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ABSTRACT
A new technique for generating approximate symbolic expressions
for network functions in linear(ized) analog circuits is presented. It
is based on the compact determinant decision diagram (DDD) rep-
resentation of the circuit. An implementation of a term generation
algorithm is given and its performance is compared to a matroid-
based algorithm. Experimental results indicate that our approach is
the fastest reported algorithm so far for this application.

1. INTRODUCTION
The symbolic analysis of analog circuits has a long standing his-

tory [1, 2, 3]. Applications range from the calculation of symbolic
expressions of network functions to the simplified behavioral mod-
eling of the circuit in order to trade some accuracy loss for a sub-
stantial circuit simulation speed gain. From the designer’s point of
view, the symbolic expressions for the circuit’s network functions
are most interesting as they provide insight into many circuit char-
acteristics, especially if they are simplified so that they only contain
the dominant circuit parameters.

The purpose of linear symbolic analysis is thus to generate ex-
pressions in the form

H̃(s) =
∑k̃

0 ãi si

∑l̃
0 b̃ j s j

(1)

which approximate an exact network function

H(s) =
∑k

0 ai si

∑l
0 b j s j

(2)

with k̃ ≤ k, l̃ ≤ l and k and l the order of the numerator resp.
denominator. The approximation must be as compact as possible,
while respecting some error criteria:

g(H (s)) − 1g− ≤ g(H̃(s)) ≤ g(H (s)) + 1g+ (3)

with s = 2 jπ f for fmin ≤ f ≤ fmax . Typical error control
functionsg(·) are magnitudeAdb(·) = 20 log‖·‖ and phaseφ(·) =
6 ·.
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Figure 1: Illustrative Second-order RC circuit

Many tools have been developed for the automated generation
of symbolic network functions, which becomes very cumbersome
if not unfeasible to do by hand for increasing circuit sizes [3, 4,
5, 6, 7, 8, 9]. Most of these tools calculate the output of a given
circuit in a simplified form based on relative size information of
the circuit parameters. The resulting expressions are therefore only
valid within a limited range of design points.

In this paper we present an alternative to the expression–based
approach, based on an exact representation of determinants as a
graph or determinant decision diagram (DDD), a concept which
was introduced to the linear circuit analysis domain in [10, 11, 12].
Instead of calculating the circuit output explicitly, the Laplace ex-
pansion of the circuit matrix minor is modeled in a DDD, which
is discussed in section 2. This setup needs to be done only once
for a given circuit topology, and is similar to the MTDD–approach
followed in [12]. In section 3 we present an additional feature of
our approach: an efficient incremental term–generation algorithm.
This term–generation tool makes DDD’s a useful data structure for
approximative symbolic analysis, and a contender in the symbolic–
analysis field for the matroid–based approach, that is presented
a.o. in [13]. Section 4 gives a comparison of experimental results
for the DDD– based and matroid–based approached, and our new
approach turns out to be the fastest term generation algorithm at
present. Finally, conclusions are drawn in section 5.

2. DDD SETUP
The DDD representation used in this paper is based on the MNA

representation of the linearized circuit. For a circuit withn − m
nodes andm independent voltage sources, the circuit equations are
written as

Ỹ(n−1)×(n−1)Vn−1 = Ĩn−1 (4)

with Ỹ the modified admittance matrix,V the node voltage and
source current vector andĨ the input source vector containing inde-
pendent current and voltage sources.

For example, the circuit in Figure 1, which will be used for illus-
trating the presented algorithm, has the following MNA represen-
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Figure 2: Graph representation of a step in the Laplace expan-
sion

tation:
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 (5)

V = [
vin vout vt iVin

]T (6)

Ĩ = [
Vin 0 0 0

]T (7)

Starting from the circuit representation (4), any linearized net-
work function can be calculated by applying Kramer’s rule. This
rule states that every unknown variablev j of the node voltage vec-

tor V is the ratio of the determinants̃Y j andỸ , whereỸ j is derived

from Ỹ by substituting thej ’th column by the source vectorĨ . The
determinants themselves are calculated through Laplace expansion,
which is explained below. Two DDD’s are thus needed to represent
a network function.

The Laplace expansion of a determinantỸ along a column is
given by the expression

Ỹ =
n−1∑
i=0

(−1)i+ j ai j Ỹai j (8)

A similar expansion rule along a row is also possible, but we will
limit ourselves to expansion along columns without loss of gener-
ality. The minorsỸai j in equation (8) are also determinants and
can be further expanded using the same rule. Recursive application
would thus finally result in a flat expression forỸ containing only
the basic entries of̃Y.

Every expansion step described by equation (8) is graphically
represented as shown in Figure 2, where each vertex corresponds
to a minor and each edge to an entry of the admittance matrix. The
recursive application of rule (8) leads to a nested graphical repre-
sentation. When the Laplace expansion rule is executed recursively
on a determinant, one finally ends up with only 1×1 minors, which
evaluate to the only element they contain. For a translation to the
graph representation, one can think of an additional Laplace expan-
sion of the minor resulting in the value of the only element multi-
plied with a 0× 0 minor, which value must then evidently equal
1. In the graph representation this is modeled by terminating the
graph with a1–vertex.

There is one degree of freedom left in the ordering of the columns
during the Laplace expansion. Two logical approaches are thestatic
column selection scheme, in which the columns are ordered ac-
cording to sparsity prior to the first column expansion, and the
greedy column selection scheme, in which the most sparse column
is selected prior to each column expansion. Both column selec-
tion schemes have been implemented and evaluated, and it turns

x
x+y

y

Figure 3: Substitution of matrix entries by its components in a
DDD

out that the speedup of the greedy column selection always com-
pensated the small overhead involved. We therefore use the greedy
selection scheme for all examples shown in this paper.

Since the MNA circuit matrix is sparse in general, many entries
ai j in (8) equal 0, and the corresponding edges can be removed
from the graphical representation. This can lead to vertices other
than the 1–vertex with no outgoing edges. These vertices represent
zero minors and are removed from the graph in a bottom–up re-
cursivezero–suppressionstep. A slightly modified version of the
algorithm with linear complexity described in [14] is used to this
purpose. The zero–suppression leads to a compact graph, which
lowers the execution time of many of the algorithms described be-
low.

The DDD representation of the determinant is then obtained by
one further operation demonstrated in Figure 3: an entry of the
modified admittance matrix generally consists of a sum of compo-
nents, which are either the symbolic admittance of a circuit compo-
nent, an input source, or plus or minus one. In order to relate every
edge in the graph representation to a single circuit element, source
or constant, the entries are decomposed into their components, re-
sulting in parallel edges.

In order to represent a network function, a second DDD repre-
sentingỸ j is constructed using the same rule. It is easily spotted

that Ỹ j has many entries in common with̃Y . In order to maximize

the reuse of DDD vertices, we re–order the columns inỸ and Ỹ j
so thatj = 0 and start the Laplace expansion along the 1st column
(i.e. the column with index 0). The analyzed network function is
then given by the ratio of the expressions represented byDDD(Ỹ )

andDDD(Ỹ0).
For the example circuit of Figure 1, the DDD representation re-

sulting from the Laplace expansion of the numerator and denomi-
nator determinant and subsequent zero suppression is given in Fig-
ure 4. The conductances in Figure 4 are derived from the resis-
tances in Figure 1:G1 = 1/R1 andG2 = 1/R2.

3. TERM GENERATION ALGORITHM
In order to generate an approximate expression in the format (1)

from the exact DDD, some additional graph transformations are
needed. The terms for each coefficientãi and b̃ j are to be gener-
ated in order of decreasing magnitude, and the number of generated
terms per coefficient is controlled by an error control algorithm. An
overview of common error control techniques is given in [15], so
we will not go into the details here. A common characteristic of all
these algorithms is that individual terms need to be generated per
coefficient. DDD’s constructed as explained in section 2 represent
the numerator or denominator of a network function. A transforma-
tion of these DDD’s to a DDD-representation of all coefficients is
thus needed. The construction of theseElement-based Coefficient
Diagramsor ECD’s, which resemble the multi–terminal decision
diagram (MTDD) representation of [12], is explained below.
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Figure 4: DDD representation ofvout for the example circuit
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3.1 Setup of ECD representation
Before explaining the transformation algorithm, the following

definitions are needed:

DEFINITION 1 (EDGE OF ORDERq). A DDD edge whose value
is of the formK ∗ sq with K no function ofs, is called an edge of
order q.

DEFINITION 2 (SUBVERTEX OF ORDERm). A DDD vertex which
value is the coefficient ofsm of a given DDD vertex, is the subvertex
of orderm of the latter vertex.

The coefficient graphs are thus subvertices of the top vertex of
the original DDD. They are derived from the original DDD through
recursive application of thesubvertex construction rule: the subver-
texv∗

m of orderm of a given DDD vertexv∗ has the same edges as
v∗, with this difference that an edge of orderl points to the subver-
tex of orderm − l if the latter exists or is removed from the set of
edges otherwise.

The ECD’s for the denominator coefficients of the circuit in Fig-
ure 1 are shown in Figure 5. Note that the coefficient graphs are
overlapping, resulting in a relatively low number of subvertices.

The time and space complexity of the ECD’s is linear with the
size of the original DDD. Their construction can be executed by
applying the subvertex construction rule to each DDD vertex in a
bottom-up sequence.

3.2 Symbolic term generation
Given that the root vertices of the ECD represent the coefficients

ai and b j , we extract the dominant terms from each root vertex
using the following algorithms. Each ECD edge is assigned anext
term indexnti which is initialized to 0, and a cached next term
which is constructed with the algorithm given here in pseudo code:

Next-Available-Term(e) ::=
term = Get-Term(e.toVertex,e.nti );
if( term 6= No-Term) {

Update-Term(term,e) ;
incremente.nti ;
return(term);

}
else return(No-Term);

This requires in turn that a term can be requested of an ECD
vertex. The terms for a vertex are stored in agenerated-termslist
and are generated using the following set of algorithms:

Get-Term(v,index) ::=
while(not existsv.generated-terms[index]) {

term = Generate-Next-Term(v);
if( term == No-Term) {

return(No-Term) ;
}

}
return(v.generated-terms[index]) ;

Generate-Next-Term(v) ::=
if(v == One-Vertex

AND v.generated-termsis empty){
push(v.generated-terms, One-Term) ;

}
else{
START-SEARCH:

find em∈ v.outedgessuch that
∀ e∈ v.outedges:

| em.term | ≥ | e.term | ;
tm = em.term ;
if( tm == No-Term) {

return(No-Term) ;
}
else if(tm == Invalid-Term) {

Remove-Invalid-Path(em)
goto START-SEARCH

}
else{

push(v.generated-terms, tm) ;
return(tm) ;

}
}

The mutual recursion between these algorithms makes that we
descend the ECD with one edge at the time until we arrive at the
terminal vertex. By adding caching for generated terms that are not
immediately used toNext-Available-Term(which is not explicitly
shown in the pseudo code), only the terms generated along the fol-
lowed path need to be updated. Since the depth of the ECD equals
the depth of the original DDD, i.e.n, the generation of a single
symbolic term is of complexityO(n).
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Figure 6: Illustratory part of an ECD before restructuring

However, the generated terms are not always non–cancelling.
This is already the case for the small example circuit. A short in-
spection of its ECD (Figure 5) reveals that the termsG2

2 and−G2
2

will be generated for coefficientb0. The terms cancel out in the
final result, but they both need to be generated, which results in a
waste of memory and CPU time. This problem becomes serious
for large circuits, where those cancelling terms form a major part
of all generated terms, which severely slows down the generation
of non–cancelling terms.

The cancelling–terms problem however can be detected early, as
they always contain a square of a circuit element when using the
MNA circuit representation. We therefore mark a term as nonvalid
as soon as we find a square in the Update-Term() function invoked
from Next-Available-Term():

Update-Term(term,e) ::=
if(e is numeric){

multiply term.numcoeff with value(e) ;
}
else{ // e is symbolic

if( term contains symbol(e)) {
term = Invalid-Term ;

}
else{

add symbol(e) to term ;
}

}

In the following section we show a method that avoids the gen-
eration of most cancelling terms as soon as the above condition
pops up. The use of this method will thus reduce the complexity of
generating a non–cancelling symbolic term back toO(n).

3.3 Optimization of the ECD representation
The reason for the generation of the cancelling terms is that two

edges carrying the same symbol are present in a sequence of edges
(or subpath) of the ECD. Their presence renders each term corre-
sponding to a path containing the subpath as cancelling. So it is
only logical that when we find such a subpath running into a can-
celling term, we eliminate any further term generation along that
subpath.

It is however not possible to just remove the invalid subpath from
the ECD. This would also remove paths which hook into the sub-
path after the first invalidating edge or split of the subpath before
the last invalidating edge. In order to keep those paths, the ECD

s1

s2

Z

s2clone

A

s3

B

v12

E

s4

AC

v14

G

v15

H

v11

D

v13

FE

s3clone

B

CG

Figure 7: Illustratory part of an ECD after restructuring. The
subpath A-B-A has been removed.

vertices along the path and their outgoing edges need to be dupli-
cated, and some edges need to be reconnected or removed.

This is illustrated with the ECD part shown in Figure 6. The
ECD contains the invalid subpathA − B − A running from vertex
s1 overs2 ands3 to s4. The verticesv11 tov15 have been added
to illustrate the interaction with the rest of the ECD. Figure 7 shows
the same ECD part after restructuring. The subpath has been cut at
the 1st index and the cut edge (A) has been reconnected to a path
consisting of vertices cloned ofs2 ands3. s2clone and s3clone
have identical outedges ass2 ands3, except of course for theA-
edge ofs3clone, which has been removed. Comparison of these
two graphs reveals that they are identical, except for the pathA −
B − A − H which is no longer present in the restructured ECD.

The implementation of the restructuring algorithmRemove-Invalid-
Path, which is invoked fromNext-Available-Term, is not too diffi-
cult and therefore omitted here.

The ECD restructuring in itself is not a very CPU intensive task,
and does not need to be applied too often, as will be illustrated
by the experimental results in section 4. The overhead induced
by the restructurings is therefore negligible when compared to the
considerable speedup that is achieved for large circuits in this way.

4. EXPERIMENTAL RESULTS
The ECD–based symbolic term generation algorithm has been

implemented in C++ and evaluated on an Ultra–SPARC 30 work-
station. The results are shown in Table 1, and are compared to the
results of SADAMAC , a matroid–based term generation tool which
uses the algorithm described in [13]. The following symbols are
used in Table 1:

• n : the number of circuit nodes;

• b : the number of circuit branches (or small signal elements);

• S(·) : the setup time for a data structure [secs];

• V (·) : the number of vertices in a graph;

• T : the number of terms generated for this experiment;

• R : the number of ECD restructurings during term genera-
tion;

• T S : the term generation speed [terms/sec];

• T S∗ : the term generation speed achieved by SADAMAC

[terms/sec].



Table 1: Experimental results of the ECD-based term generation, compared to the matroid-based SADAMAC
Circuit n b S(DDD) V (DDD) S(ECD) V (ECD) T R T S T S∗

maze005 5 12 < 0.01 38 0.01 38 673 33 2493 15000
maze009 9 38 0.12 522 0.04 522 2002 27 1944 NA
maze013 13 80 3.42 8206 0.93 8206 2002 13 674 NA
maze017 17 138 92.59 131090 23.05 131090 2002 13 36 NA
ladder010 11 21 < 0.01 36 < 0.01 144 6280 88 2418 2631
ladder030 31 61 0.04 96 0.02 1024 28119 166 1555 63
ladder050 51 101 0.08 156 0.06 2704 48199 226 993 91
ladder070 71 141 0.18 216 0.12 5184 68279 286 679 85
highspeed 7 49 < 0.01 31 0.01 119 9359 41 2463 454

bicmos-miller 10 32 0.01 115 0.02 483 14894 1164 2092 346
bicmos-ota 16 69 0.27 1329 0.24 7223 31031 1885 1511 191

741 25 118 32.90 105206 28.41 912995 100 NA 25 10
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Figure 8: Comparison of the performance of ECD-based and
matroid-based symbolic term generation

Table 1 includes results for

• maze circuits, which are networks with an impedance be-
tween each pair of nodes;

• RC ladder circuits, like the illustrative circuit ladder002 in
Figure 1. These circuits have tridiagonal matrices, which
renders the DDD setup a linear function ofn as is explained
in [11];

• and opamp–like circuits of increasing complexity.

Note that for some maze circuits, SADAMAC did not generate
any results. Term generation was limited to a fixed number of terms
per coefficient, with an exception for the complex 741 circuit, for
which only a few coefficients were generated.

Note also that the setup time of the DDD and ECD graphs is very
large in comparison with the time needed to generate a term. This
is explained by the fact that the DDD setup time is proportional
to the number of minors and thus has complexityO(n!), while the
term generation time is proportional to the depth of the ECD, which
equalsn. For a performance evaluation of a typical symbolic term
generation which is limited to a few thousand terms, one must thus
take into accountS(DDD) andS(ECD) as well asT S.

In order to compare the ECD–based and matroid-based symbolic
term generation methods, the total generation times for 1000 terms
including setup overhead are plotted in Figure 8. SADAMAC per-
forms horribly on the maze circuits — it even does not generate
any results for maze circuits with more than 8 nodes — while our
approach generates results in a reasonable time up to a maze circuit

with 17 nodes. Our approach also makes better use of the intrin-
sic linear complexity of the ladder circuit, performing a factor of 10
better on ladder circuits with over 20 nodes. For the opamp circuits,
our approach is a factor of 4 faster than SADAMAC , with the excep-
tion of the 741 circuit where the performance is only equal due to
the DDD setup time. Keep in mind however that the overhead per
term decreases drastically when more terms need to be generated,
which is likely to be the case for the 741 circuit.

It is thus striking that our approach outperforms SADAMAC , while
the intrinsic DDD setup complexity ofO(n!) is larger than the in
[13] reported complexity for generating a term using the matroid-
based algorithm, which isO(K bn3). This is not caused by the
sparsity of the used circuits — our experiments have shown that
this reduces the ECD complexity only slightly — but by an in-
trinsic deficiency of the matroid based approach. The 3–matroid
intersections are found by generating the elements of a 2–matroid
intersection and checking whether they are also an element of the
third matroid. The acceptance ratio of this final test can be small,
which renders the matroid–based algorithm less efficient.

It can therefore be concluded that our algorithm is the most effi-
cient symbolic term generation algorithm presented so far.

5. CONCLUSIONS
A new term generation technique for linear symbolic analysis

based on the determinant decision diagram (DDD) data structure
has been presented. The DDD representation has the advantage that
several manipulations are of complexity proportional to the depth
or size of the DDD. A cancellation–free per–coefficient symbolic
term generation algorithm that employs the low DDD manipula-
tion complexity has been implemented. Experimental results indi-
cate that this algorithm performs better than the fastest matroid–
based algorithm reported previously, which indicates that DDD-
based term generation is possibly the best solution in the field of
linear(ized) symbolic analysis of analog circuits.
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