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ABSTRACT

Recently introduced pseudoproducts and Sum of Pseudo-
product (SPP) forms have made possible to represent Boolean
functions with much shorter expressions than standard Sum
of Products (SP) forms [5]. A pseudo product is a prod-
uct (AND) of Exclusive OR (EXOR) factors, and an SPP
form is a sum (OR) of pseudoproducts. The synthesis of
SPP minimal forms requires greater effort than SP mini-
mization. In this paper we present a new data structure for
this problem, leading to an efficient minimization method
for SPP forms implemented with an exact algorithm and an
heuristic. Experimental results on a classical set of bench-
marks show that the new algorithms are fast, and can be
applied to ”complex” functions with a reasonable running
time.

1. INTRODUCTION

A crucial task in logic synthesis is to produce efficient im-
plementations of single or multi-output Boolean functions.
In particular, Sum of Product (SP or two-level logic) mini-
mization has been one of the most studied problem in com-
puter science (see for example [2, 7, 9]).

Three-level logic is a good trade-off between the speed
of two-level logic and the compactness of multi-level logic.
Tree-level logic minimization is an harder problem than two-
level logic minimization. In fact, the difficulty sharply in-
creases with the number of levels. On the other hand, the
number of products in a three-level network can be signif-
icantly smaller then the number of products of a two-level
network. A relevant three-level minimization algorithm was
given by Malik, Harrison and Brayton in [6]. They studied
three-level network of the form f = g1 o g» where g1 and
g2 are SP forms and o denotes a binary operation. Some
heuristics in the case of o = XOR (called AND-OR-EXOR
networks) have been studied, for example, in [3, 4].

In a recent paper [5] Luccio and Pagli introduced a new
three level form (Sum of Pseudoproducts or SPP) to express
Boolean functions using Exclusive OR gates (EXOR), as a
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direct generalization of SP expressions. A pseudoproduct is
a product (AND) of Exclusive OR (EXOR) factors, and an
SPP form is a sum (OR) of pseudoproducts. For example,
(zo®T1) T4 (o DT3DT6)+ 24 T3+ (ToBT2Dx3) (T2
x4 @ x5) is an SPP form. An arbitrary Boolean function
can be expressed as a disjunction of pseudoproducts, giving
rise to a sum of pseudoproducts form. Experimental results
show that the average size of SPP forms is approximately
half the size of the corresponding SP forms. In the worst
case, SP and SPP forms coincide. For example in table 1
the number of literals in the minimal SP expression of the
benchmark function adr4 is 4,72 times the number of literals
in the minimal SPP form, while the function newtpla2 yields
identical results in SPP and SP minimization. On the other
hand, minimization of SPP forms requires a greater effort
than SP optimization. In this paper, we present the first
algorithms ad hoc for SPP minimization.

SPP and SP forms have similar definitions and properties
which we review here. A product P is an implicant of the
Boolean function F iff P C F (Boolean functions are treated
as sets of points of B™). An EXOR factor is a single variable,
or a string of variables connected by EXOR’s. A product P
of EXOR factors is a pseudoproduct of the Boolean function
Fiff P C F. Animplicant (pseudoproduct) P of F is prime
iff no other implicant (pseudoproduct) P’ of F exists such
that P C P'.

Let X and Y be two sets, R be a relation on X x Y,
and C : Y — IN be a cost function over Y. We say that
Y' C VY covers X iff, for all x € X, there exists y € Y’
such that zRy holds. The set covering problem (X,Y, R)
consists in finding a subset Z of Y such that Z covers X
and ) ., C(z) is minimum. Minimal SP (SPP) covers of
F are made of prime implicants (pseudoproduct), and SP
(SPP) minimization is a set covering problem on the set of
prime implicants (pseudoproduct) with cost function given
by the number of factors or literals.

A Quine-McCluskey-like procedure is indicated in [5] as
a possible algorithm for the synthesis of SPP forms. This
algorithm fails in practice in minimizing functions (from the
EsPRESSO benchmark suite [10]) with a too large number
of prime pseudoproducts (e.g., more than 15.000). In this
paper, we present a new exact minimization algorithm and
an incremental heuristic ad hoc for SPP forms to synthesize
a much larger collection of Boolean functions. We intro-
duce the structure of a pseudoproduct P as its algebraic
expression without complementations, and prove that the
union of two pseudoproducts with the same structure is still
a pseudoproduct. This property is then used to design our



minimization algorithms, which are based on a new data
structure called partition trie. As in the Quine-McCluskey
approach, the generation of prime pseudoproducts is per-
formed in steps by successive unions of pseudoproducts, but
here only the ones with the same structure are compared.
For this purpose the pseudoproducts found in each step
are grouped in sets, each of which contains pseudoproducts
with the same structure, to reduce the computational work
drastically. The previous algorithm of [5] performs approx-
imately |X*|?/2 comparisons at step i, where X" is the set
of pseudoproducts generated at step ¢ — 1. In our method
X' is partitioned into disjoint subsets X{, X3,..., X} where
1<k< |Xi|, hence the total number of comparisons is ap-
proximately (|Xi|? 4+ |X3]® + ... + |X{]?)/2, and this num-
ber is in general much smaller than |X'|*/2 as proved in
our experiments. Indeed we perform a minimum number of
comparisons, in the sense that each couple of pseudoprod-
ucts considered is unified to generate a new pseudoproduct
for the next step. This increase of speed also allows us to
deal with a very high number of prime pseudoproducts (up
to 300.000 in practice).

In the next section, we recall the basic notions of pseu-
docubes and canonical expression, and some properties of
pseudoproducts. In section 3 we introduce the concept of
structure, we describe the partition trie data structure and
the new minimization algorithms. Section 4 gives some
experimental results demonstrating the effectiveness of the
new method.

2. PRELIMINARIES

Pseudocubes, pseudoproducts and SPP forms studied in
[5] are generalizations of cubes, products and SP forms. The
definitions and properties in this section are taken from that
paper.

Let u be a Boolean vector (in fact all our vectors are
Boolean). Vector @ denotes the elementwise complementa-
tion of u. Vector @ denotes w or w. Vectors 0 and 1 are
made up of all 0’s or all 1’s, respectively, and are called con-
stant vectors. Vector wwv is the concatenation of u and v.
A vector u of 2™ elements, m > 0, is normal if m = 0, or
m > 0 and v = v¥ with v (hence ) normal. For example
all the columns in the matrix of figure 1 are normal vectors.

In the following, a matrix will always have 2™ rows and n
columns, with n > 1 and 0 < m < n. A matrix M is normal
if has distinct rows, and all the columns are normal. A
normal matrix is canonical if its rows, interpreted as binary
numbers, are arranged in increasing order (the matrix of
figure 1 is canonical). A normal vector 4 = Vg ...VUgm—k_1
is k-canonical, 0 < k < m, if v; = 0 for 7 even, and v; = 1
for i odd (note that |vi| = |vj| for all 4,5 ). In figure 1,
co is 2-canonmical, ¢ is 1-canonical, and c4 is 0-canonical.
A canonical matrix M contains m columns c¢;,,...c;,,_, of
increasing indices, such that c¢;; is (m — j — 1)-canonical
for 0 < 5 < m — 1. In a canonical matrix M the columns
Cigy - - - Ci,,_, are called canonical columns of M. The other
columns are the non-canonical ones (see figure 1).

A set of m points of the Boolean space B™ can be arranged
in a m X n matrix whose rows correspond to the points
and the columns correspond to the variables describing B™.
Canonical and non-canonical columns correspond to canon-
ical and non-canonical variables, respectively. A pseudocube
of degree m is a set of 2™ points whose matrix is canonical
up to a row permutation. The matrix of figure 1 represents a

€Co €1 €2 €3 C4 Cj
ro O 1 0 1 0 1
rg 0 1 0 1 1 0
ro 0 1 1 0 0 1
r3 0 1 1 0 1 0
ry 1 1 0 0 0 O
r5 1 1 0 0 1 1
r¢ 1 1 1 1 0 O
rr 1 1 1 1 1 1

Figure 1: A canonical matrix with 2° rows and n = 6
columns. The canonical columns are co, c2, and c4.
The matrix represents a pseudoproduct in BS.

pseudocube of eight points in B°. The points represented in
ﬁgure 1 are: ToT1ZT2X3T4T5, TOT1T2X3L4T5, TOT1T2T3T4L5,
Eo$1$253W4E5, w0w15253f455, $0$15253$4$5, w0w1w2w3f455,
rorirar3xsxs. Note that a cube is a special case of pseu-
docube where the non-canonical columns are constant. For
a point s € B™ and a subset of variables «, the transformed
point a(s) is obtained from s by complementing the vari-
ables in a.. For a pseudocube (or, in general, a set of points)
P, the transformed set a(P) is the set {a(s) : s € P}.

PROPOSITION 1. Let Pi be a pseudocube of degree m, and
a be a subset of non-canonical variables. Then Py = a(P1)
18 a pseudocube of degree m, with P N Py =0, and P, U P2
is a pseudocube of degree m + 1. Moreover, P, U Py is a
pseudocube only if P» = a(Py) for some a.

Let M, M> be the canonical matrices of Pi, P», with P, =
a(P1). Matrices M; and M> have the same canonical vari-
ables @y, ...,%p,, ,, and non-canonical variables z,,,,...,
Zp, _,- The canonical matrix M of P = P1UP; has the same
canonical variables of M, Ma, plus the variable x; € « of
minimum index.

The characteristic function of a pseudocube is called pseu-
doproduct, and has the concise algebraic expression intro-
duced in the following definition:

DEFINITION 1. Let P be a pseudocube of degree m in B";
let M be the canonical matriz of P; and let ©py, ..., Zp,, ,
and xp,,,...,Tp,_, be the canonical and non-canonical var:-
ables respectively, with these two sets ordered for increasing
values of the indices. The canonical expression CEX(P) as-
sociated with P is given by fo- f1-...  fn—m—1, where each
fi, 0 <i<n—m-—1, is an EXOR factor containing the
following variables:

1. the canonical variables xp;, 0 < j < m — 1, such
that M0, pm+i] # M[2™ 97 p.4i]; these variables
are ordered for increasing indices;

2. the non-canonical variable xp,, ;, if M[0, ppyi] = 1;
or Tp,. .., if M[0,pm+:] = 0.

In figure 1 column ¢; corresponds to variable z; (0 < i <
5). The canonical expression for the pseudocube is

CEX =z - (zo®x2 P x3) - (oD x4 B x5)

Since the non-canonical variables are z1, rs, rs5, the CEX
expression is given by the product of three EXOR factors:
fo containing Z1, fi containing T3, and f> containing Zs.
Any EXOR factor can also contain some canonical variables
as described in rule 1 of definition 1. For example, since the
column c¢; is constant, fy does not contain any canonical
variable. Whereas fi1 contains x¢ and z2, and f» contains



zo and x4. Let’s associate row r; with the canonical variable
T4, TOow T2 with the canonical variable x2, and row r4 with
the canonical variable z¢. Following rule 1 of definition 1, f;
contains xg and x2 but not x4 because in the column c3 the
first row ro = 1 is different by row r2 = 0 (corresponding to
x2) and by row 74 = 0 (corresponding to zo), but is equal
to row r1 = 1 (corresponding to z4).

Note that CEX(P) depends on the arbitrary order of the
variables, or on the values of the variables indices. That is
a pseudocube have in general many different pseudoprod-
uct expressions, but only one of them is canonical once the
ordering of the variables is fixed.

3. MINIMIZATION ALGORITHMS

We now introduce some more properties of pseudocubes
used in the minimization algorithms, and describe the parti-
tion trie data structure, which is the basis of the minimiza-
tions procedures. Finally, we give the exact algorithm and
the heuristic.

3.1 Thestructure of a pseudocube

DEFINITION 2. Let P be a pseudocube. The structure of
P, denoted by STR(P), is the CEX expression of P without
complementations.

For example, if CEX (P) = (zo®z18T3) (xoDrsBx5) T7
we have STR(P) = (xo ®x1 D x3) - (£o D xa®x5) - x7. Note
that two distinct pseudocubes with the same structure are
disjoint.

A well known Boolean property states that the union (or
sum) of two products is a product if and only if they are
composed by the same literals and differ by exactly one
complementation. This also implies that the corresponding
subcubes are disjoint. For example xox2T3x6 + £0T2T3x6 =
2oZ3xe6. The corresponding property of pseudocubes is the
following:

THEOREM 1. The union of two pseudocubes Py, Py is a
pseudocube if and only if STR(P1) = STR(P2).

Proor. If part. Let a be the (possibly empty) set of non-
canonical variables that have different complementation in
CEX(P;) and CEX(P:). From definition of a follows that
P, = a(Py) (or P1 = a(P,)). By proposition 1, we have
that P; U P, is a pseudocube. Only if part. By proposition
1, P» is equal to a(P1). By definition of a, the pseudocube
a(P1) has the same structure of P1. [

For example, let

(0@ T1) x4 (0B x2BTs5) (w3 P we) - (k3B ws) (1)
(0@ 1) Ta- (o Bx2Bws) (v3sPwe) (x3BTs) (2)

be the CEX expressions of two pseudocubes (P and P») in

B® with canonical variables Zo,Z2,%3,%7, and a@ = {x1,Z4, T5,
xzs} (recall that « is the subset of non-canonical variables

that contains only variables with different complementation

in the two CEX expressions). Note that the two CEX ex-

pression have the same structure:

(xo® 1) xa-(xoD w2 B as) (3P xe) - (x3 D ws)

and P = P, U P; is a pseudocube by theorem 1.

We now rephrase the union algorithm of [5] using the
notion of structure. Let z;,,...x;, be the non-canonical
variables of Py and P, in increasing order of their indices.

Therefore CEX(P1) = [[/_, f, and CEX(P2) = [T}, £/,
where f}k and ffk are the EXOR factors containing the non-
canonical variable z;, . We then derive the CEX expression
for P = P, U P, by the following algorithm:

AvGoriTuM 1. Union (build CEX(P) from CEX(Py)
and CEX(Pz))

if STR(P,) = STR(P-) then
let z;; be the variable of smaller index in «
for j=0 to h do
if (zi; € a and i; # i)
then f{ .= NORM_EXOR(f},, fi,)
if (z;; ¢ @) then ffJ = f,2]

h
CEX(P):=]] 1?';_
ot

The expression NORM _EXOR(f1, f2) is the normalized
EXOR ezpression between the EXOR factors fi and fo.
For example, let fi = (xo ® z2 @ x5) and fo = (xo D T1)
be two EXOR factors. The expression fi & fo = zo @
T1 D@ xo ® x2 @ x5 can be reduced (normalized), using some
properties of EXORl7 to f1 @ fo = 1 ® z2 & Ts, which is
NORM _EXOR(f1, f2).

As an example of application of the union algorithm, con-
sider P; and P» with expressions (1) and (2). Since @ =
{x1,4,25,28}, we have z;, = x1 and the canonical vari-
ables of CEX(P) are zo, 1, 2,23, Z7. Then the canonical
expression is

(zo@r1@xs) (1 DT2BT5)- (T3 Dwe) - (To B 1 PrsPrs).

Note that the factor (zo@z1) does not appear in CEX (P)
(the variable z1 is canonical in P). Any other factor f of
CEX (P2) that has different complementation in CEX (P)
and CEX (P;) appearsin CEX(P) as NORM _EXOR(f, (zo
@T1)) (see for example Z4, which becomes (zo B x1 E x4)).
Any factor that has equal complementation in CEX(Py)
and CEX (P,) appears unchanged in CEX(P) (see for ex-
ample (z3 @ z6)).

The time required by algorithm Union is linear in the size
of the input expressions.

3.2 Partition tries

Partition tries are the basis of two new minimization al-
gorithms to be discussed in sections 3.3 and 3.4. A partition
trie is a labeled rooted tree used to represent both the struc-
tures and the CEX expressions of a set of pseudoproducts.

An internal node (except for the root) of the partition
trie can be either a C-node (canonical node) or an NC-node
(non-canonical node), and is labeled with the variable ;.
The leaves are Boolean vectors. The root has no label.

In a partition trie, any path from root to leaf represents
the structure of a CEX expression. The vector L in the leaf
of the path represents the complementations of the non-
canonical variables in the NC-nodes of the path. That is,
if L[¢] = 0 then the i-th (in increasing order) non-canonical
variable in the CEX expression is complemented; if L[i] =1
such a variable is not complemented.

Let f; be the i-th EXOR factor of a CEX expression C in a
partition trie P. In the path representing C, the EXOR fac-
tors are in increasing order of the non-canonical variables. In
every f;, the canonical variables are in increasing order, and

"Namely, t @z =0,00c =2, Z®y=207=20y
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Figure 2: A path in a partition tree representing the CEX expression: (o @ 7T1) ¢4 (xo @ x2 ® Ts) - (x3 D we) -
(z2 @ 3 ® z3). C-nodes and NC-nodes are circled and double-circled, respectively.

the first node is an NC-node representing the non-canonical
variable x; all the others nodes, in increasing order, are the
C-nodes of the canonical variables in f;.

For example the path in figure 2 represents a CEX ex-
pression. Unlike for the corresponding CEX expression, any
EXOR factor in a path of a partition trie starts with its
non-canonical variable. We have:

PROPERTY 1. Any two leaves with the same parent rep-
resent CEX expressions with the same structure.

We call this kind of trees partition tries because a set of
CEX expressions is partitioned into subsets containing ex-
pressions with the same structure; and because they are
particular tries with two different kinds of nodes (see [8] for
details on tries).

The children of each node are ordered as follows: first
the NC-nodes in increasing order of their labels, second the
C-nodes in increasing order of their labels and, finally, the
leaves. The insertion of a variable x; as a child of a given
node N is an extension of the insertion procedure for a trie,
taking into account the constraints given by the labels.

The insertion of an EXOR factor X as a child of a given
node N is as follows: first, insert the non-canonical vari-
able as a child of N; second, insert the first (in increasing
order) canonical variable as a child of such a non-canonical
variable; finally, insert each of the other canonical variables,
in increasing order, as a child of the last canonical variable
inserted. Insertion of a CEX expression C corresponds to
the insertion of its EXOR factors in the increasing order of
the non-canonical variables.

The search for a CEX expression C' in the partition trie
is done by examining the tree from the root.

Note that any internal node in a partition trie can have at
most 2n internal nodes as children, since any such a child is
a C-node or an NC-node, representing a variable, or a leaf.
Partition tries will be used to represent pseudoproducts in
the minimization procedure.

3.3 Theexact minimization method

We focus our attention to the synthesis of SPP forms with
minimal number of literals. As usual pseudoproducts will be
built by pairwise composition of pseudoproducts of smaller
degree, but we memorize pseudoproducts in a much more
efficient way than before. As usual the number of literals in
a CEX expression may depend on the ordering of the vari-
ables, therefore minimization holds relatively to a chosen
order. Unlike for products, a pseudoproduct built by com-
position of two pseudoproducts of smaller degree dose not
always contains less literals than the two components. For
example the CEX expression of the union of (1) and (2) is

(z0Bx1B 1) (21 B220T5) - (x3B we) - (oD w1 P a3 Bas)
which contains 12 literals, while (1) and (2) have 10 literals
each. As a consequence, the construction of an SPP form

with minimal number of literals cannot be limited to the set
of prime pseudoproducts, but to a larger one. We pose:

DEFINITION 3. The set of extended prime pseudoprod-
ucts (EPPP) is the union of the set of prime pseudoproducts
and the set of pseudoproducts which are not covered by any
other pseudoproduct whose expression contains less literals.

Both the minimization algorithm proposed in [5], and the
new algorithm presented here, are composed of two main
steps: first, we build the EPPP set; second, we solve a set
covering problem where the rows X represent the points, the
columns Y represent the EPPP set, and the cost of a column
is the number of literals in the associated CEX expression.

The critical novelty of our algorithm is the data struc-
tures used in the construction of the EPPP set, now based
on partition tries. In fact, we do not need to compare pair-
wise all the CEX expressions of degree k, due to theorem 1.
In step k we use a partition trie to memorize all the CEX
expressions generated, where all and only the leaves with
common parent have the same structure and can be unified.
This property is implemented as follows:

ALGORITHM 2. Exact minimization

1. insert the CEX expressions of all the pseudoproducts
of degree k = 0 (single points) in a partition trie Fp;

2. for increasing k, generate a mew partition trie Pp4;
from the union of all the leaves that have common
parent in Pj; discard from P} a pseudoproduct if its
CEX expression contains h literals, and is combined
into one of degree k+1 whose expression contains < h
literals;

3. make a selection with minimal number of literals from
among the pseudoproducts retained in step 2 (i.e. solve
the set covering problem).

Union algorithm 1 is used in step 2, with the automatic
satisfaction of the initial test for structure of leaves with
the same parent. Algorithm 2 does not decrease the worst-
case complexity of the minimization procedures, since the
problem is NP hard for SP and remains already NP hard
for SPP. Comparing the method of [5] with algorithm 2,
however, we find that the second is more efficient in prac-
tice because inserting a CEX expression in the partition
trie and unifying two leaves with common parent involves
a much smaller number of CEX expressions. In fact the
original algorithm performs |X*|(|X*| — 1)/2 comparisons
in step i, where X° is the set of pseudoproducts gener-
ated in step i — 1. Algorithm 2, instead, partitions X'
into disjoint sets Xi X3, X}, where 1 < k < |X*| and
X' = U1<j§k Xj. Since the pairwise comparisons are per-
formed only inside each set, the total number of comparison
is X1 (1X | —1)/24+ X311 X5] = 1) /2+. ..+ X (X~ 1)/2,
which can be much smaller than | X*|(|X*| —1)/2 for k > 1.
The new algorithm, in practice, does not perform any com-
parison, because every couple of pseudoproducts considered
will be unified and inserted in the partition trie of the next
step. Experimental evidence of the good performance of
algorithm 2 is given in section 4.



SP SPP
function #PI [ #L [ #P || #EPPP [ #L [ #PP
addm4 352 | 1299 | 212 191133 520 74
adr4 75 340 75 7158 72 14
dist 279 829 | 150 48753 422 64
exb 650 828 | 307 273695 723 253
exps 950 | 3007 | 499 63083 | 1918 273
life 224 672 84 2100 144 18
lin.rom 827 | 2165 | 451 39280 | 1235 227
m3 212 693 | 131 13768 423 74
m4 441 984 | 211 110198 646 123
max128 338 795 | 191 15504 492 108
max5H12 416 923 | 154 298623 517 76
mlp4 206 709 | 143 24982 318 61
newcond 55 208 31 46889 122 15
newtpla2 15 74 15 17146 74 15
pl 205 362 | 100 476360 232 44
prom?2 2298 | 6647 | 940 341557 | 3477 383
radd 75 340 75 6600 72 14
root 133 346 71 37324 220 39
test1 1066 | 1000 | 184 444407 534 73

Table 1: Experimental results. #PI and #EPPP are
the total numbers of prime implicants and EPPP’s.
#L is the number of literals in the minimal expres-
sion. #P and #PP are the numbers of prime impli-
cants and EPPP’s in the minimal expression.

3.4 Theheuristic

The second step of algorithm 2 is a bottleneck, because it
requires the computation of all the prime pseudoproducts.
Alternatively we can use an incremental heuristic that, at
any step, computes a subset of non decreasing size of pseu-
doproducts, and a more and more accurate upper bound
of the solution (the last step gives the SPP minimal form).
Unlike in algorithm 2, the input is an arbitrary cover of the
given function F': below we use the set of prime implicants
of the SP minimization of F'| as this set is much faster to
obtain than the set of prime pseudoproducts.

We now give a characterization of the sub-pseudocubes of
a pseudocube (for a proof see [1]):

THEOREM 2. Let A1As... Ay be a CEX expression of a
pseudocube R, of degree m, and let x1,x2,...,xy the canon-
ical variables of R. The set of expression A1As ... AgAq+1,
with Ag+1 = Y1 B y2 D ... BYr and Vi € [1,...,k] : y; €
{z1,22,...,xm}, represents all the distinct pseudoproducts
P of degree m — 1 with P C R (the cardinality of this set is
2m+1 _ 2)2 .

The heuristic consists of four main phases:

ALGORITHM 3. Heuristic

1. Initialize the partition tries with the prime implicants:
there are n partition tries (Py,...,P,—1), where n is
the number of variables in F', and any implicant with
1 factors (i.e., with degree n — i + 1) is inserted in the
corresponding partition trie P,_;.

2. Perform a ”descendant phase” of k steps (0 < k < n),
where the parameter k£ is a measure of the computa-
tional work decided for the heuristic (k = n— 1 means
that we are looking for the optimal SPP solution). In
step i (1 < 4 < k), for all the pseudoproducts R in

*Note that the expressions A;As... A;A,+1 are not neces-
sarily in CEX form, but can be easily transformed in the
equivalent CEX expressions.

[ function [ #L || Time alg. in [5] | Time alg. 2 ||
cs8(1) 124 783 1
s8(2) 93 12915 21
addmd(2) | 101 71 2
addmd(4) | 104 % 116
prom1(15) | 213 10 1
prom1(31) 278 * 41
max128(20) | 7 1097 7
m3(3) 13 7039 9
ma(0) 5 % 1023
risc(2) 2 10 1
ex5(50) 9 % 3973
max512(5) | 208 % 204

Table 2: CPU times (in seconds) of the two min-
imization algorithms for the construction of the
EPPP set. The results are relative to single out-
puts, that is cs8(1) corresponds to the first output
of cs8. A star indicates that the original algorithm
did not terminate after 2 days. #L is the number
of literals in the minimal expression.

partition trie P,_; (R has degree n — i + 1), compute
all the distinct pseudoproduct P of degree n — i with
P C R, according to theorem 2. Insert in P,_;_1 any
P.

3. 7 Ascendant phase”. Starting from Py, compute P, . ..,
P,,_; according to the second step of algorithm 2.

4. Solve the set covering problem.

Note that, if k¥ = 0 the descendant phase is not performed,
but in the ascendant phase we can find enough pseudo-
products to obtain a significant upper bound of the SPP
form. For example, letting 12274 and T1z224 be members
of the set of prime implicants, the ascendant phase com-
putes x2(x1 @ z4), and this expression can be present in the
SPP form instead of x122T4 and T1z224. Unlike the exact
algorithm, the heuristic (with & < n — 1) does not com-
pute the entire set of prime pseudoproducts, and produces
an SPP form indicated by SPP;, for the applied value of k.
However, in practice is more efficient, as described below.

4. EXPERIMENTAL RESULTS

Our minimization method has been tested on a range of
functions taken from the ESPRESSO benchmark suite [10].
Table 1 compares SP expressions and SPP forms obtained
with algorithm 2. The different outputs of each function
have been minimized separately. All the functions in table
1 have a huge number of EPPP’s and could not be mini-
mized with the algorithm of [5] (the program did not stop
within 172800 seconds, or 2 days, on our Pentium III 450
machine). This proves the crucial role of partition tries.
Since we used some heuristics in solving the set covering
problem, the number of literals and factors in the expres-
sions are upper bounds for the minimal solution. Note that
the size of the minimal SPP form is, on the average, one half
of the corresponding SP form. The functions adr/, life and
radd show a greater improvement of SPP over SP, while the
function newtpla2 yields identical results in SPP and SP,
although the number of EEEP’s is huge.

Table 2 compares the CPU time for the construction of
the EPPP set for the two exact minimization methods. CPU
times are reported in seconds on a Pentium IIT 450 machine.
The tests are taken from the ESPRESSO benchmark suite and
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Figure 3: Number of literals in the SP form and in
the SPP; forms of the benchmark functions dist and
f51m.

100000 T
dist ——
f5Im —--%---
10000 ¢
< ook
£
100 £
10 == V— — . . .
SP SPPO SPP1 SPP2 SPP3 SPP4 SPP5 SPP6 SPP

SPPK (SPP7=SPP)

Figure 4: CPU time (in seconds) for the synthesis
of the SP form and SPP; forms of the benchmark
functions dist and f51m (logarithmic scale).

for some outputs of an 8-bit carry-save adder (cs8(1) and
¢s8(2)). These examples show the great increase of speed of
algorithm 2 versus the original one.

Table 3 gives the results of the heuristic for K = 0. From
this table we see that the number of literals of the SPF,
forms is in average (|SP| — |SPP|)/2, where |SP| (resp.
|SPP|) is the number of literals in the minimal SP (resp.
SPP) form (see the columns in bold of table 3). The com-
putational time is drastically reduced. The number of lit-
erals and the CPU time of the SP and SPP; forms of the
functions dist and f51m are plotted in figure 3 and 4, respec-
tively. Almost all the functions from the ESPRESSO bench-
mark suite have analogous plots. Function dist in figures 3
and 4 has 829 literals in the SP form, and 639 in the SPP,
form, and the CPU times of the two forms are 12 and 23 sec-
onds, respectively. SP Ps form has 462 literals, and the CPU
time required for its synthesis is 11,285 seconds. Whereas
the number of literals of the exact form (SPP; = SPP) is
422, this form is obtained in 61,925 seconds. It is signif-
icant to notice that, for values of k near to n — 1 (exact
SPP form), the number of literals from SPP; to SPPj4+1
decreases slowly, but the CPU time for SP P11 synthesis is
much greater than the one for SPP;. Therefore we claim
that SP P, forms are reasonable upper bounds of the exact
SPP forms for small values of k.

5. CONCLUSIONS

In this paper we have presented, for the first time, two spe-
cific procedures for the SPP minimization of Boolean func-
tions based on partition tries. This method allows to deal
with functions whose number of prime pseudoproducts is
too high to be handled by previous algorithms. The number
of prime pseudoproducts is in general much greater then the
number of prime implicants and we are still not able to deal,

SPPy SPP (exact)
function | Av #L | Time #L | Time
alu * 41 | 51050 * *
addm4 910 939 16 520 27340
add6 * 1212 7454 * *
amd * 905 | 96826 * *
dist 626 639 23 422 61925
f51m 233 216 13 146 339
max5b12 720 693 40 517 12609
max1024 * 1098 192 * *
mlp4 586 643 7 318 778
m4 815 785 64 646 18123
newcond | 165 166 12 122 15587

Table 3: Experimental results for the heuristic with
k =0 vs. the exact algorithm. A star indicates that
the exact algorithm did not terminate after 2 days.
Av is (|[SP|—|SPP|)/2, where |SP| (resp. |SPP|) is the
number of literals in the minimal SP (resp. SPP)
form. #L is the number of literals in the forms.

in reasonable time, with the hardest functions in ESPRESSO
benchmarks. Therefore, our future investigations will be
concentrated on algorithms whose complexity no longer de-
pends on the number of pseudoproducts to manipulate. Fur-
thermore, we plan to compare SPP forms with other three
level forms.
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