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ABSTRACT
Conventional scan-based designs spend a lot of testing time in 
shifting test patterns and output responses, which greatly increases 
the testing cost. In this paper, we propose a modified approach for 
scan-based design in which a test is conducted in every clock 
cycle. This approach may significantly reduce the test application 
time when appropriate test vectors are applied. We develop 
algorithms to generate efficient test input for the test environment, 
and experimental results show that we can achieve high fault 
coverage with only about 10%-30% of the clock cycles required 
in conventional scan-based design.
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1. INTRODUCTION
Scan-based design is a structural DFT that is widely used in 
industry. In a scan-based design, all or some of the registers in the 
circuit under test (CUT) are replaced by scan registers. Test 
generation becomes much easier in scan-based design. However, 
the overall test application time is not necessarily shorter, since 
we have to shift the vector into a serial scan path before a test is 
applied. The time for shifting can be enormous due to the larger 
number of internal flip-flops in a modern VLSI.

Many efforts have been devoted to reduce the test application time 
in scan-based design. Test application time in scan design is 
mainly affected by the number of shift operations, which depends 
on the number of required test vectors as well as the number of 
flip-flops in the scan chain. Therefore, test application time can be 
smaller by reducing the number of required test vectors, the 
number of shift operations, and the number of flip-flops in a scan 
chain. The size of a test vector set can be smaller by performing 
dynamic or static compaction [1]-[2] to merge compatible test 
vectors. Some shift operations can be eliminated if consecutive 
test vectors have patterns in common [3]. The number of scan 
flip-flops can be reduced with partial scan [4] or multiple scan 
chain [5]-[6].

We try to reduce test application time in scan-based design from a 
different perspective. Conventional scan-based test environment 
adopts a test-per-scan approach [7], in which a scan cycle is the 
number of clock cycles required to shift the vector into a serial 
scan chain or to shift the response out of the scan chain 
(whichever is larger), plus one or more normal mode clocks. Since 
a new bit is shifted into the scan chain every clock cycle, actually 
there is a new vector in each cycle. In test-per-scan approach, we 
cannot apply such intermediate vectors because an output 
response has to be scanned out first. However, if multiple input 
signature registers (MISR) are used to compress output response 
of a CUT (e.g. [6]), it will be possible to apply test-per-clock [7] 
strategy. We shall refer to this approach as the continuous scan
henceforth. Since a test is conducted in every clock cycle instead 
of a scan cycle, it is possible to greatly reduce the number of the 
test application time, if the input sequence is carefully selected.

In this paper, we present algorithms to generate efficient test set 
for continuous scan. We apply our methods to some ISCAS’85 
benchmark, and the results are promising. Experimental results 
show that our methods achieve a high fault coverage while at the 
same time reduce 70%-90% of the clock cycles used for scan.

2. PRELIMINARIES
In a scan-based design, an input or output to a CUT is a scan 
register, and all the scan registers are connected as a scan chain. 
In normal mode, the inputs are parallel loaded into scan register 
and passed to the module. In test mode, test vectors are shifted in 
from scan-in port and the output vector is shifted out of the scan-
out port after the results are stored in the registers. We can check 
if specific faults exist by observing the vector scanned out of the 
chip, after shifting the next test vector into the scan chain. 

In scan-based test environment, if the test vector is n-bit long, we 
need n cycles to scan in the test vector and then run the remaining 
test steps. For large n, the time for scanning is prohibitive.

Multiple input signature registers (MISR) are designed for 
signature analysis, which is a technique for data compression. 
MISRs efficiently map different input streams to different 
signatures with a very small probability of alias. MISRs are 
frequently implemented in built-in-self-test (BIST) designs, in 
which output responses are compressed by MISRs. In the test 
mode, a MISR accepts the test results from a module under test. If 
the module is faulty, the final signature stored in the MISR will be 
different from the signature generated from a faulty module. In 
this way, we can distinguish if the module under test is faulty.



3. CONTINUOUS SCAN
Our approach tries to make best use of any test patterns that 
present in the scan chain. In the conventional scan test, after one 
test pattern having been applied, we need to shift a new pattern 
into the scan chain. Whenever one bit is shifted into the scan 
chain, a new input pattern is formed. These intermediate patterns 
may be useful to detect faults in the module under test; however, 
such intermediate test patterns cannot be exploited under 
traditional scan-based test environment.

Our method works as follows. After the scan chain having shifted 
in one bit, the new vector is applied to the module under test. 
However, there must be a way to observe the output response to 
decide if the results are correct. To solve the problem, we need to 
make some modification to the conventional scan-base test 
environment. In the output side, it is easy to use a MISR to 
replace the scan chain. A similar architecture has been presented 
in [6].

The proposed test environment consists of two parts: the input 
part is a scan chain and the output part is a MISR. In the input 
part, the scan chain shifts one bit in every clock cycle to generate 
a new test pattern for the module under test. For primary inputs 
that are not fed by scan chain, the input vectors should be applied 
in every cycle. The outputs are sent to the MISR for analysis. An 
example of the test process is illustrated in Figure 1. After all test 
patterns having been applied, the content of the MISR is scanned 
out to check if the module is faulty.

To find an efficient test under this environment, the goal is to find 
the shortest test sequence, not the smallest test vector set. A 
simple test generation process may work as follows. First, the test 
vector set for the CUT has to be generated. Then, some algorithms 
are used to merge the test vector set to find out the test sequence. 
This process achieves at least the same fault coverage as provided 
by conventional scan-based test, while the test time is much less 
than the classical method. 

4. TEST GENERATION
In this section, we present our approach for test generation in 
continuous scan. We shall first discuss techniques used to 
compress a set of test vectors into a compact sequence. The test 
generation process is presented at the end of this section.

4.1 Compression -- Deterministic Vectors
When a combinational test vector has been generated for a given 
fault, normally there are some unspecified bits (or don’t-care bits) 
in the vector. These don’t-care bits are then assigned with 0’s and 
1’s. We shall refer to these vectors as deterministic vectors. Many 
compression algorithms for deterministic vectors can be found in 

the literature [3]. What a compression algorithm does is to put the 
test vectors in a list. Two vectors are adjacent in the list if they are 
closely related. The relation is defined as number of shift 
operations that can be eliminated should the two test vectors are 
adjacent. For example, let vector V1 be 110101, and V2 be 010111.
A complete scan process requires twelve shift operations for both 
vectors. However, when V1 has been placed in the scan chain, we 
only need to scan in two more bits, namely 11. The reason is that 
the bit-pattern ‘0101’ is a suffix of V1 and a prefix of V2. Thus, V1
and V2 can be overlapped to form a single test sequence 11010111, 
whose length is eight. Therefore, four shift operations are saved.

In the above example, actually two bit-patterns can be both a 
suffix of V1 and a prefix of V2 simultaneously, namely ‘01 
‘and’0101’. Since the goal is to minimize the length of final test 
sequence, we should always select the maximal bit-pattern. In this 
example, ‘0101’ is maximal, while ‘01’ is not.

Definition 1: Let S1 and S2 be two strings of bits. The overlapped
bit-pattern from S1 to S2 is the maximal bit-pattern that is both a 
suffix of S1 and a prefix of S2.

Definition 2: Let S1 and S2 be two strings of bits. The identical 
overlap from S1 to S2, which is denoted as OI(S1, S2), is the length 
of the overlapped bit-pattern from S1 to S2.

All the overlaps among the vectors in a test set can be represented 
by a complete direct graph G(V, E, W), where V, E, W are the set 
of vertices, edges, and weights on edges, respectively. A node in V
represents a vector in the test set. An edge (Vi, Vj) implies vector 
Vi followed by Vj, so the weight on the edge is OI(Vi, Vj). Figure 2 
shows a vector set and its graph representation.

Figure 2. The graph r epresentation of a test vector  set.

The problem of finding the shortest test sequence is thus reduced 
to searching for a maximum-cost Hamiltonian path. Such a 
problem can be solved with Kruskal’s algorithm, but a depth-first 
greedy algorithm usually works well in most case [3].

4.2 Compression Algor ithm I
It is easier to compress a set of incompletely specified vectors (i.e., 
those with don’t-care bits) than deterministic vectors. For example, 
let V1 be 1101x1 and V2 be 0x0111, and we try to concatenate V2
to V1. Since a don’t-care bit can be either a 0 or a 1, the best way 
to compress them is to set V1 = 110101 and V2 = 010111. In this 
case, the two vectors can be merged into a sequence of length 8. 
All other assignments create two vectors that cannot be merged, 
and thus the length of final sequence will be 12.

On the other hand, for a given circuit the size of a test set with 
deterministic test vectors is smaller than the set of vectors with 
don’t-care bits. The reason is that the number of faults detected by 
an incompletely specified vector is definitely smaller than that 
achieved by the same vector with don’t-care bits assigned.
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Figure 1. An example of continuous scan.



Definition 3: Consider two l-bit strings A(=a l−1… a1a0) and 
B(=bl−1… b1b0 ), where a i, bi ∈ {0,1,x} for all l−1 ≥ i ≥ 0. Strings 
A and B are said to be compatible if, for all l−1 ≥ i ≥ 0, one of the 
following is true: (1) a i = bi, (2) a i = x, or (3) bi = x.

Definition 4: Let S1 and S2 be two strings of bits. The overlapped 
compatible pattern from S1 to S2 is the maximal pattern that is 
compatible to a suffix of S1 and a prefix of S2.

Definition 5: Let S1 and S2 be two strings of bits. The compatible 
overlap from S1 to S2, which will be denoted as OC(S1, S2), is the 
length of the overlapped compatible pattern from S1 to S2.

Compression algorithms for deterministic vectors are not directly 
applicable here. The reason is that the compatibility will be 
changed if two strings are merged. Consider the set of 
incompletely specified vectors and its graphic representation 
shown in Figure 3. The weight on edge (Vi, Vj) is the compatible 
overlap OC(Vi, Vj). If we apply the depth-first greedy algorithm, 
the compressing order will be {V2, V3, V1}. The process works as 
follows. First V2, V3 are merged, and the resulting sequence is 
101011. Now the compatible overlap from the new sequence (i.e., 
101011) to V1 is 2 instead of 4, which is indicated in the graph. A 
better compressing order is {V1, V2, V3}.

Figure 3. Graph representation of a set with don’t-care bits.

Our first algorithm for the compression of vectors with don’t-care 
bits is a modified greedy algorithm in which two vectors are 
merged first if they have a larger compatible overlap.

Algor ithm 1: Greedy Search
Input: Test pattern set: T ( T = {T1, T2,…,Tn})
Output: Final test sequence: TS
Step I:

1. Randomly select a test pattern from T and assign it to TS.
2. T = T – {TS}

Step II:
1. Compute all OC(TS, Ti) , Ti ∈ T, i = 1,2,…,n 
2. Find the maximal OC(TS, Tj) 
3. TS←merge(TS, Tj)
4. T = T – {Tj}

Step III:
Repeat Step II until T = φ.

The complexity of the above algorithm is O(n2).

4.3 Compression Algor ithm II
It is difficult to decide the optimal compressing order for a set of 
vectors with don’t-care bits, as the compatible overlap between 
two vectors may change during the compressing process. A 
greedy algorithm may not work well in this case, as illustrated in 
Sec 4.2.

We propose a simple heuristic in this section. In the merging 
process, the test vectors with fewer don’t-care bits should be 
processed earlier. The reason is that a vector with more don’t-care 
bits can be efficiently merged with other vectors, but this 
advantage no longer exists once it is processed. The compression 
algorithm is outlined as follows.

Algor ithm 2: Ordering according to weight
Input: A sequence of n test patterns (T1, T2,…, Tn).
Output: A permutation (reordering) (T1, T2,…, Tn) of the input 

sequence such that W1≤W2≤…≤Wn

1. Sorting the test patterns to their number of don’t-care bits.
Ti : the i-th test pattern
Wi : the number of don’t-care bits in Ti

2. Merging the test patterns (T1, T2,…, Tn) in sequential order.

The complexity of this heuristic is O(nlogn), since the major 
operations is the sorting process in Step 1.

4.4 Test Generation Process
A naive way to generate a test sequence for continuous scan can 
be done as follows. First, we generate a combinational test vector 
set; and then apply a compressing algorithm to get the final test 
sequence. However, the test sequence obtained from this process 
is far from optimum. The reason is that many test vectors in the 
test set are not necessary in continuous scan. Consider a vector set 
{V1, V2, …, Vn}, in which each vector is of length l. Assume that 
the set can not be compressed for simplicity. To scan in the n
vectors, we need to apply l×n clock cycles. Therefore, in all there 
will be l×n−l+1 test vectors in the scan chain sequentially under 
test-per-clock strategy. In other words, there are (n−1)×(l−1) new 
vectors, which are also useful in fault detection. As a result, many 
test vectors in the original test set are no longer necessary.

We propose a two-step test generation process for continuous 
scan. In the first step, we generate a set of test vectors, in which 
10% of the vectors are selected. The selected vectors are 
compressed, and fault simulation is conducted on a test-per-clock 
basis. Most detectable faults will be marked as detected at this 
stage. In the second step, test vectors are generated for the 
remaining faults, and a compression algorithm is conducted again 
to get the final test sequence.

Since the test set used in the first step is relatively small, and in 
the second step we only generate tests for undetected faults, it is 
not likely that there are unnecessary vectors in the scan chain at 
any time. As a result, we can get a short test sequence. Besides, 
since the test sets in both steps are relatively small, the time 
required for the compression algorithm can be greatly reduced.

Procedure: Generate test sequence for continuous scan

1. Conduct ATPG to generate a set of completely specified
test patterns. Select 10% of the test patterns and compress 
them.

2. Conduct fault simulation with the sequence obtained in 
Step 1 and remove all detected faults from the fault list.

3. Conduct ATPG again for the remaining faults to obtain a 
set of incompletely specified test vectors.

4. Compress vectors obtained in Step 3 with Algorithm 1 or 
2.

5. Concatenate the sequences obtained in Step 2 and Step 4.
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5. EXPERIMENTAL RESULTS
We experiment the method discussed in Section 4 with 11 
ISCAS’85 benchmark circuits. These are the larger circuits in the 
benchmark suite. The statistics of the benchmarks are given in 
Table I. The circuit named M actually merges the first eight 
circuits (from C432 to C6288) into a single module, and a single 
input is used to support all scan chains [5]. In the Table, #PI/PO 
denotes the number of primary inputs and outputs, and #TP is the 
number of test patterns required under conventional scan test 
environment. The column under TPS indicates the number of 
clock cycles required for shift operations under test-per-scan 
approach. The columns under FC and TE indicate the fault 
coverage and test efficiency for each benchmark circuits. It can be 
seen that all non-redundant faults are detectable.

Table I: Benchmark Circuit Statistics

Circuits #PI/PO #Faults #TP TPS FC(%) TE(%)
C432 36/7 590 96 3456 93.22 100
C499 41/32 1238 119 4897 99.35 100
C880 60/26 1000 65 3900 100.00 100
C1355 41/32 1574 149 6109 99.49 100
C1908 33/25 1914 163 5379 99.58 100
C2670 233/140 2711 146 34018 95.76 100
C3540 50/22 3460 198 9900 96.18 100
C6288 32/32 7776 35 1120 99.56 100

M 233/439 25135 475 110675 98.38 100
Frg2 143/139 4550 209 29887 91.58 100

Apex6 135/99 1900 123 16605 100.00 100
Rot 135/107 2460 297 40095 95.53 100

We use a PODEM-based ATPG program, and both compression 
algorithms 1 and 2 are experimented. The results are given in 
Table II. The column under DFG gives the test sequence length 
for each circuit if depth-first search is used to compress 
deterministic test patterns. The columns under A1 and A2 indicate 
the number of clock cycles used in our method with compression 
algorithms 1 and 2, respectively. The fault coverage (FC) and test 
efficiency (TE) are shown again here for clarity. The last three 
columns compare the number of clock cycles required in each 
method to the number of clock cycles used in test-per-scan 
approach. It can be seen that in most cases the ratio is less than 
30% if our methods are used.

6. CONCLUSION AND FUTURE WORK
In this paper we present a test-per-clock approach for scan test 
environment, in which each clock cycle a new scan vector is 
formed in the scan chain. We propose a test generation framework, 
which requires scan test sequences that are much shorter than 
those generated by conventional approach. As a result, the test 
application time can be greatly reduced. We have presented two 
compression algorithms for vectors with don’t-care bits. Our 
experimental results show that these algorithms work well in 
practice.

The scan test methodology presented in this paper is designed for 
combinational circuit, and it is not directly applicable to 
sequential circuits in the present form. We are currently studying 
how to apply test-per-clock approach for sequential circuits, and 
try to develop efficient test generation algorithm for the new test 
framework.
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Table II: Test generation results

Name DFG A1 A2 FC (%) TE (%) DFG/TPS (%) A1/TPS (%) A2/TPS (%)
C432 2908 743 632 93.22 100 84.14 21.50 18.29
C499 4611 1343 1343 99.35 100 94.16 27.42 27.42
C880 3662 1266 1267 100.0 100 93.90 32.46 32.48

C1355 5566 1712 1697 99.49 100 91.17 28.02 27.78
C1908 4546 1399 2203 99.58 100 84.51 26.01 40.96
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