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Abstract 
Wireless communications requires a new approach to implement 
the algorithms for new standards.  The computational demands of 
these standards are outstripping the ability of traditional signal 
processors, and standards are changing too quickly for 
traditional hardware implementation.  In this paper we outline 
how reconfigurable processing can meet the needs for wireless 
base station design while providing the programmability to allow 
not just field upgrades as standards evolve, but also to adapt to 
much more dynamic factors in the environment such as traffic mix 
and the weather.  We outline how a designer works with the 
Chameleon reconfigurable processor from algorithm design to 
prototyping on a development module. 

1. Introduction 
System designers require new architectures to meet the signal 

processing demands for today’s wireless applications.  There are 
at least three design dilemmas driving this need for change:  the 
gap between what traditional processing architectures can provide 
and what wireless equipment needs for signal processing, the 
dynamics of wireless communication standards, and the realities 
of building large system on chip (SOC) solutions. 

Designers looking to extract transmission capacity from a 
relatively limited amount of spectrum are placing rapidly 
increasing demands on the required signal processing to support 
new standards.  Jan Rabey showed in [1] how the computing 
requirements for new standards are exceeding the forecast 
processing capacity available through semiconductor process 
improvements. 

Wireless communication standards evolve quickly and 
demands for new features and services within these standards 
arise much more rapidly than in the past.  This dynamic 
environment drives the equipment manufacturers towards 
programmable solutions that they can update in the field.  The 
ideal is a base station platform that service providers can deploy 
and then upgrade in the field with only software changes over its 
operational life. 

 

Mark Horowitz outlined in [2] the realities of CMOS process 
technology, pointing the direction for the use of specific 
architecture requirements that match process realities.  In his 
presentation, Horowitz shows how modular computers, arrays of 
computational elements with regular interconnect and localized 
programming, provide substantial value when implemented in the 
new technologies. 

Reconfigurable computing has gained significant attention of 
late as a commercially viable and available alternative to 
conventional processing schemes.  Chameleon’s Reconfigurable 
Communications Processor (RCP) architecture delivers an array 
of computational elements with a programmable interconnect.  
This allows designers to essentially create a custom-designed data 
path and memory structure for their application that they can 
instantly alter to implement the desired algorithm. 

This paper provides an overview of the Chameleon RCP, 
how designers use it, and its performance relative to other 
solutions.  Section 2 examines the major architecture features of 
the RCP. Section 3 shows how to structure algorithms to 
efficiently execute on the processor. Section 4 outlines the 
specifics of the design methodology to program the processor. 
Section 5 compares the performance of the processor to existing 
DSP, FPGA, and ASIC approaches. 
2. Chameleon Architecture 

 

Configuration
Subsystem

DMA
Subsystem

PCI
Controller

Memory
Controller

ARC
Processor

64-bit Memory Bus32-bit PCI Bus

160-pins Programmable I/O

128-bit RoadRunner Bus

Reconfigurable
Processing Fabric

 
Figure 1.  Chameleon RCP 
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The RCP architecture (Figure 1) comprises three major 
subsystems:  the Reconfigurable Processing Fabric (RPF) which 
contains the bulk of the computational elements, the 
programmable input and output (PIO) banks to stream the data 
through the fabric, and an embedded processor subsystem.  These 
system modules are linked with a high-performance 128-bit bus 
that provides the bandwidth to move data among them. 

2.1 Reconfigurable Processing Fabric 
The RPF consists of data processing units, local storage, and 

the interconnect structure among these elements.  The RPF’s 
architectural objective is to match the fast, distributed data 
processing with a fast, localized memory. Data are streamed into 
the local memories, processed, and streamed out. 

The RPF for the CS2112 is arranged in a hierarchy as shown 
in Figure 2.  The top-level of the RPF is divided into four slices, 
each of which can be reconfigured independently of the other 
slices.  Each slice is subdivided into three tiles, and each tile 
consists of seven 32-bit datapath units (DPU), two multipliers 
(MPU), four local-store memories (LSM), and a Control Logic 
Unit (CLU). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Reconfigurable Processing Fabric 

2.1.1 Processing Elements 
The DPU shown in Figure 3 is the fundamental 

computational element in the fabric.  It has a basic word length of 
32 bits, but has special operations that allow it to operate in SIMD 
fashion on four 8-bit data streams or two 16-bit data streams. 

The core of the DPU is the 32-bit Operator that performs 
arithmetic and logical operations.  Operations include ADD, 
ADD16 (two 16-bit additions performed in parallel), MAX, 
SADD (saturating addition), and so forth.  One branch of the 
operand data path contains a barrel shifter for performing shifting, 
word swapping, byte swapping, or word duplication on an 
operand.  All registers have conditional enables to allow 
pipelining and to allow the data in registers to be preserved 
between reconfigurations or initialized to constant values. 

The MPUs can perform 16x24-bit or 16x16-bit single-cycle 
multiplications.  The multipliers have a similar input and output 
configuration to the DPUs, but only perform multiplication. 
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Figure 3.  Datapath Unit 

2.1.2 Local-Store Memory 
The LSMs form the basic building blocks for the localized 

memory architecture.  Each LSM is a multi-ported, 32-bit by 128-
word RAM.  Through programming, LSMs can be assembled into 
different memory configurations to match the data stream they are 
capturing or sourcing.  For example, two LSMs can be 
programmed to form a wide-word memory structure providing 64-
bit by 128-word RAM, or the same two can be assembled to form 
32-bit by 256-word RAM.  Data in the LSM are retained during 
these configuration changes. 

A common use of this memory reconfigurability is to load 
the data very quickly with wide words and then process it through 
the DPUs and MPUs as narrower data.  For example, the designer 
can load the four LSMs in a tile as a 128-bit by 128-word RAM, 
and then reconfigure them into 16-bit buffers to feed DPUs for the 
actual signal processing. 
2.1.3 Control Logic 

Each DPU is programmed with eight user-definable 
instructions stored in the Instruction memory.  Each instruction 
specifies the complete configuration for the DPU.  This includes 
the input and output routing, shifting, masking, register enables, 
LSM read and write instructions, flag generation, and the DPU 
Operator.  So each instruction creates a custom datapath, data 
flow, and memory architecture for the particular operation. 

The Control Logic Unit (CLU) is shown in Figure 4.  The 
CLU directly implements a finite-state machine to select the DPU 
and MPU instructions stored in the instruction memory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Control Logic Unit Connection 
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The CLU consists of a PLA containing the next-state and 
combinational functions, state registers, and routing multiplexers.  
The PLA inputs come from state bits, the DPU flags, and control 
bits sent from CLUs in adjacent tiles.  The state bits are used to 
index the instruction memory to select the instruction for the DPU 
to perform.  The PLA also outputs control information to adjacent 
CLUs in other tiles.  The start and done bits are used by 
convention to initiate fabric processing and to signal when the 
processing is complete. 

2.2 Dynamic Interconnect 
The interconnection of DPUs consists of 32-bit data buses 

and individual control lines.  These busses do not have a signaling 
protocol; they are direct connections among the DPUs chosen for 
interconnection.  Nearby DPUs are connected to each other in a 
full crossbar connection.  More distant DPUs are connected with 
routing with a one-clock pipeline delay.  Routing multiplexers 
control the routing selection for the DPUs so the interconnect can 
change on a clock-by-clock basis to implement the optimal 
dataflow for the algorithm. 

2.3 Programmable I/O 
The RCP has four banks of 40 programmable input and output 
pins that provide the bandwidth for streaming data through the 
reconfigurable fabric.  The PIOs can clock at the system clock 
rate, providing a raw data bandwidth of about 2.0 Gbits/sec to 
enable high-speed, data-streaming applications. 

The PIOs can be programmed to interface to a variety of external 
data sources, including SRAM, A/D converters, and FPGAs. 

2.4 Embedded Processor Subsystem 
The embedded processor subsystem provides the components 

for a complete system, and provide the management for 
reconfiguring and streaming data for the fabric.  The processor is 
an ARC processor with minor changes to tailor it for wireless 
applications.  It has an 8K-instruction cache and an 8K-data 
memory.  The system also contains a 32-bit PCI interface, a 
DMA, and a 64-bit memory controller to interface to external 
SDRAM, SSRAM, and flash memories. 

A unique aspect of the RCP is that all storage elements in the 
fabric are mapped to the ARC address space for both reading and 
writing.  This enables the designer to use the ARC to control the 
fabric during processing, and gives the designer complete 
visibility into the fabric for system debug and bring up. 

2.5 Reconfiguration 
2.5.1 System Reconfiguration 

The reconfiguration system for the entire RCP consists of a 
configuration controller and two configuration planes.  The active 
configuration actually controls the fabric, and the background 
plane is used to hold another configuration. 

The controller can load a new configuration into the 
background plane while the fabric is running with the active plan.  
To program all four slices, less than 50,000 bits are required, so a 
new configuration can be loaded in less than 3 microseconds. 

The entire system can be reconfigured in one clock cycle by 
switching the data from the background plane to the active plane. 

Each slice in the RCP can be reconfigured independently, 
although most applications configure all four slices as a group.   

The reconfiguration changes the contents of the CLU, but 
data in the LSMs is retained.  Therefore, data can be stored in 
LSMs from one configuration to be used as input data in the next 
configuration. 

2.5.2 Instruction-Based Reconfiguration 
Since the DPUs and the Dynamic Interconnect are both 

completely specified in the instruction memory and controlled by 
the CLU, it is possible to have different configurations on a clock-
by-clock basis built into the programming.  Designers use this 
level of reconfiguration to fine-tune algorithms or switch to 
different processing based on data values. 

3. Design Methodology 
Chameleon’s RCP serves as a reconfigurable platform that 

enables customers to design, debug and deploy their proprietary 
algorithms.  Therefore, the design methodology and tools 
Chameleon provides to enable its customers to program the RCP 
are critically important for successful implementations. 

There are two key aspects of the Chameleon design 
methodology that are unique for the RCP.  The first requires the 
customer to consider the massive amount of parallelism and 
programmability that the RCP makes available to the designer.  
The second introduces the potential of effectively using the power 
of reconfiguration as an aspect of the design process.  These are 
totally new design parameters, but their effective utilization can 
greatly increase the capacity of the algorithms implemented on the 
RCP over traditional programmable approaches. 

The design process follows three basic steps.  The first is to 
define the data flow through the system, the second is to map the 
operations to the architecture elements, and the last is to enter the 
design into the RCP programming tools. 

3.1 Dataflow Design 
The designer first encounters the power and flexibility 

provided by the RCP architecture when designing the dataflow 
through an RCP-based.  Some traditional design constraints 
necessary on other programmable systems are relaxed when 
designing on the RCP.  The steps basically include establishing 
the data set size, structuring the parallelism in the algorithms, and 
determining the control needed to manage the data flow. 
3.1.1 Data Set 

The first step for the designer is to determine the data set size 
for the RCP.  The most effective method is to use streaming 
dataflow, i.e., to consider the input as an unbounded array of data 
to be processed.  The PIOs can be configured to directly load the 
data into the LSMs in the fabric and transfer the data out when the 
processing is complete.  Although streaming dataflow is the best 
match for the RCP, frame-based data sets also work well, with 
larger sets being more efficient. 
3.1.2 Parallelism 

The next step is to map the algorithm onto the array of 
DPUs.  The amount of computing resources and the flexibility for 
their connection allows the designer to design the optimal mix of 
task-level parallelism and instruction-level parallelism for the 
particular algorithm.  The designer is not constrained by fixed 
data paths or relatively small numbers of processing elements. 



The designer extracts the instruction-level parallelism to 
determine the number of operations that can execute in parallel 
for a particular processing task, such as FIR taps computed at the 
same time.  Task-level parallelism is extracted to determine 
processes that can execute in parallel.  Since these are both 
programmable, it is possible for the designer to develop several 
processes that run in parallel to execute in the same number of 
clock cycles, so they start and finish in unison. 

To effectively use the quantity and flexibility of the parallel 
operations available on the RCP, the designer generally 
approaches the algorithm design from a signal-flow graph or C 
code that is structured like a signal-flow graph.  This is best 
achieved by taking the original signal flow graph or dataflow 
specification of the algorithm from tools like Mathworks’ 
MatLab, Cadence’s VCC, or Synopsys’s Concentric System 
Studio. 

Because of the number of computational resources made 
available by the RCP, it is sometimes more efficient for the 
designer to compute results that are redundant or to speculatively 
compute results even if they may not be needed. For example, it 
may be more efficient to compute the same result in two different 
parts of the algorithm rather than trying to compute it once and 
then communicate the result to both places.  It can also be more 
efficient to compute both outcomes of a conditional computation 
and then select the result at the end. 
3.1.3 Control 

To minimize the disruption on the dataflow and processing 
pipelines, the design should reduce the amount of control and 
feedback.  Several designs have been done in which an inherently 
control-oriented algorithm was restructured to have a steady state 
of dataflow.  For example, one particular algorithm required the 
RCP to accept a data stream that contained irregularly spaced 
invalid data.  When the algorithm was implemented on a DSP, a 
simple conditional statement was used to exclude the invalid data 
from the data set.  Such an approach would have lead to an 
irregular pipeline and large control.  Instead, the designer 
associated a ‘valid’ bit with each sample as it was processed.  The 
data path and streams stayed constant, and simple local control 
was employed to filter out the invalid data. 

3.2 Architecture Mapping 
The next task is to develop partitioning, schedules, and 

processing assignments that keep the hardware resources busy and 
bind the operations to the DPUs.  This is a scheduling problem 
that involves the fundamental algorithm, communication 
latencies, and resource availability. 
3.2.1 Pipelining 

When mapping to the hardware, the pipelines delays can 
cause an algorithm to have some dead cycles.  Since the RCP is 
user programmable, the designer can still make use of these cycles 
for other data.  One of the common approaches is to interleave 
other data streams for the same or similar algorithm through the 
datapath.  Kirin Bondalapati shows in [3] the detailed analysis 
and implementation of this technique. 
3.2.2 Reconfiguration as Design Component 

An aspect of design unique to the RCP is using 
reconfiguration as a part of the algorithm implementation.  The 
UC Berkeley SCORE project under Prof. John Wawrzynek is 
extensively researching this topic [4].  Chameleon has also done 

some analysis on how this can effectively increase the hardware 
utilization for wireless applications by reconfiguring the hardware 
as part of the algorithm implementation. 

For some frame-based applications, the frame requires 
several distinct processing steps.  For example, the 1250 
microsecond power control group in the CDMA protocol employs 
specific processing algorithms for code generation, demodulation, 
searching for multi-path components, and searching for new users 
attempting to access the system.  Rather than having separate 
processing units, Figure 5 shows how the RCP’s reconfigurability 
allows the designer to create optimized data paths for each 
processing stage of the power control cycle 
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Figure 5.  Example Reconfiguration Timeline 

Another design aspect for using reconfiguration is to vary the 
algorithm depending on environmental considerations.  For 
example, if the weather is rainy the designer will want to include 
more multi-path components in the demodulation algorithm. 

The designer also has the ability to reprogram completely 
different algorithms based on the traffic mix.  If the algorithms are 
similar enough to permit the board signal paths to be reused, the 
RCP can provide rapid switching and upgrades in the field. 

3.3 Comparison to Other Approaches 
Several of the key design steps for the RCP are somewhat 

similar to design methodologies used for DSP and ASICs.  
However, there are some significant differences. 
3.3.1 FPGA and ASIC Design 

Generally speaking, ASIC and FPGA designers follow a 
methodology very similar to the methodology for the RCP.  The 
major difference is that programming the RCP is completed when 
the DPU and control functions are specified and mapped onto the 
RCP.  Using an FPGA or ASIC, the designer must continue to 
refine the design with the micro architectural details until they 
have a complete net list ready for synthesis, placement, and 
routing.  Then they must perform the actual layout floor planning, 
timing closure, processor integration, and other steps to complete 
the design.  In addition, the ASIC and FPGA design tools deal 
with much more complexity than the RCP tools need to, so their 
run times tend to be measured in hours, whereas RCP tool 
runtimes usually require a few minutes. 

ASIC and FPGA providers are trying to simplify this latter 
process, but in the end the designer is responsible for insuring that 
the chip layout actually works.  The RCP, in contrast, has all of 
these issues solved before it is delivered to the designer. 
3.3.2 DSP Design 

For DSP programmers who use assembly language on VLIW 
machines, the RCP design process can be similar.  However, the 
RCP offers much more parallelism and allows the designer to 
specify the datapath and memory architecture for the particular 
application. 



The first step for assembly programmers is to design the data 
flow.  On a DSP, they partition the data set to fit into internal 
memory and use the DMA or serial ports to move data in and out 
of the chip.  The RCP does have a DMA capability that can be 
used in a similar fashion.  However, for increased bandwidth on 
the RCP, the designer can use the PIOs and structure the 
algorithm so it follows a streaming dataflow model. 

The next step for DSP assembly programming is to find the 
best way to map to the parallel operations provided by the DSP’s 
instruction set, and then modify the algorithm to better fit the DSP 
architecture.  Conversely, the RCP offers many more resources 
that can be used in many different ways.  For example, a TI C62 
has two data paths, each with what might be considered to be 
three DPUs, and a multiplier.  The challenge for the DSP designer 
using the RCP is to expand the amount of parallel operations to 
take advantage of the over 100 processing elements on the RCP. 

DSPs are basically sequential processors with a limited 
amount of parallelism, so designers try to keep the pipelines full 
with essential computations.  In contrast, efficient use of the 
RCP’s extensive parallelism requires that a steady dataflow be set 
up and maintained.  Thus, designers can sometimes implement 
algorithms much more efficiently on the RCP by utilizing the 
relatively abundant resource of DPUs to perform redundant 
operations and speculatively compute results.  If this extra 
computing reduces branching, and therefore maintains a steady 
dataflow, then the resulting implementation will be much faster 
and more efficient than the corresponding DSP assembly code. 

4. Design Tools 
Chameleon design tools consist of tools to program the fabric and 
tools for the embedded processor.  The fabric tools are Chameleon 
specific because of the unique nature of the fabric; the system 
tools are based on industry-standard compiler and library 
products. 

4.1 Fabric Design 
Fabric design methodology requires the designer to specify 

the programming for individual DPUs, and then the tools map, 
place, and route these processing elements onto the actual fabric.  
The current tools are based on Verilog as a specification language 
and a design methodology modeled after the general synthesis-
based methodology used for ASIC and FPGA-based designs.  
Fabric design comprises four major steps: 
� To design the data path, the designer inserts library 

components that model the functionality of the DPUs.  The 
designer specifies the operations, shifting patterns and other 
basic functional characteristics. 

� The control is specified as a general Verilog state machine.  
The tool takes the description and applies industry-standard 
optimization and mapping techniques to program the control 
resource. 

� Place-and-routing software maps the DPU and the control 
programming onto the actual RCP resources.  Then the routing 
software generates the programming for the interconnect 
multiplexers.  At the end of this phase, an actual bit stream for 
RCP programming is emitted. 

� If there are any failures in the synthesis process, the designer 
uses floor-planning tools to set and update constraints on the 
placement. 

We are increasing the level of abstraction so this flow plugs 
into higher-level tools such as MatLab.  The general techniques 
for scheduling and module generation are applicable for the RCP 
and promise to make RCP programming much easier. 

4.2 Embedded Processor Design 
Chameleon uses the industry-standard GNU-based tool chain 

to program the embedded processor subsystem.  The generated 
code targets the ARC and the peripherals available on the RCP.  
Basic standard functions are provided, such as stdio, to allow 
designers to prototype software on a host processor and then 
migrate the software to the target ARC. 

Chameleon provides a set of system libraries, called 
eBIOS™, that run on the ARC to control the fabric.  These 
libraries enable the designer to load bit streams, initiate 
processing, communicate status to the fabric, and control the rest 
of the embedded processor system.  The designer can use these 
functions directly, or they can use a set of pragmas and a pragma 
processor, whereby the fabric-based functions are invoked just 
like regular C function calls.  

Typical fabric control functions performed on the ARC 
include initiating processing on the fabric, loading a configuration 
in the background plane, switching between the active and 
background planes, and scheduling the next fabric loads.  Data 
movements are performed by scheduling DMAs and loading data 
into LSMs from the ARC.  The designers also put command and 
control processes on the ARC to interface to the host processor 
for the system. 

4.3 System Verification 
To validate the design, the designer has the option of using a 

software simulator that emulates the entire chip, or to load the 
design onto an actual RCP that Chameleon provides on standard 
PCI-based evaluation board.  This latter capability is feasible 
because the RCP is designed such that all storage elements are 
visible to agent programs running on the ARC.  This enables the 
designer to actually evaluate the performance of the RCP with the 
test data coming from the PC host. 

4.4 C-Based Design 
A C-based design language will play a part in design for 

architecture like the RCP, but there are certain aspects that make 
these undesirable as the only high-level entry mechanism.  The 
most significant is that the fundamental execution model of C is a 
sequential machine.  Algorithms coded in C tend to have the 
parallelism obscured and use fixed size arrays.   

By contrast, to extract the maximum capability from the 
RCP, the data must stream through the system instead of being 
processed in frames.  This tends to map better to the reality of 
actual embedded systems where data comes directly from 
streaming devices such as antennae. 

Control constructs such as loops obscure the inherent 
parallelism in algorithms.  Paradoxically, designers spend a 
significant amount of design effort to code parallel algorithms 
efficiently in C, which then requires a significant amount of effort 
on the part of the compiler to reconstruct the original, parallel 
algorithm. 

There is certainly a role for C in the design of smaller blocks, 
such as DPUs, where the language only deals with a few threads, 
and in system modeling and test benches.  However, as a design-
entry language for the system or algorithm description, there is 



much more to be gained by using higher-level descriptions based 
on dataflow or other inherently parallel semantics. 

5. Performance Comparison 
The RCP is currently implemented at 0.25 µm process with a 

125 MHz clock.  The core runs at 2.5V and the PIOs run at 3.3V.  
We use this as the basis for comparison with other approaches. 

5.1 DSP Processor 
Generally, for a wide class of algorithms, the much greater 

number of operators on the RCP allows the designer to take 
advantage of task and instruction-level parallelism.  In a DSP, 
adding more processing units to the board or SOC, and then 
managing the control of their integration can achieve more task-
level parallelism.  The designer can increase instruction-level 
parallelism in a DSP-based algorithm by adding more execution 
units.  However, these are alternatives that are only available with 
an ASIC or FPGA methodology using a configurable core. 

We compared the RCP implementation of several key kernels 
to the equivalent function running on a TI TMS320C62-300 
300MHz fixed-point processor.  We used the TI data published on 
the TI web site at [7]. 

Kiran Bondalapati performs a rigorous analysis in [3] of a 
filter implementation on the RCP, on the TI DSP, and on other 
sequential processors. 

For a 24-tap FIR filter with 16-bit data, the Chameleon RCP 
is able to compute 200 samples in 233 clock cycles—or 1.9 µs.  
From the TI benchmarks, the equivalent processing takes 11.0 µs; 
in this case the RCP is about 6 times faster. 

For a 1024-point complex FFT or inverse FFT with 16-bit 
real and 16-bit imaginary data, the RCP can process one block of 
1024 samples in 5320 clock cycles, or 42.6 µs.  However, the 
RCP can hold 4 instances of this FFT running in parallel.  If the 
data streams are properly staggered, the RCP can output one block 
of 1024 samples every 10 µs.  From the TI benchmarks, the 
equivalent processing takes 68.7 µs.  Including the benefit of 
pipelining on the RCP, the RCP is about 6 ½ times faster than the 
TI DSP. 

5.2 FPGA 
FPGAs may have similar performance compared to an RCP 

implementation.  However, there can be a significant cost 
difference.  The RCP has a fixed micro architecture that can result 
in fewer unused wires and routing channels compared to the much 
more fine-grained architectures of FPGAs.  This translates to a 
major cost advantage for large signal processing designs mapped 
to the RCP. 

5.3 ASIC 
ASICs generally provide the ultimate in performance since 

they are custom designed for the application.  However, ASICs 
fail to satisfy the market’s critical time-to-market needs, and are, 
by definition, unable to satisfy the need for greater flexibility. 

Instantaneous reconfiguration enables the RCP to compete 
cost-effectively with ASICs and FPGAs.  For some algorithms, 
the data must be sequentially processed in separate processing 
units.  The RCP can be reconfigured, thereby reusing the existing 
hardware for a different algorithm or application.  Figure 7 shows 

how reconfiguration enables the re-use of hardware that might be 
implemented as dedicated blocks on an ASIC or FPGA. 
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Figure 7.  Reconfiguration versus Dedicated Hardware 

6. Summary 
Clearly, Chameleon’s RCP meets the increasing 

computational demands of the wireless industry while providing 
the programmability to enable equipment providers to update 
deployed equipment with software programming.  Validating the 
concept of modular computing, the RCP architecture implements 
an interconnected array of computational elements and memories 
connected with a programmable interconnect. 

Hopefully, our discussion of how algorithms are designed for 
the RCP and where the design approach is different for 
conventional programmable solutions has helped to establish a 
clear case for reconfigurable solutions to today’s processing 
requirements.  These benefits are particular to solutions like the 
RCP today, but we believe that the advent of large system chips 
will require all applications to make these design considerations. 
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