control-oriented algorithm was restructured to have a steady state
of dataflow. For example, one particular algorithm required the
RCP to accept a data stream that contained irregularly spaced
invalid data. When the algorithm was implemented on a DSP, a
simple conditional statement was used to exclude the invalid data
from the data set. Such an approach would have lead to an
irregular pipeline and large control. Instead, the designer
associated a ‘valid’ bit with each sample as it was processed. The
data path and streams stayed constant, and simple local control
was employed to filter out the invalid data.

3.2 Architecture Mapping
The next task is to develop partitioning, schedules, and

processing assignments that keep the hardware resources busy and
bind the operations to the DPUs. This is a scheduling problem
that involves the fundamental algorithm, communication
latencies, and resource availability.
3.2.1 Pipelining

When mapping to the hardware, the pipelines delays can
cause an algorithm to have some dead cycles. Since the RCP is
user programmable, the designer can still make use of these cycles
for other data. One of the common approaches is to interleave
other data streams for the same or similar algorithm through the
datapath. Kirin Bondalapati shows in [3] the detailed analysis
and implementation of this technique.
3.2.2 Reconfiguration as Design Component

An aspect of design unique to the RCP is using
reconfiguration as a part of the algorithm implementation. The
UC Berkeley SCORE project under Prof. John Wawrzynek is
extensively researching this topic [4]. Chameleon has also done

some analysis on how this can effectively increase the hardware
utilization for wireless applications by reconfiguring the hardware
as part of the algorithm implementation.

For some frame-based applications, the frame requires
several distinct processing steps. For example, the 1250
microsecond power control group in the CDMA protocol employs
specific processing algorithms for code generation, demodulation,
searching for multi-path components, and searching for new users
attempting to access the system. Rather than having separate
processing units, Figure 5 shows how the RCP’s reconfigurability
allows the designer to create optimized data paths for each
processing stage of the power control cycle

PNGEN
77 µsec

DMOD
615 µsec

Finger Search
224 µsec

Access Search
334 µsec

One Power Control Group = 1250 µsec

Processing Fabric Reconfigured in One Clock Cycle

PNGEN
77 µsec

DMOD
615 µsec

Finger Search
224 µsec

Access Search
334 µsec

One Power Control Group = 1250 µsec

Processing Fabric Reconfigured in One Clock Cycle
Figure 5. Example Reconfiguration Timeline

Another design aspect for using reconfiguration is to vary the
algorithm depending on environmental considerations. For
example, if the weather is rainy the designer will want to include
more multi-path components in the demodulation algorithm.

The designer also has the ability to reprogram completely
different algorithms based on the traffic mix. If the algorithms are
similar enough to permit the board signal paths to be reused, the
RCP can provide rapid switching and upgrades in the field.

3.3 Comparison to Other Approaches
Several of the key design steps for the RCP are somewhat

similar to design methodologies used for DSP and ASICs.
However, there are some significant differences.
3.3.1 FPGA and ASIC Design

Generally speaking, ASIC and FPGA designers follow a
methodology very similar to the methodology for the RCP. The
major difference is that programming the RCP is completed when
the DPU and control functions are specified and mapped onto the
RCP. Using an FPGA or ASIC, the designer must continue to
refine the design with the micro architectural details until they
have a complete net list ready for synthesis, placement, and
routing. Then they must perform the actual layout floor planning,
timing closure, processor integration, and other steps to complete
the design. In addition, the ASIC and FPGA design tools deal
with much more complexity than the RCP tools need to, so their
run times tend to be measured in hours, whereas RCP tool
runtimes usually require a few minutes.

ASIC and FPGA providers are trying to simplify this latter
process, but in the end the designer is responsible for insuring that
the chip layout actually works. The RCP, in contrast, has all of
these issues solved before it is delivered to the designer.
3.3.2 DSP Design

For DSP programmers who use assembly language on VLIW
machines, the RCP design process can be similar. However, the
RCP offers much more parallelism and allows the designer to
specify the datapath and memory architecture for the particular
application.

The first step for assembly programmers is to design the data
flow. On a DSP, they partition the data set to fit into internal
memory and use the DMA or serial ports to move data in and out
of the chip. The RCP does have a DMA capability that can be
used in a similar fashion. However, for increased bandwidth on
the RCP, the designer can use the PIOs and structure the
algorithm so it follows a streaming dataflow model.

The next step for DSP assembly programming is to find the
best way to map to the parallel operations provided by the DSP’s
instruction set, and then modify the algorithm to better fit the DSP
architecture. Conversely, the RCP offers many more resources
that can be used in many different ways. For example, a TI C62
has two data paths, each with what might be considered to be
three DPUs, and a multiplier. The challenge for the DSP designer
using the RCP is to expand the amount of parallel operations to
take advantage of the over 100 processing elements on the RCP.

DSPs are basically sequential processors with a limited
amount of parallelism, so designers try to keep the pipelines full
with essential computations. In contrast, efficient use of the
RCP’s extensive parallelism requires that a steady dataflow be set
up and maintained. Thus, designers can sometimes implement
algorithms much more efficiently on the RCP by utilizing the
relatively abundant resource of DPUs to perform redundant
operations and speculatively compute results. If this extra
computing reduces branching, and therefore maintains a steady
dataflow, then the resulting implementation will be much faster
and more efficient than the corresponding DSP assembly code.

4. Design Tools
Chameleon design tools consist of tools to program the fabric and
tools for the embedded processor. The fabric tools are Chameleon
specific because of the unique nature of the fabric; the system
tools are based on industry-standard compiler and library
products.

4.1 Fabric Design
Fabric design methodology requires the designer to specify

the programming for individual DPUs, and then the tools map,
place, and route these processing elements onto the actual fabric.
The current tools are based on Verilog as a specification language
and a design methodology modeled after the general synthesis-
based methodology used for ASIC and FPGA-based designs.
Fabric design comprises four major steps:
� To design the data path, the designer inserts library

components that model the functionality of the DPUs. The
designer specifies the operations, shifting patterns and other
basic functional characteristics.

� The control is specified as a general Verilog state machine.
The tool takes the description and applies industry-standard
optimization and mapping techniques to program the control
resource.

� Place-and-routing software maps the DPU and the control
programming onto the actual RCP resources. Then the routing
software generates the programming for the interconnect
multiplexers. At the end of this phase, an actual bit stream for
RCP programming is emitted.

� If there are any failures in the synthesis process, the designer
uses floor-planning tools to set and update constraints on the
placement.

We are increasing the level of abstraction so this flow plugs
into higher-level tools such as MatLab. The general techniques
for scheduling and module generation are applicable for the RCP
and promise to make RCP programming much easier.

4.2 Embedded Processor Design
Chameleon uses the industry-standard GNU-based tool chain

to program the embedded processor subsystem. The generated
code targets the ARC and the peripherals available on the RCP.
Basic standard functions are provided, such as stdio, to allow
designers to prototype software on a host processor and then
migrate the software to the target ARC.

Chameleon provides a set of system libraries, called
eBIOS™, that run on the ARC to control the fabric. These
libraries enable the designer to load bit streams, initiate
processing, communicate status to the fabric, and control the rest
of the embedded processor system. The designer can use these
functions directly, or they can use a set of pragmas and a pragma
processor, whereby the fabric-based functions are invoked just
like regular C function calls.

Typical fabric control functions performed on the ARC
include initiating processing on the fabric, loading a configuration
in the background plane, switching between the active and
background planes, and scheduling the next fabric loads. Data
movements are performed by scheduling DMAs and loading data
into LSMs from the ARC. The designers also put command and
control processes on the ARC to interface to the host processor
for the system.

4.3 System Verification
To validate the design, the designer has the option of using a

software simulator that emulates the entire chip, or to load the
design onto an actual RCP that Chameleon provides on standard
PCI-based evaluation board. This latter capability is feasible
because the RCP is designed such that all storage elements are
visible to agent programs running on the ARC. This enables the
designer to actually evaluate the performance of the RCP with the
test data coming from the PC host.

4.4 C-Based Design
A C-based design language will play a part in design for

architecture like the RCP, but there are certain aspects that make
these undesirable as the only high-level entry mechanism. The
most significant is that the fundamental execution model of C is a
sequential machine. Algorithms coded in C tend to have the
parallelism obscured and use fixed size arrays.

By contrast, to extract the maximum capability from the
RCP, the data must stream through the system instead of being
processed in frames. This tends to map better to the reality of
actual embedded systems where data comes directly from
streaming devices such as antennae.

Control constructs such as loops obscure the inherent
parallelism in algorithms. Paradoxically, designers spend a
significant amount of design effort to code parallel algorithms
efficiently in C, which then requires a significant amount of effort
on the part of the compiler to reconstruct the original, parallel
algorithm.

There is certainly a role for C in the design of smaller blocks,
such as DPUs, where the language only deals with a few threads,
and in system modeling and test benches. However, as a design-
entry language for the system or algorithm description, there is

much more to be gained by using higher-level descriptions based
on dataflow or other inherently parallel semantics.

5. Performance Comparison
The RCP is currently implemented at 0.25 µm process with a

125 MHz clock. The core runs at 2.5V and the PIOs run at 3.3V.
We use this as the basis for comparison with other approaches.

5.1 DSP Processor
Generally, for a wide class of algorithms, the much greater

number of operators on the RCP allows the designer to take
advantage of task and instruction-level parallelism. In a DSP,
adding more processing units to the board or SOC, and then
managing the control of their integration can achieve more task-
level parallelism. The designer can increase instruction-level
parallelism in a DSP-based algorithm by adding more execution
units. However, these are alternatives that are only available with
an ASIC or FPGA methodology using a configurable core.

We compared the RCP implementation of several key kernels
to the equivalent function running on a TI TMS320C62-300
300MHz fixed-point processor. We used the TI data published on
the TI web site at [7].

Kiran Bondalapati performs a rigorous analysis in [3] of a
filter implementation on the RCP, on the TI DSP, and on other
sequential processors.

For a 24-tap FIR filter with 16-bit data, the Chameleon RCP
is able to compute 200 samples in 233 clock cycles—or 1.9 µs.
From the TI benchmarks, the equivalent processing takes 11.0 µs;
in this case the RCP is about 6 times faster.

For a 1024-point complex FFT or inverse FFT with 16-bit
real and 16-bit imaginary data, the RCP can process one block of
1024 samples in 5320 clock cycles, or 42.6 µs. However, the
RCP can hold 4 instances of this FFT running in parallel. If the
data streams are properly staggered, the RCP can output one block
of 1024 samples every 10 µs. From the TI benchmarks, the
equivalent processing takes 68.7 µs. Including the benefit of
pipelining on the RCP, the RCP is about 6 ½ times faster than the
TI DSP.

5.2 FPGA
FPGAs may have similar performance compared to an RCP

implementation. However, there can be a significant cost
difference. The RCP has a fixed micro architecture that can result
in fewer unused wires and routing channels compared to the much
more fine-grained architectures of FPGAs. This translates to a
major cost advantage for large signal processing designs mapped
to the RCP.

5.3 ASIC
ASICs generally provide the ultimate in performance since

they are custom designed for the application. However, ASICs
fail to satisfy the market’s critical time-to-market needs, and are,
by definition, unable to satisfy the need for greater flexibility.

Instantaneous reconfiguration enables the RCP to compete
cost-effectively with ASICs and FPGAs. For some algorithms,
the data must be sequentially processed in separate processing
units. The RCP can be reconfigured, thereby reusing the existing
hardware for a different algorithm or application. Figure 7 shows

how reconfiguration enables the re-use of hardware that might be
implemented as dedicated blocks on an ASIC or FPGA.

configuration

4
configuration

2

configuration

1

configuration

3

function

1

function

4

function

3

function

2

configuration

4
configuration

2

configuration

1

configuration

3

configuration

4
configuration

2

configuration

1

configuration

3

function

1

function

4

function

3

function

2
function

1

function

4

function

3

function

2

Figure 7. Reconfiguration versus Dedicated Hardware

6. Summary
Clearly, Chameleon’s RCP meets the increasing

computational demands of the wireless industry while providing
the programmability to enable equipment providers to update
deployed equipment with software programming. Validating the
concept of modular computing, the RCP architecture implements
an interconnected array of computational elements and memories
connected with a programmable interconnect.

Hopefully, our discussion of how algorithms are designed for
the RCP and where the design approach is different for
conventional programmable solutions has helped to establish a
clear case for reconfigurable solutions to today’s processing
requirements. These benefits are particular to solutions like the
RCP today, but we believe that the advent of large system chips
will require all applications to make these design considerations.

7. Acknowledgements
Jack Greenbaum, Kiran Bondalapati, and Mossadeq Mahmood all
contributed ideas and their review to this paper.

8. References
[1] Rabey, Jan, Embedded Tutorial, ASPDAC00, Yokohama,

January 2000

[2] Horowitz, Mark. Circuits and Interconnect in Aggressively
Scaled MOS, 37th Design Automation Conference, Anaheim,
California, June 2000

[3] Bondalapati, Kiran, Parallelizing DSP Nested Loops on
Reconfigurable Architectures using Data Context Switching,
38th Design Automation Conference, June 18-22, 2001, Las
Vegas, Nevada, USA.

[4] http://brass.cs.berkeley.edu/SCORE/
[5] http://www.ti.com/sc/docs/products/dsp/c6000/benchm

arks/62x.htm

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

