
Generating Efficient Tests for Continuous Scan
Sying-Jyan Wang and Sheng-Nan Chiou

Institute of Computer Science
National Chung-Hsing University

Taichung 402, Taiwan, ROC
+886-4-2840497

{sjwang, kboy}@cs.nchu.edu.tw

ABSTRACT
Conventional scan-based designs spend a lot of testing time in
shifting test patterns and output responses, which greatly increases
the testing cost. In this paper, we propose a modified approach for
scan-based design in which a test is conducted in every clock
cycle. This approach may significantly reduce the test application
time when appropriate test vectors are applied. We develop
algorithms to generate efficient test input for the test environment,
and experimental results show that we can achieve high fault
coverage with only about 10%-30% of the clock cycles required
in conventional scan-based design.

Keywords
Scan, DFT, Test Generation, Compression.

1. INTRODUCTION
Scan-based design is a structural DFT that is widely used in
industry. In a scan-based design, all or some of the registers in the
circuit under test (CUT) are replaced by scan registers. Test
generation becomes much easier in scan-based design. However,
the overall test application time is not necessarily shorter, since
we have to shift the vector into a serial scan path before a test is
applied. The time for shifting can be enormous due to the larger
number of internal flip-flops in a modern VLSI.

Many efforts have been devoted to reduce the test application time
in scan-based design. Test application time in scan design is
mainly affected by the number of shift operations, which depends
on the number of required test vectors as well as the number of
flip-flops in the scan chain. Therefore, test application time can be
smaller by reducing the number of required test vectors, the
number of shift operations, and the number of flip-flops in a scan
chain. The size of a test vector set can be smaller by performing
dynamic or static compaction [1]-[2] to merge compatible test
vectors. Some shift operations can be eliminated if consecutive
test vectors have patterns in common [3]. The number of scan
flip-flops can be reduced with partial scan [4] or multiple scan
chain [5]-[6].

We try to reduce test application time in scan-based design from a
different perspective. Conventional scan-based test environment
adopts a test-per-scan approach [7], in which a scan cycle is the
number of clock cycles required to shift the vector into a serial
scan chain or to shift the response out of the scan chain
(whichever is larger), plus one or more normal mode clocks. Since
a new bit is shifted into the scan chain every clock cycle, actually
there is a new vector in each cycle. In test-per-scan approach, we
cannot apply such intermediate vectors because an output
response has to be scanned out first. However, if multiple input
signature registers (MISR) are used to compress output response
of a CUT (e.g. [6]), it will be possible to apply test-per-clock [7]
strategy. We shall refer to this approach as the continuous scan
henceforth. Since a test is conducted in every clock cycle instead
of a scan cycle, it is possible to greatly reduce the number of the
test application time, if the input sequence is carefully selected.

In this paper, we present algorithms to generate efficient test set
for continuous scan. We apply our methods to some ISCAS’85
benchmark, and the results are promising. Experimental results
show that our methods achieve a high fault coverage while at the
same time reduce 70%-90% of the clock cycles used for scan.

2. PRELIMINARIES
In a scan-based design, an input or output to a CUT is a scan
register, and all the scan registers are connected as a scan chain.
In normal mode, the inputs are parallel loaded into scan register
and passed to the module. In test mode, test vectors are shifted in
from scan-in port and the output vector is shifted out of the scan-
out port after the results are stored in the registers. We can check
if specific faults exist by observing the vector scanned out of the
chip, after shifting the next test vector into the scan chain.

In scan-based test environment, if the test vector is n-bit long, we
need n cycles to scan in the test vector and then run the remaining
test steps. For large n, the time for scanning is prohibitive.

Multiple input signature registers (MISR) are designed for
signature analysis, which is a technique for data compression.
MISRs efficiently map different input streams to different
signatures with a very small probability of alias. MISRs are
frequently implemented in built-in-self-test (BIST) designs, in
which output responses are compressed by MISRs. In the test
mode, a MISR accepts the test results from a module under test. If
the module is faulty, the final signature stored in the MISR will be
different from the signature generated from a faulty module. In
this way, we can distinguish if the module under test is faulty.

3. CONTINUOUS SCAN
Our approach tries to make best use of any test patterns that
present in the scan chain. In the conventional scan test, after one
test pattern having been applied, we need to shift a new pattern
into the scan chain. Whenever one bit is shifted into the scan
chain, a new input pattern is formed. These intermediate patterns
may be useful to detect faults in the module under test; however,
such intermediate test patterns cannot be exploited under
traditional scan-based test environment.

Our method works as follows. After the scan chain having shifted
in one bit, the new vector is applied to the module under test.
However, there must be a way to observe the output response to
decide if the results are correct. To solve the problem, we need to
make some modification to the conventional scan-base test
environment. In the output side, it is easy to use a MISR to
replace the scan chain. A similar architecture has been presented
in [6].

The proposed test environment consists of two parts: the input
part is a scan chain and the output part is a MISR. In the input
part, the scan chain shifts one bit in every clock cycle to generate
a new test pattern for the module under test. For primary inputs
that are not fed by scan chain, the input vectors should be applied
in every cycle. The outputs are sent to the MISR for analysis. An
example of the test process is illustrated in Figure 1. After all test
patterns having been applied, the content of the MISR is scanned
out to check if the module is faulty.

To find an efficient test under this environment, the goal is to find
the shortest test sequence, not the smallest test vector set. A
simple test generation process may work as follows. First, the test
vector set for the CUT has to be generated. Then, some algorithms
are used to merge the test vector set to find out the test sequence.
This process achieves at least the same fault coverage as provided
by conventional scan-based test, while the test time is much less
than the classical method.

4. TEST GENERATION
In this section, we present our approach for test generation in
continuous scan. We shall first discuss techniques used to
compress a set of test vectors into a compact sequence. The test
generation process is presented at the end of this section.

4.1 Compression -- Deterministic Vectors
When a combinational test vector has been generated for a given
fault, normally there are some unspecified bits (or don’t-care bits)
in the vector. These don’t-care bits are then assigned with 0’s and
1’s. We shall refer to these vectors as deterministic vectors. Many
compression algorithms for deterministic vectors can be found in

the literature [3]. What a compression algorithm does is to put the
test vectors in a list. Two vectors are adjacent in the list if they are
closely related. The relation is defined as number of shift
operations that can be eliminated should the two test vectors are
adjacent. For example, let vector V1 be 110101, and V2 be 010111.
A complete scan process requires twelve shift operations for both
vectors. However, when V1 has been placed in the scan chain, we
only need to scan in two more bits, namely 11. The reason is that
the bit-pattern ‘0101’ is a suffix of V1 and a prefix of V2. Thus, V1
and V2 can be overlapped to form a single test sequence 11010111,
whose length is eight. Therefore, four shift operations are saved.

In the above example, actually two bit-patterns can be both a
suffix of V1 and a prefix of V2 simultaneously, namely ‘01
‘and’0101’. Since the goal is to minimize the length of final test
sequence, we should always select the maximal bit-pattern. In this
example, ‘0101’ is maximal, while ‘01’ is not.

Definition 1: Let S1 and S2 be two strings of bits. The overlapped
bit-pattern from S1 to S2 is the maximal bit-pattern that is both a
suffix of S1 and a prefix of S2.

Definition 2: Let S1 and S2 be two strings of bits. The identical
overlap from S1 to S2, which is denoted as OI(S1, S2), is the length
of the overlapped bit-pattern from S1 to S2.

All the overlaps among the vectors in a test set can be represented
by a complete direct graph G(V, E, W), where V, E, W are the set
of vertices, edges, and weights on edges, respectively. A node in V
represents a vector in the test set. An edge (Vi, Vj) implies vector
Vi followed by Vj, so the weight on the edge is OI(Vi, Vj). Figure 2
shows a vector set and its graph representation.

Figure 2. The graph r epresentation of a test vector set.

The problem of finding the shortest test sequence is thus reduced
to searching for a maximum-cost Hamiltonian path. Such a
problem can be solved with Kruskal’s algorithm, but a depth-first
greedy algorithm usually works well in most case [3].

4.2 Compression Algor ithm I
It is easier to compress a set of incompletely specified vectors (i.e.,
those with don’t-care bits) than deterministic vectors. For example,
let V1 be 1101x1 and V2 be 0x0111, and we try to concatenate V2
to V1. Since a don’t-care bit can be either a 0 or a 1, the best way
to compress them is to set V1 = 110101 and V2 = 010111. In this
case, the two vectors can be merged into a sequence of length 8.
All other assignments create two vectors that cannot be merged,
and thus the length of final sequence will be 12.

On the other hand, for a given circuit the size of a test set with
deterministic test vectors is smaller than the set of vectors with
don’t-care bits. The reason is that the number of faults detected by
an incompletely specified vector is definitely smaller than that
achieved by the same vector with don’t-care bits assigned.

1

2 5

3 4

V1 101010
V2 110000
V3 001011
V4 110110
V5 000001

0

0 1 1

0
2

2
2

2
1

1
1

1
1

4

1
MISR

CUT1

1 0 1 1 1 1 0 1 1 1
1

0 1 1 1 1 0 1 1 1 1
0

i-th cycle (i+1)-th cycle

(a)

CUT2

MISR

CUT1 CUT2

(b)

Figure 1. An example of continuous scan.

Definition 3: Consider two l-bit strings A(=a l−1… a1a0) and
B(=bl−1… b1b0), where a i, bi ∈ {0,1,x} for all l−1 ≥ i ≥ 0. Strings
A and B are said to be compatible if, for all l−1 ≥ i ≥ 0, one of the
following is true: (1) a i = bi, (2) a i = x, or (3) bi = x.

Definition 4: Let S1 and S2 be two strings of bits. The overlapped
compatible pattern from S1 to S2 is the maximal pattern that is
compatible to a suffix of S1 and a prefix of S2.

Definition 5: Let S1 and S2 be two strings of bits. The compatible
overlap from S1 to S2, which will be denoted as OC(S1, S2), is the
length of the overlapped compatible pattern from S1 to S2.

Compression algorithms for deterministic vectors are not directly
applicable here. The reason is that the compatibility will be
changed if two strings are merged. Consider the set of
incompletely specified vectors and its graphic representation
shown in Figure 3. The weight on edge (Vi, Vj) is the compatible
overlap OC(Vi, Vj). If we apply the depth-first greedy algorithm,
the compressing order will be {V2, V3, V1}. The process works as
follows. First V2, V3 are merged, and the resulting sequence is
101011. Now the compatible overlap from the new sequence (i.e.,
101011) to V1 is 2 instead of 4, which is indicated in the graph. A
better compressing order is {V1, V2, V3}.

Figure 3. Graph representation of a set with don’t-care bits.

Our first algorithm for the compression of vectors with don’t-care
bits is a modified greedy algorithm in which two vectors are
merged first if they have a larger compatible overlap.

Algor ithm 1: Greedy Search
Input: Test pattern set: T (T = {T1, T2,…,Tn})
Output: Final test sequence: TS
Step I:

1. Randomly select a test pattern from T and assign it to TS.
2. T = T – {TS}

Step II:
1. Compute all OC(TS, Ti) , Ti ∈ T, i = 1,2,…,n
2. Find the maximal OC(TS, Tj)
3. TS←merge(TS, Tj)
4. T = T – {Tj}

Step III:
Repeat Step II until T = φ.

The complexity of the above algorithm is O(n2).

4.3 Compression Algor ithm II
It is difficult to decide the optimal compressing order for a set of
vectors with don’t-care bits, as the compatible overlap between
two vectors may change during the compressing process. A
greedy algorithm may not work well in this case, as illustrated in
Sec 4.2.

We propose a simple heuristic in this section. In the merging
process, the test vectors with fewer don’t-care bits should be
processed earlier. The reason is that a vector with more don’t-care
bits can be efficiently merged with other vectors, but this
advantage no longer exists once it is processed. The compression
algorithm is outlined as follows.

Algor ithm 2: Ordering according to weight
Input: A sequence of n test patterns (T1, T2,…, Tn).
Output: A permutation (reordering) (T1, T2,…, Tn) of the input

sequence such that W1≤W2≤…≤Wn

1. Sorting the test patterns to their number of don’t-care bits.
Ti : the i-th test pattern
Wi : the number of don’t-care bits in Ti

2. Merging the test patterns (T1, T2,…, Tn) in sequential order.

The complexity of this heuristic is O(nlogn), since the major
operations is the sorting process in Step 1.

4.4 Test Generation Process
A naive way to generate a test sequence for continuous scan can
be done as follows. First, we generate a combinational test vector
set; and then apply a compressing algorithm to get the final test
sequence. However, the test sequence obtained from this process
is far from optimum. The reason is that many test vectors in the
test set are not necessary in continuous scan. Consider a vector set
{V1, V2, …, Vn}, in which each vector is of length l. Assume that
the set can not be compressed for simplicity. To scan in the n
vectors, we need to apply l×n clock cycles. Therefore, in all there
will be l×n−l+1 test vectors in the scan chain sequentially under
test-per-clock strategy. In other words, there are (n−1)×(l−1) new
vectors, which are also useful in fault detection. As a result, many
test vectors in the original test set are no longer necessary.

We propose a two-step test generation process for continuous
scan. In the first step, we generate a set of test vectors, in which
10% of the vectors are selected. The selected vectors are
compressed, and fault simulation is conducted on a test-per-clock
basis. Most detectable faults will be marked as detected at this
stage. In the second step, test vectors are generated for the
remaining faults, and a compression algorithm is conducted again
to get the final test sequence.

Since the test set used in the first step is relatively small, and in
the second step we only generate tests for undetected faults, it is
not likely that there are unnecessary vectors in the scan chain at
any time. As a result, we can get a short test sequence. Besides,
since the test sets in both steps are relatively small, the time
required for the compression algorithm can be greatly reduced.

Procedure: Generate test sequence for continuous scan

1. Conduct ATPG to generate a set of completely specified
test patterns. Select 10% of the test patterns and compress
them.

2. Conduct fault simulation with the sequence obtained in
Step 1 and remove all detected faults from the fault list.

3. Conduct ATPG again for the remaining faults to obtain a
set of incompletely specified test vectors.

4. Compress vectors obtained in Step 3 with Algorithm 1 or
2.

5. Concatenate the sequences obtained in Step 2 and Step 4.

1

2 3
6

6

3

2

4

3

V1 111101
V2 101011
V3 x0xxx1

5. EXPERIMENTAL RESULTS
We experiment the method discussed in Section 4 with 11
ISCAS’85 benchmark circuits. These are the larger circuits in the
benchmark suite. The statistics of the benchmarks are given in
Table I. The circuit named M actually merges the first eight
circuits (from C432 to C6288) into a single module, and a single
input is used to support all scan chains [5]. In the Table, #PI/PO
denotes the number of primary inputs and outputs, and #TP is the
number of test patterns required under conventional scan test
environment. The column under TPS indicates the number of
clock cycles required for shift operations under test-per-scan
approach. The columns under FC and TE indicate the fault
coverage and test efficiency for each benchmark circuits. It can be
seen that all non-redundant faults are detectable.

Table I: Benchmark Circuit Statistics

Circuits #PI/PO #Faults #TP TPS FC(%) TE(%)
C432 36/7 590 96 3456 93.22 100
C499 41/32 1238 119 4897 99.35 100
C880 60/26 1000 65 3900 100.00 100
C1355 41/32 1574 149 6109 99.49 100
C1908 33/25 1914 163 5379 99.58 100
C2670 233/140 2711 146 34018 95.76 100
C3540 50/22 3460 198 9900 96.18 100
C6288 32/32 7776 35 1120 99.56 100

M 233/439 25135 475 110675 98.38 100
Frg2 143/139 4550 209 29887 91.58 100

Apex6 135/99 1900 123 16605 100.00 100
Rot 135/107 2460 297 40095 95.53 100

We use a PODEM-based ATPG program, and both compression
algorithms 1 and 2 are experimented. The results are given in
Table II. The column under DFG gives the test sequence length
for each circuit if depth-first search is used to compress
deterministic test patterns. The columns under A1 and A2 indicate
the number of clock cycles used in our method with compression
algorithms 1 and 2, respectively. The fault coverage (FC) and test
efficiency (TE) are shown again here for clarity. The last three
columns compare the number of clock cycles required in each
method to the number of clock cycles used in test-per-scan
approach. It can be seen that in most cases the ratio is less than
30% if our methods are used.

6. CONCLUSION AND FUTURE WORK
In this paper we present a test-per-clock approach for scan test
environment, in which each clock cycle a new scan vector is
formed in the scan chain. We propose a test generation framework,
which requires scan test sequences that are much shorter than
those generated by conventional approach. As a result, the test
application time can be greatly reduced. We have presented two
compression algorithms for vectors with don’t-care bits. Our
experimental results show that these algorithms work well in
practice.

The scan test methodology presented in this paper is designed for
combinational circuit, and it is not directly applicable to
sequential circuits in the present form. We are currently studying
how to apply test-per-clock approach for sequential circuits, and
try to develop efficient test generation algorithm for the new test
framework.

7. REFERENCES
[1] B. Ayari and B. Kamin, “A new dynamic test vector

compaction for automatic test pattern generation,” IEEE
Trans. CAD, vol. 13, no. 3, pp. 353-358, Mar. 1994.

[2] J.-S. Chang and C.-S. Lin, “Test set compaction for
combinational circuits,” IEEE Trans. CAD, vol. 14, no. 11,
pp. 1370-1378, Nov. 1995.

[3] C. Su and K. Huang, “A serial scan test vector compression
methodology,” in Proc. Intl. Test Conf., pp. 981-988, 1993.

[4] K. T. Cheng and V. D. Agrwal, “A partial scan method for
sequential circuits with feedback,” IEEE Trans. Comput., vol.
39, pp. 544-548, Apr. 1990.

[5] S. Lee and K.G. Shin, “Design for test using partial parallel
scan,” IEEE Trans. Comput., vol. 39, pp. 203-211, 1990.

[6] K.-J. Lee , J.-J. Chen, and C.-H. Huang, “Using a single
input to support multiple scan chains,” in Proc. ICCAD, pp.
74-78, 1998.

[7] V.D. Agrawal, C.R. Kime, and K.K. Saluja, “A tutorial on
built-in self-test, part 2: applications,” IEEE D&T Computers,
69-77, June 1993.

Table II: Test generation results

Name DFG A1 A2 FC (%) TE (%) DFG/TPS (%) A1/TPS (%) A2/TPS (%)
C432 2908 743 632 93.22 100 84.14 21.50 18.29
C499 4611 1343 1343 99.35 100 94.16 27.42 27.42
C880 3662 1266 1267 100.0 100 93.90 32.46 32.48

C1355 5566 1712 1697 99.49 100 91.17 28.02 27.78
C1908 4546 1399 2203 99.58 100 84.51 26.01 40.96
C2670 33209 11373 9974 95.76 100 97.62 33.43 29.32
C3540 8687 1529 1562 96.18 100 87.75 15.44 15.78
C6288 805 128 128 99.56 100 71.88 11.43 11.43

M 107149 21400 18467 98.38 100 96.81 19.34 16.69
Frg2 28559 5534 5186 91.58 100 95.56 18.52 17.35

Apex6 15915 4120 3791 100.0 100 95.84 24.81 22.83
Rot 37971 6496 6126 95.53 100 94.70 16.20 15.28

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

