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ABSTRACT

An analytic approach is presented for estimating the non-
linearity of an analog to digital converter (ADC) as a func-
tion of the variations in the circuit devices. The approach
is demonstrated for the case of a pipeline ADC with digi-
tal error correction. Under some mild assumptions on the
expected variations, the error probability is expressed as a
simple explicit function of the standard deviations in the
components’ parameters: gain errors, comparator offset er-
rors and resistor errors. The analytical expression is verified
for Integral Non Linearity (INL), and its limits are stud-
ied using Monte-Carlo simulations of a 10 bit pipeline ADC
structure.

1. INTRODUCTION

Analog to digital converter (ADC) is typically character-
ized by its resolution (number of bits), sampling frequency,
power dissipation and its linearity parameters such as inte-
gral nonlinearity (INL) and differential nonlinearity (DNL).
The linearity parameters are determined by the analog er-
rors in various ADC components. A major challenge in ADC
design is therefore to estimate the contribution of those indi-
vidual errors to the overall ADC linearity parameters. Such
a statistical estimation is important in order to find the more
critical sources of error and design accordingly, thus avoiding
over-design and improving resource allocation in the design
process. This estimation can be achieved by time consum-
ing Monte-Carlo simulations of the whole ADC structure in
which the parameters of various components are drawn ac-
cording to process variations and other error sources. How-
ever, analytic expressions for the various linearity parame-
ters lead to a better insight into the main error mechanisms
and speed up the design process.

Several methods have been proposed for calculating lin-
earity parameters in various cases. A general method was
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presented [7] for yield calculation due to process variation,
based on extensive Monte-Carlo simulations. Expressions
have been derived [4] for the error in current steering DAC
as a function of device mismatch. Error models have also
been presented [2] for various ADC architectures: integrat-
ing, successive approximation and flash, based on polyno-
mial expansion of nonlinearity parameters, fitted to exper-
imental data. Several expressions were derived [10] for the
dependence of the effective number of bits on individual
component variations for the case of a flash ADC. High-level
expressions are derived in [4] based on sensitivity analysis
of the low-level components, obtained from extensive simu-
lations. Another general approach, presented in [5] and [6],
is to use a variance-covariance matrix to represent the non-
linearity parameters and their correlations, fitted to exper-
imental data. In this paper we develop a simple analytical
expression which describes the distribution of the integral
nonlinearity error of a whole pipeline ADC as a function of
the statistical errors in its components. Due to its simplic-
ity, our approach may be a useful analysis tool in the ADC
designer’s toolbox.

Roughly speaking, our method works as follows. Based on
a behavioral model of an ADC system, we first identify the
possible sources of error, then partition and sum them up
into groups with minimal statistical dependence, and finally
analyze the contribution of each group to the total linear-
ity error. This procedure can be repeated in course of the
design process, taking advantage of the knowledge accumu-
lated about the error magnitude in each group. In this pa-
per we demonstrate the method for an N bit pipeline ADC
architecture. This architecture (for N = 10) is sketched in
Fig. 1, where each stage produces two bitlines (using a three
output codes sub-ADC), subtracts this value from its input
(using a Digital-to-Analog Converter (DAC)), and amplifies
the resulting analog residue by two. The 2z gain is usu-
ally provided by a switched capacitor amplifier, which also
provides the sample-and-hold (=analog latch) between the
stages, therefore allowing concurrent processing. The code
redundancy is used for digital error correction, in which the
resulting 18 bitlines are combined by an error correcting
logic (usually a synchronized adder) to yield 10 bits at the
output of the ADC. This architecture has been shown to
achieve high throughput at low power (e.g. [1], [9]). The
digital error correction relaxes the constraints on compara-
tor offset voltages considerably, but does not correct gain er-
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Figure 1: Pipeline architecture for a 10 bit ADC.
Each stage produces two bitlines representing a dig-
ital code from {0, 1,2}. The data redundancy is used
for digital error-correction.

rors and internal DAC reference errors, as will be discussed
in the sequel. The effect of this error correction is included
both in our Monte-Carlo simulations and in the analytical
stochastic model given below.

The paper is structured as follows. In section 2 we discuss
the pipeline structure, including the error correction circuit,
and calculate the distribution of the INL, given the standard
deviations in the components’ errors. Then in section 3 we
present the Monte-Carlo simulations that were performed to
verify the claims of the analytical stochastic study.

2. STOCHASTIC ERROR ANALYSIS

In this section we develop an analytical expression for the
distribution of the INL error and the average INL value, as
function of the errors in the ADC components. In order to
enable analytical stochastic calculation of this nonlinearity,
a few assumptions must be made about the ADC system
and its operating conditions.

2.1 Basicassumptions

The first fundamental assumption is that the system al-
lows for a small error analysis, meaning that the overall
error of the ADC, referred to its input, is within the limits
of a single LSB unit. This assumption is justified by the fact
that several commercially available CMOS pipeline ADC’s
are capable of maximal INL and DNL values which are less
than one LSB. Under small error conditions the ADC can be
regarded as an approximately linear system, allowing for a
superposition of the errors. Small error analysis is therefore
similar to small signal analysis, which regards a non linear
system as linear one under small signal conditions around a
given operating point.

The second assumption of our calculation is that the sources
of error in the ADC can be divided into a small number of
groups such that the total contribution of each group can
be approximated by a Gaussian distribution, centered at
the nominal value, whose standard deviation represents the
group (as in [5] and [6]). In the specific derivation presented
below for INL we also assume that the groups are statis-
tically independent, but this assumption can be relaxed in
the general case, as will be explained in section 2.6 below.
Within each group the errors can generally be statistically
dependent, and we shall treat this dependency by dividing

the error into correlated and uncorrelated parts, and per-
forming a different calculation for each part. for the case of
a pipeline ADC, we define the following three error groups.

1. Comparator offset voltage errors (ov,) in the flash
ADC of each stage

2. Errors in the internal reference voltages (ovy)
3. Gain errors (o¢) in the amplifier of each stage.

Since the errors in different groups are mainly determined
by different physical mechanisms, it is reasonable to assume,
as a first approximation, that the groups are statistically in-
dependent. Note that the choice of the groups affects the
details of the calculation, but not the basic methodology.
Each of the three types of errors defined above is the com-
bined result of two physical effects: noise, which includes
charge injection noise in analog switches, thermal noise, shot
noise, flicker noise, and noise coupled from digital circuitry
(via crosstalk or substrate), and technology parameter vari-
ation, e.g. device mismatch. Noise can cause the same die
to behave differently even if the same inputs are applied,
while process variations cause different dies to have differ-
ent behavior. The error coefficients ov,,ov, and oc are
calculated either by direct Monte-Carlo simulations of the
corresponding building blocks, or, in case of a large build-
ing block, by dividing the block into smaller sub-blocks and
recursively applying the same approach.

2.2 TheINL and its distrib ution

In Fig. 2 (a) we see a typical transfer curve of an ADC
converter which shows the output code as a function of
the input continuous analog value. Two transfer curves are
shown: The first is an ideal transfer curve which describes an
ADC with no errors. The second curve is an actual transfer
curve of the investigated ADC. The equivalent error at the
ADC input is given by the following Gaussian distribution:

o) o (- 1)%/(26?) »

x(r) = ——F—— 1
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where the variable  measures the horizontal shift between

the actual and the ideal transfer curves for a specific code.

The single most important parameter for this analysis in the

distribution given by Eq. 1 is the statistical deviation o.

2.3 Pipeline stageand error groups

We first look at a simplified, one-bit-per-stage pipeline
structure without error correction, which contains N iden-
tical stages of the kind sketched in Fig. 3. The comparator
(comp) is the internal one bit sub-ADC of this stage. The
two resistors R and the switch SW1 form an internal one
bit DAC. When the clock is low, the analog switch SW2
is connected to the input voltage V; and the analog switch
SW 3 is shorted. At this condition the input capacitor 2C
samples the input voltage. When the clock is high again,
the analog switch SW3 is opened and SW2 is connected to
the DAC reference voltage Vp. This last action transfers
the charge 2C(V; — Vp) from the capacitor 2C directly to
the capacitor C, which gives a 2X amplified analog output
Vo = 2(V; — Vp). Labeled in Fig. 3 are the three error
groups as they appear in this stage. The comparator offset
(ov, ) group is marked at the input to the comparator block
and includes offset caused by either component mismatch,
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Figure 2: A typical transfer curve of an ADC con-

verter, showing the INL as a horizontal deviation of

code transition (a), and the error probability distri-
bution function, highlighted in gray (b).
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Figure 3: A simplified circuit of a stage in a one-bit-
per-stage pipeline.

self heating effects, hysteresis or noise. The second error
group includes reference voltage (ovy) errors caused by re-
sistor ladder variations and noise, as well as to errors in the
switch SW1 which are mainly due to charge injection in the
CMOS transmission gate. This second error group has a
double effect: It affects the reference voltage for the com-
parator marked as Vg and the reference voltage for the 2X
amplifier marked as Vp. The third error group includes all
the errors of the switched capacitor amplifying circuit, in-
cluding technology variations in the 2C/C capacitor ratio,
thermal KT/C noise, charge injection in SW2 and SW3,
finite gain and offset of the operational amplifier (amp).

2.4 Error paths

In order to be able to interpret the ADC as a linear sys-
tem, let us connect (conceptually) in parallel to the two
inputs of each of the NV comparators of the pipeline ADC an
ideal linear differential amplifier with a unity gain and a non
zero offset, which is equal to the offset of the corresponding
actual comparator connected in parallel. This additional
differential amplifier will serve as a conceptual analog er-
ror probing device. The output of such an ideal amplifier
in volts is always equal to the voltage difference between
its two inputs minus the offset voltage. The total system
with one analog input of the ADC and N analog outputs of
the probing amplifiers, is a linear system if the analog input
value to the ADC corresponds to a central point in an out-
put code in the ideal transfer curve shown in Fig. 2 , and
the overall error of the ADC equivalent to its input is less
than 0.5 LSB. This last condition is equivalent to the con-
dition that the output code is correct for this analog input
voltage. Around this operating point, small error analysis
can be applied in order to calculate the statistical linearity
parameters of the pipeline ADC. This is the exact meaning
of the above defined “small error condition”. Let us pro-
ceed by choosing at random only one of the output bits of
the ADC, denoted as the ¢th bit (1 <7 < N). We assume
that the analog input value corresponds to a central point
in a valid output code in the ideal transfer curve shown in
Fig. 2, and that the small error condition prevails. We now
regard the analog input of the ADC and the output of the
probing amplifier of the ith stage as the input and output
of a simple linear equivalent amplifier, which will be termed
the “ith equivalent amplifier”. If the ADC has errors, then
the output of this ith equivalent amplifier deviates from the
definite value of this output at zero errors. The deviation in
the output of the ith equivalent amplifier is a measure of the
overall error of the ADC on the path from the input to the
ith output. In general there are N error paths of this kind
in the ADC. To calculate the overall error of the ¢ path, we
consider it as caused by noise, and calculate the equivalent
of ith error path at the input of the ADC, in the same way
used to calculate the equivalent noise source at the input of
a conventional noisy linear amplifier. First we calculate the
contribution of each of the three error groups to the over-
all error, and then add these contributions, based on our
assumption that the groups are statistically independent.

2.5 Error groups

251 Comparator offset error group

On the error path from the analog input to the ith bit
output, there is only one comparator at the ith stage. If the



standard deviation in the offset error of this comparator is a
oV, then the resulting standard deviation of the equivalent
error at the input of the sth equivalent amplifier, E. is given
by Eq. 2:

. oy
Bi=2 (2)
This result follows since the analog gain along the ith error
path is 2°71.

25.2 Reference voltage error group

On the ith error path the relevant influence of the refer-
ence voltage error is as DAC reference errors (Vp) in stages
1,2,...,7—1, and as comparator reference error (Vg) in the
ith stage.

Each stage amplifies the previous DAC reference error by
two, and then adds its own error. This process leads to
an arithmetic-geometric series which gives e;, the standard
deviation in the analog output (V5 in Fig. 3) of the ith stage
as a function of the DAC reference voltage error ov,,:

er = 20vp,
e = 2e1+ 20’VD = 3e;
e3 = 2e2+e1="Ter
eic1 = e(27 —1) =20, (2" 1 —1).

This simple addition of standard deviations is possible be-
cause the reference voltage errors come from the same source
and are therefore fully correlated. By adding the compara-
tor reference error ovy in the ith stage, we further get the
equivalent error at the input

; 20v, (27— 1) +ov,

Egr = 51 ~2(1—-2"ove, (3)

i Ovp ~ OVpgp .
assuming that ov, = ovy

253 Gain error group

Here we have to distinguish between correlated and un-
correlated errors. A consistent technology variation across
the chip may result in a consistent error in the gains of all
stages, while random variations lead to statistically indepen-
dent gain errors. Since both cases are possible we perform
the two calculations, thus enabling the calculation of the
“mixed” correlated-uncorrelated case. An important fea-
ture of the gain error in both cases is that its magnitude
depends on the output digital code of the ADC. We start
by the calculation of the fully correlated case, which is also
the worst case for overall gain error. In terms of a single
pipeline stage, the maximal error at the analog output V,
(see Fig. 3) is obtained when the analog output of the stage
approaches its maximal voltage value, V42, since the gain
amplifies the input signal V; to yield the output analog signal
Vo. The overall maximal gain error is obtained for the ADC
output codes (111...1) or (011...1), in which the analog
output of all stages is maximal. As before, let us denote by
e; the error in the ith analog output (V, in Fig. 3). e; is the
error in the analog output of the first pipeline stage, which is
equal to 2V o /100 (in LSB units), where o is the gain er-
ror in percents, provided that the analog output of this first
stage V, is approaching Vinez. The following error e is ob-
tained by multiplying the previous error by the gain of two
and adding the error of the second stage amplifier, which is

also assumed to have its worst case value corresponding to a
maximal analog output. This leads again to an arithmetic-
geometric series for the fully correlated accumulating gain
errors, as expressed by Eq. 4:

— oNIG
e 100
ea = 2e1+er
es = 2e2+er
. = 9oNUOG gi-1 _ 4y 4
ei—1 100( ) (4)

Hence the input equivalent of the overall error in the % error
path due to fully correlated gain errors, denoted by E&, is
given by
i N OG 1—¢

B =2 28127, (5)
Let us now turn to the case of statistically independent gain
errors along the i error path. Analytical calculation of the
accumulating error becomes possible in this case since inde-
pendent errors sum up in their variances, which means that
the independent gain standard deviations sum up in their
average squares. Let e = (205 /100)? denote the average
square of the gain error in the analog output of the first
pipeline stage in the worst case condition, where o¢ is the
variance of the gain error of a stage in percentage units. The
following error e} is obtained by multiplying the previous er-
ror by the square of the nominal gain which is equal to four,
and then adding the new average square error of the sec-
ond stage amplifier, which is also assumed to have its worst
case value corresponding to a maximal analog output. This
procedure leads again to an arithmetic-geometric series for
the accumulating gain errors, but with different coefficients.
The elements of this new series are:

2 N oG 2 1
= (2 _) = VA
el = (2V55) = VAR(Z)
eg = 4el+ef
e% = 2e2+e%
ez?—l = 46?—2 + 6?,

Thus the statistical variance of the error at the end of the
ith error path for statistically independent gains is given by

2 _ (9N OG 21 i—1
61*1_(2 100) s b ©)

The overall error in the ith error path due to fully indepen-
dent gain errors, whose input equivalent is denoted by Ef}q,
is therefore given by

E =2NU_GL7‘A¢_1_1 (7)
e 1003 21T

The total equivalent standard deviation at the input of the
ith error path can now be expressed, due to the indepen-



dence of error groups, as:
ot = (21 -27ovy)" +

(ra-29- ) + (7%)

for correlated gain errors, and
o’ = (2(1-2"ovg)’ +

41— oa 2 ov. \?2
V= - . ¢ —<
( 3@2-1)2 100) +(5)

for independent gain errors. (8)

2.6 AveragelNL calculation

In order to calculate the expected INL of the ADC we have
to consider the errors in all the error paths. The situation
is considerably simplified by the presence of the given error
correction mechanism (Fig. 1 and references [1],[9]). This
1.5 bits per stage structure is different from the 1 bit per
stage architecture in a few aspects: there are three (rather
than two) resistors in the ladder, there are two comparators
(rather than one) in each stage, and - most importantly
- an error correction mechanism exists which significantly
reduces the number of error paths that should be considered
in our analysis, as explained below. The first two differences
have a minor influence since oy, ov, and og can be easily
modified to take the extra components into account.

The error correction logic enables the ADC to tolerate
much larger offset errors in the comparators of all stages
except the Nth stage, before an error appears in the ADC
output. This larger tolerance to comparator offset errors
is possible due to the many-to-one mapping of 18 bitlines
(from the 9 pipeline stages) into a 10 bit output. However,
error correction logic does not correct the accumulated ana-
log errors from stage to stage, such as gain errors. The error
correction logic is efficient as long as the equivalent error at
the input of the Nth error path is less than 0.5 LSB, which
means that the analog signal passing through all stages is
still correct. The standard deviation o of the overall equiv-
alent error at the ADC input in the worst case code (Eq. 1)
is therefore obtained by substituting ¢ = N > 1 in Eq. 8 :

2 2 N 0G\?2 ov, \?2
a (20vg)" + 100) T lgv=
for correlated gain errors, and
1 oG \2 o 2
2 2 N G V.
= @ 5 (2" ) + ()
7 (2ova)"+ 3 100/ tlan=
for independent gain errors. (9)

Note that the above compact result was made possible due
to the error correction, which eliminates the influence of all
error paths except the last.

We now calculate the expected value of the integral non-
linearity (INL). The expected value of the absolute deviation
z between the ideal and actual transfer curves (Fig. 2) at
the worst case code is given by

ah = [~ Il iy e (%) =2 (o)

This result is a good measure of the average maximal de-
viation between the actual and ideal curves on all possible
codes, which is equal to the expected INL of the ADC. It can
also be used for deriving specifications of the ADC building
blocks from the required overall performance.

Our analysis so far relied upon the statistical indepen-
dence of ov,,0v; and o¢. In the more general case where
the three error groups are dependent, Equation 9 should be
replaced by

o’ = A%} + B?0% + C?%02 + 2ABo12 + 2BCo3s + 2ACo13,

(1)
where the constants A, B, and C are calculated as above
and o;; is the covariance between error groups ¢ and j. In
many practical cases, the statistical dependence is due to
error sources which are common to some of the groups, e.g.
line-width variations can affect both the resistors (ovy ) and
the capacitors (og). In such cases, for two dependent groups
X1 and X> we get

X1 = ut+oaw
Xy = v+ fuw, (12)

where u,v and the common error source w are all statisti-
cally independent, and «, 3 are constants representing the
dependence. For this case we get

0’%2 = aﬂaiv (13)

where «, B are obtained either by recursively applying a sim-
ilar method of analysis on groups 1, 2 or by fitting the results
of Monte-Carlo simulation of each group to Equation 11.

3. COMPARISON: ANALYSISVS.SIMULA-
TIONS

A whole 10 bit ADC has about 5000 devices, thus a com-
plete SPICE run through all 1023 possible codes (one code is
missing due to error correction) would take several hundreds
of hours. For this reason, a behavioral simulator has been
developed, based on a statistical MATLAB model of each
low-level circuit, using parameters that were determined by
SPICE simulations of the components of an actual ADC
design. Our error analysis is compared to the results of
the behavioral simulator. The results, depicted in Fig. 4,
show Monte-Carlo simulations (60,000 experiments) of a 10-
bit pipeline ADC, compared to analysis for INL and for the
yield, which is defined as the expected fraction of good parts
(those with INL < 0.5). The simulation method is nested
as follows. We first draw 100 triplets of (ovy,0ov,,0q). For
each such triplet we further draw 600 values of the actual
errors, and then find the INL for each by means of a behav-
ioral simulator. This batch of 60,000 experiments was done
for both the cases of independent and fully correlated errors.
It can be seen that the limit of the “small error” assumption
is practically around o = 0.7.

It is interesting to note that analysis and simulation keep
a reasonable fit even beyond o = 1. This phenomenon may
be explained by the use of error correction which extends
the linearity of the ADC beyond the expected limits. In
experiments with o > 1 the fit becomes much worse.

4. CONCLUSION

A method was presented for evaluating global statistical
errors in terms of component errors in a large mixed-signal
system. The method is based on grouping the error sources,
evaluating the various error paths, and deriving approxima-
tions for the required global parameters. The method was
demonstrated by showing that, under proper assumptions,
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Figure 4: Monte-Carlo simulations of a 10-bit
pipeline ADC compared to analysis for (a) INL and
(b) yield (% of parts with INL < 0.5). 600 experi-
ments were performed for each one of 100 random
triplets of ov,,0v, and o¢, for both independent and
correlated gain errors. The relative error (c) shows
the practical limit of the “small error” assumption
to be around ¢ = 0.7.

one can derive an analytic expression for integral nonlinear-
ity in a pipeline ADC, which well approximates the results of
Monte Carlo simulations. We expect that our approach can
be further generalized for other linearity parameters (DNL,
SNR) and other mixed-signal systems. These are the goals
of our future research in this topic.

5.

ACKNOWLEDGMENT

We thank Tibi Galambos, Michael Zelikson and the anony-
mous referees for reading the manuscript and making useful
comiments.

6.
(1]

2]

[5]

[10]

REFERENCES

A. Abo, P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s
CMOS Pipeline Analog-to-Digital Converter,” IEEE
J. Solid-State Circuits, vol. 34, no. 5, May 1999.

P. Arpaia, P. Daponte, L. Michaeli, “Influence of the
Architecture on ADC Error Modeling,” IEEE T.
Instrumentation and Measurement, vol. 48, no. 5,
October 1999.

R. J. Baker, H. W. Li, D. E. Boyce, CMOS Circuit
Design, Layout, and Simulation, IEEE Press Series on
Microelectronics Systems, New-York, 1998.

H. Chang, E. Charbon, U. Choudhury, A. Demir, A
Top-Down, Constraint-Driven Design Methodology for
Analog Integrated Circuits, Kluwer Academic
Publishers, 1997.

E. Liu, A. Sangiovanni-Vincentelli, G. Gielen, P. Gray,
“A behavioral representation for Nyquist rate A/D
converters,” Proc. International Conference on
Computer-Aided Design (ICCAD), November 1991.
E. Liu, A. Sangiovanni-Vincentelli, G. Gielen, P. Gray,
“Behavioral modeling and simulation of data
converters,” Proc. International Symposium on
Circuits and Systems (ISCAS), pp. 2144-2147, 1992.
R. Spence and R.S. Soin, Tolerance Design of
Electronic Circuits, Addison Wesley, 1988

M. R. Spiegel, J. M. Liu, Mathematical Handbook of
Formulas and Tables, Schaum’s Outline Series,
McGraw-Hill.

I. P. Stulik, “Design Issues in High Speed, Moderate
Resolution Pipelined Analog to Digital Converters,”
MSC thesis in EE, Washington State University, May
1999.

R. H. Walden, “Analog-to-Digital Converter Survey
and Analysis,” IEEE J. on Selected Areas in
Communications, , vol. 17, no. 4, April 1999.



	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index


