
Factoring and Recognition of Read-Once Functions using
Cographs and Normality

Martin C. Golumbic
Department of Mathematics

and Computer Science
Bar-Ilan University

Ramat Gan 69978, Israel
golumbic@cs.biu.ac.il

Aviad Mintz
Department of Mathematics

and Computer Science
Bar-Ilan University

Ramat Gan 69978, Israel
mintz@cs.biu.ac.il

Udi Rotics
School of Mathematics and

Computer Science
Netanya Academic College

Netanya 42365, Israel

rotics@mars.netanya.ac.il

ABSTRACT
An approach for factoring general boolean functions was
described in [5] which is based on graph partitioning al-
gorithms. In this paper, we present a very fast algorithm
for recognizing and factoring read-once functions which is
needed as a dedicated factoring subroutine to handle the
lower levels of that factoring process. The algorithm is based
on algorithms for cograph recognition and on checking nor-
mality. Our method has been implemented in the SIS envi-
ronment, and an empirical evaluation is given.

Categories and Subject Descriptors
J.6 [Computer Application]: Computer Aided Engineer-
ing; I.1.2 [Computing Methodologies]: Symbolic and Al-
gebraic Manipulation

General Terms
Factoring Algorithms

Keywords
Read-Once Functions, Factoring, Normality, Cograph

1. INTRODUCTION
A Boolean function F is called a read-once function if it

has a factored form in which each variable appears exactly
once. For example, the function F = F1 = aq + acp +
ace is a read-once function since it can be factored into the
read-once formula F = F2 = a(q + c(p + e)). Read-once
functions were �rst introduced by Hayes [8] and were called
fanout-free functions and are also known as non-repeatable
tree functions since the parse tree of a read-once formula has
no variable repeated. Read-once functions have interesting
special properties [6], [9], [10] and according to [11] account
for a large percentage of functions which arise in real circuit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

applications. They have also gained recent interest in the
�eld of computational learning theory [2].
Hayes described an algorithm for identifying and factor-

ing fanout-free functions based on adjacency of the function
variables [8], however its algorithm su�ers from high com-
plexity.
Peer and Pinter described in [11] a factoring algorithm

for read-once functions. They have proved that their al-
gorithm gets the optimal results but the main drawback
of the algorithm was its non-polynomial complexity. The
main reason for this non-polynomial complexity is due to
the need for repeated calls to a routine that converts sum-
of-products boolean function representation to a product-
of-sums boolean function representation, or vice-versa.
In [5] a factoring algorithm for general Boolean functions

was described which builds the factored form from top to
bottom using graph partitioning, and where read-once func-
tions are handled specially as they appear at the lower levels
of the factoring process. It was noted there, that this algo-
rithm incorporates read-once recognition and factoring with
a new method having polynomial complexity. As an integral
component of general factoring using graph partitioning, the
polynomial algorithm for read-once functions is presented in
this paper.
Algorithms based on Algebraic factoring (Quick Factor,

Good Factor) [1],[13] can also be used in order to factor read-
once functions. These general factoring algorithms have
polynomial complexity and from our experiments they pro-
duce the read-once tree for read-once functions. No formal
proof has been given (nor any counter example) showing
that they correctly recognize read-once functions, but even
in the case that such a proof can be given, the algorithms
will spend redundant time (they will have to run to comple-
tion) before they identify that a function is not read-once.
We will refer to these algorithms according to their factor-
ing engine (ex. QF and GF) and compare their performance
with our method.

2. PROPERTIES OF READ-ONCE FUNC-
TIONS

The underpinnings of our algorithm are based on the prop-
erties of read-once functions in [6] and on the properties of
P4-free graphs [3]. First, we will introduce several de�ni-
tions in order to explain the main theorem of [6] that we use
in our algorithm. Then we will describe the theorem and

we will discuss P4-free graphs, also known as cographs. The
graph P4 denotes a chordless path containing only 3 edges
and 4 vertices. A graph is P4-free if it contains no copy of
P4 as an induced subgraph.
A unate function is a Boolean function represented by a

formula such that each variable appears either in the positive
or in the negative form throughout the formula. Read-once
functions are unate, but F = ab+ ac+ bc is an example of
a unate function which is not a read-once function.
Let F be a boolean function. We de�ne the Dual function

F � of F by the following: F � = F �(a1; :::; ar) = F 0(a01; :::; a
0

r)
where a0 and F 0 denotes the negation of a and F resp. For
example, let F = ab+ cd, according to the de�nition of the
Dual function we will have F � = (a0b0+ c

0

d
0)0 which is equal

to (a+b)(c+d). Here we note the well known property that
the dual function replaces each � operator with + operator
and vice versa.
The dual operation � has several properties including

� F �� = F

� (F 0)� = (F �)0

� (F1 + F2)
� = F1

�

� F2
�

� (F1 � F2)
� = F1

� + F2
�

where the last two are De Morgan laws.
We de�ne a graph � = (V;E) of a unate function F

which is given in sum of products form F. The vertices
in V = fa1; : : : ; aNg represent the di�erent literals in F, so
the number of vertices in the graph � is equal to the size of
the support of F. (We remind that the support of a function
is the set of the function's variables). An edge (ai; aj) in E

exists if and only if its literals ai; aj both appear in some
product term of F. Thus each product in F induces a clique
in �.
The mapping of F to � is not one to one, there can be

more than one function mapped to the same graph �. As
an example, the functions F1 = abc and F2 = ab + bc + ac

are mapped to the same graph �.
Similar to the mapping of F to � we de�ne a mapping

of � to function F� as follows. For each arbitrary graph
� let us �nd the set of all maximal cliques of the graph
and transform each maximal clique to a cube in F�, thus
obtaining a sum-of-products.
We will say that a function F is normal if mapping it to a

graph � and vice versa will yield the original function, i.e.,
F = F�. As an example the function F1 = abc is normal
while the function F2 = ab+ ac+ bc is not.
The following is the main theorem for read-once functions

stated by [6]:

Theorem 1. Let F be a unate function and F � be its dual
function and let � be the complement graph of � (E are the
edges of the graph �). Then all the following statements are
equivalent:

� F (F �) are read-once functions.

� F (F �) is normal and its graph � (��) contains no
subgraph isomorphic to P4 (P4-free).

� The graphs � and �� have no edges in common.

� The union of the graphs � and �� forms a complete

graph on the support of F (F �).

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

d

a

e f

b

c

g

 1

 00

11

a b g

c d e f

Figure 1: CoGraph and CoTree example

� � = (V;E) and �� = � = (V;E).

From this theorem one can sketch a procedure to recognize
a read-once function. Given a formula, generate the graph
�, check if the graph � is a P4-free graph and then check if
the function that is represented is normal.
We note here, that checking for normality is not simple.

Although mapping a formula F to the graph � is obvious,
the reverse mapping is not. This reverse mapping should
�nd all maximal cliques of a graph, a problem which is NP-
complete in general. We will solve this problem di�erently
for P4-free graphs as will be seen in section 3.1.
P4-free graphs are known also by the name of cographs -

complement reducible graphs and are discussed in [3]. We
mention the following properties of cographs:

� Any subgraph of a cograph is also a cograph.

� The complement of a cograph is also a cograph.

� A complement of a connected cograph is disconnected.

A cograph has a unique tree representation called the
cotree, it forms the basis of cograph recognition, and in our
case for generating all maximal cliques.
The cotree is constructed as follows: The cotree leaves

are the vertices of the corresponding cograph. Every inter-
nal node except possibly the root, will have two or more
children; the root will have only one child exactly when the
represented cograph is disconnected. Moreover, the cotree
for a particular cograph is unique up to a permutation of
the children of the internal nodes.
The internal nodes in the cotree are labeled as follows:

the root is labelled 1, the children of a node with label 1 are
labelled 0, the children of a node labelled 0 are labelled 1.
We will refer to the internal nodes of cotree as 0-nodes and
1-nodes. Two nodes x and y of the cograph are adjacent if
and only if the unique path from x to the root of the tree
meets the unique path from y to the root of the tree at a
1-node.
For example, Figure 1 illustrates a cograph and its related

cotree of the function F = acd+aef+ag+ bcd+ bef + bg =
(a + b)(cd + ef + g). We can see that the nodes of the
cograph are the literals of F and that each product in F is
represented by a clique in the cograph. Furthermore, nodes
a and c in the cograph are adjacent and their paths in the
cotree meets at the root which is a 1-node, while nodes c
and e are not adjacent in the cograph and their paths in the
cotree meets at a 0-node.
An algorithm recognizing cographs and building the cotrees

is based on the properties of cographs and is described in

Figure 2. We will use T to represent the cotree, fTig to
represent the cotree's nodes which are labelled by 0 or 1 for
any internal nodes, or labelled by the literal name for any
of the tree's leaves (T0 represents the root of the cotree).
The CoGraph Rec algorithm is initially called with G = �,
label(T0) = 1 and k = 0.

CoGraph Rec(G;Ti)
if (G contains only one vertex)
label(Ti) = literal name

return true
else
if (G is connected)
if (Ti 6= T0) return false
else
k ++
Generate a new son to Ti named Tk

label(Tk) = : label(T0)
return (CoGraph Rec(G;Tk))

else
foreach connected component Gj of G (j = 1; :::; l)
k ++
Generate a new son to Ti named Tk

label(Tk) = : label(Ti)
return (CoGraph Rec(Gj ;Tk))

Figure 2: CoGraph Rec Algorithm

At each iteration of CoGraph Rec, the algorithm �rst
checks for a degenerate graph which includes only one ver-
tex (a success) and ends its recursion. Otherwise it checks if
the given graph is connected, this is a failure condition (in-
dicates that the given graph is not a cograph) for all vertices
except for the root where it calls itself with the complement
of the graph. If the given graph is disconnected, for each
connected subgraph the CoGraph Rec algorithm calls itself
using the complement of a connected subgraph as the given
graph. During each iteration the cotree is built, each in-
ternal node is labelled with 1 or 0 according to the cotree
properties (k is the node's index). Figure 3 shows the cotree
generation process on the example from Figure 1 (which
represents G0) using the CoGraph Rec algorithm.
Two other e�cient recognition algorithms are based on

the generation of a cotree and are described in [4] and [7].

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

d

a

e f

b

c

g

 1

 00

11

a b g

c d e f

a b

c d

e f

g

T0

ba

g

d

e

c

T

T T T

T T T T

T
T

T1

2 3

4

5

6 7

8

9

10 11

G’

G

G G’

0

G’

1

1

2
2

f

Figure 3: CoTree generation using the Co-
Graph Rec algorithm

3. PROPOSED READ-ONCE ALGORITHM
Any unate function has the property that its simpli�ed

SOP or POS representations include only prime implicants
which are all essential [8]. We assume that a given form
is simpli�ed and is composed of a sum of prime implicants
or a product of prime implicates. A prime implicant (resp.,
prime implicate) is a minimal product (resp., sum) of literals
whose truth (resp., falsehood) implies the truth (resp., false-
hood) of the function and whose removal from the formula
would change the function.
The parse tree (or computation tree) of an SOP (resp.,

POS) may be regarded as a three level circuit with the liter-
als labeling the leaves of the tree, the level one nodes being
the operation � (resp., +) and the root being the operation
+ (resp., �). In an SOP the level one nodes represent the
prime implicants; in a POS they represent the prime impli-
cates.
The algorithm, so called Is Read Once Function (Here:

IROF) is built from several procedures; it is given a function
F in its parse tree representation and produces the read-once
tree if F is a read-once function, and reports failure other-
wise. Figure 4 includes the major steps of the algorithm.
In the �rst step, Check Unate procedure checks if F is a

unate function by scanning the tree in a BFS order while
checking that no literal and its negation exist simultane-
ously. Success in this step will yield N , the size of the sup-
port of F , while a failure will �nish the algorithm.
In the next step, the Build Graph procedure generates the

graph � of the function F . The graph itself is implemented
by an N � N matrix which we call the adjacency matrix
M . Since � is an undirected, unweighted graph, M is a
symmetric binary matrix. M(i; j) is equal to 1 i� the literals
i and j share a common implicant (implicate).
Now the procedure Graph Partition determines if the �

graph is a cograph. Since the read-once function recogni-
tion has cograph recognition as its �rst stage, according to
Theorem 1 the CoGraph Rec algorithm is used (Figure 2)
in order to generate the cotree, then a simple conversion
transforms the cotree to the read-once parse tree. The con-
version maps each 1-node in the cotree to an AND node in
the read-once tree, and each 0-node to an OR node. It is
obvious that a failure on the cograph recognition step will
conclude the algorithm with a failure.
The �nal step, Check Normality, checks if the function

is normal, also as required by Theorem 1. In order to
check normality the algorithm compares the read-once func-
tion represented by the read-once tree with the original
input function. If the functions are logically equivalent,
then the algorithm switches the original tree with the read-
once tree, otherwise it fails. The e�cient implementation of
Check Normality will be described in section 3.1

Is Read Once Function(root)
if (: Check Unate(root)) return false

� = Build Graph(root)
if (: Graph Partition(�, new root)) return false
if (: Check Normality(root, new root)) return false
Swap Net Subtree(root, new root)

Figure 4: Is Read Once Function Algorithm

The algorithm was implemented in the SIS environment,
using SIS database and functions. The algorithm was also

Check Normality(input root, ro root)
input root operation = input root's operation
input cube array = Build Cube Array(input root)
ro cube array = Build Cube Array(ro root)
return (Is Equal(input cube array, ro cube array))

Figure 5: Check Normality Algorithm

Build Cube Array(node)
if (node's operation == PRIMARY INPUT)

val = Get Val(node)
Insert val to cube array

if (node's operation == input root operation)
foreach (node's fanin)
tmp array = Build Cube Array(fanin)
cube array = Append

(cube array, tmp array)
else
foreach (node's fanin)
tmp array = Build Cube Array(fanin)
cube array = Vector Multiply

(cube array, tmp array)

Figure 6: Build Cube Array Algorithm

tested in the SIS environment, and our empirical results are
reported in section 4. A full description of the SIS environ-
ment can be found at [12].

3.1 Check Normality
One of the major steps of the algorithm is checking that

F , the original function, is normal. In other words, the
algorithm checks that the conversion from F to the graph
� and back to a function F�, yields the original function
(F = F�).
The comparison is between the input SOP/POS repre-

sentation of the F represented by a parse tree whose root is
named input root and between the generated read-once tree
whose root is named ro root. The goal is to do the compar-
ison with minimum complexity and without collapsing the
read-once tree.
The procedure Check Normality receives the input parse

tree and the generated read-once tree. It represents each tree
by an integer vector and then checks for vector equivalence.
If the vectors are equal the two formulas represents the same
function, thus the original formula is a read-once function.
The vector representation is needed to prevent sorting lit-
erals on each of the formulas before testing for equivalence.
Figure 5 describes the Check Normality procedure.
Each value in the vector of the input tree represents each

product/sum in a Sum-Of-Product/Product-Of-Sum repre-
sentation of the input function. In the case of the generated
read-once tree, the generated vector represents an equiva-
lent Sum-Of-Product/Product-Of-Sum form. Both vectors
are made by Build Cube Array procedure and the equiva-
lence check is made by Is Equal procedure.
The Build Cube Array procedure builds the integer vector

while scanning the tree bottom up, in a DFS order, taking
care that the �nal form of both trees will be the same. On
each leaf (representing a literal), the Build Cube Array pro-
cedure generates a vector containing one value given by the

Vector Multiply(cube array, tmp array)
if (Size(cube array) == 0)
new array = tmp array

else
new array = 0, k = 0
for(i=0; i < Size(cube array); i++)
for(j=0; j < Size(tmp array); j++)
new array[k] =

cube array[i] + tmp array[j]
k++

Figure 7: Vector Multiply Algorithm

Get Val procedure. This value is di�erent from leaf to leaf
and is equal to 2i, where i is the literal's index given earlier
(i varies from 1 to N , where N is equal to the size of the
support of the function).
On each internal node, the Build Cube Array procedure

checks the node's operation (OR/AND). It compares the
node's operation to the input root 's operation (getting same
format of both trees). If the operations are equal, the
Build Cube Array procedure appends all the vectors of the
node's sons to one vector which represents the current node.
Otherwise, the Build Cube Array procedure performs a vec-
tor multiply operation between all the vectors of the node's
sons, yielding one vector which represents the current node.
The Build Cube Array procedure is given in Figure 6.
A vector multiply operation is an operation between vec-

tors which outputs a vector with a size equal to the product
of the sizes of the input vectors, and where each value is
equal to a sum of one element from each vector. For exam-
ple a vector multiply of (1; 2); (4; 8); (16; 32; 64) will yield a
vector with a size of 12 and with a value of
(21; 37; 69; 25; 41; 73; 22; 38; 70; 26; 42; 74). The vector multi-
ply operation is done by the Vector Multiply procedure and
is given in Figure 7.
On the last step, the Check Normality routine has to

check that the vectors are equal. This is done by �rst check-
ing the sizes and only if they agree, then sorting each vector
and checking element by element.

3.2 An Example
In this section we will examine an example of the algo-

rithm. Let

F = ace+ ade+ bce+ bde+ f

be a logic function which is represented in a three level tree.
First, the algorithm checks if F is a unate function and
�nds F as a positive unate function. During this check the
algorithm sets N to 6 which is the size of the support of F .
The algorithm builds the adjacency matrix according to the
graph of the function (Figure 8).
After generating the adjacency matrix, the algorithm runs

the cograph recognition algorithm which yields a cotree.
This cotree is transformed to an AND/OR tree presented
in Figure 9.
Then, the algorithm checks for normality. This procedure

uses the Build Cube Array procedure to calculate the integer
vectors of the original tree and of the read-once tree. Here,
the original tree is given by: F1 = ace+ ade+ bce+ bde+ f

and the generated tree is given by F2 = f + e(a+ b)(c+ d).
The following is the calculation of the integer vectors

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

de

a

f c

b

1 0 1 1 1 0
0 1 1 1 1 0
1 1 1 0 1 0
1 1 0 1 1 0
1 1 1 1 1 0
0 0 0 0 0 1

Figure 8: The graph of the function and its adja-
cency matrix

over the original tree: Build Cube Array starts with the in-
put root where it �nds a node which has the same operator
as original input root operator (which is itself), so it calls it-
self with each of its sons (Here: cubes) and then appends all
the son's vectors. During each recursive call (for each son)
Build Cube Array performs a vector multiply operation on
each of the input root 's grandsons. But, all these nodes are
primary inputs which are assigned with a vector which in-
cludes one integer. Thus, the vector multiply operation is
reduced to a simple sum and each son is represented by a
one element vector.

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

cb d

e

a

f
+

*

+

+

Figure 9: The Read Once tree

For an arbitrary assignment of integers (powers of 2) for
each literal given by Get Val procedure:

(a, 1; b, 2; c, 4; d, 8; e, 16; f , 32)

the content of input root vector is: 21; 25; 22; 26; 32.
In the case of the read-once tree, the vector calculation

process is represented in Figure 10.
After calculating of both vectors, the Is Equal procedure

checks for equivalence by �rst comparing vectors sizes (Here:
5) and then sorting each vector and comparing them.

3.3 Complexity Analysis
In order to compute the complexity of the algorithm, we

will need several notations. Let L be the size of the in-
put length of F (in SOP or POS representation). Let F be
composed of K cubes/sums, where each of the cubes/sums

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

cb d

e

a

f
+

*

+

+

{1} {2} {4} {8}

{16}

{32}

{21,22,25,26,32}

{21,22,25,26}

{1,2} {4,8}

Figure 10: Vector Calculation Process

includes at most C literals, thus L � K � C. Let N be the
number of di�erent literals in the read-once function. Note
that N > C. For the worst case we can assume N � C (thus
L � K �N).
The algorithm is built from a number of di�erent proce-

dures, thus the one that has the maximum complexity will
dominate the algorithm complexity.

� Check Unate - the procedure scans the input tree, thus
its complexity is O(L).

� Build Graph - the procedure runs over the input tree
and for each cube/sum it generates a clique, thus the
complexity is equal toK times the complexity of build-
ing a clique which is C

2. Thus, the complexity is
O(K � C

2), taking C � N yields O(L �N).

� Graph Partition - this procedure has a known linear
implementation [4],[7] in O(E+N), where E represents
the number of edges in graph �. Thus the complexity
is O(E +N) which is bounded by O(N2).

� Check Normality - this procedure builds two vectors of
integers, where each integer is represented by N bits.
It �rst counts each appearance of each literal in the
input tree and in the read-once tree, then it sorts the
two vectors and compares them. The complexity of
building the vector corresponding to the original func-
tion is O(L � N). Building the vector corresponding
to the read-once tree can be implemented in O(L�N)
as follows. The Build Cube Array procedure will keep
a counter for the sizes of the intermediate vectors it
generates while scanning the read-once tree. The pro-
cedure will perform an append/multiply operation on
two vectors only if the size of the resulted vector will
not exceed K. Otherwise, the procedure will stop and
claim that the function is not normal. This test guar-
antees that the size of the vector resulted from the
read-once parse tree will not exceed K. If the read-
once tree is binary, then each append/multiply oper-
ation takes at most O(K � N) time and since there
are at most O(N) operations, the total complexity
is O(K � N

2) = O(L � N). If the read-once tree
is not binary, it can be transformed to a binary tree
by replacing each non-binary append/multiply oper-
ation by a sequence of binary append/multiply oper-
ations, such that the total number of operations in

the resulted binary tree is at most O(N). The com-
plexity of sorting the two K length vectors is O(N �

K logK), since the operation of comparing two ele-
ments of these vectors takes O(N) time. Thus the
total complexity of Check Normality function is the
maximum between O(L � N) and O(N � K logK).
But O(L � N) and O(N � K logK) are equal, since
O(L) = O(N � K) and logK < N . Thus the com-
plexity of the Check Normality procedure is given by
O(L �N).

� Swap Net Subtree - this procedure just swaps pointers,
and thus has a complexity of O(1).

Gathering all this data, we can see that the most criti-
cal procedures are Build Graph and Check Normality with
complexity of O(L � N) time. Thus the complexity of the
whole algorithm is given by O(L�N).

4. EMPIRICAL RESULTS
We compared our IROF algorithm to the PPF algorithm

[11] and to the QF and GF algorithms from the SIS pack-
age by running them on various read-once functions. All the
algorithms generate the read-once factorization in all the ex-
amples and the results given in Table 1 compare the CPU
time (given in seconds) running each algorithm on each ex-
ample. SOP indicates the number of literals in the Sum Of
Product form and N denotes the number of variables.
We named each formula we tested by a sequence of char-

acters containing two numbers and two letters l and b. The
number after the letter l represents the number of levels in
the read-once tree and the number after the letter b repre-
sents the number of branches in the �rst level. Results are
given textually in Table 1.

Table 1: Read Once results (CPU time)

SOP N QF GF PPF IROF

l2 b10 10240 20 0.11 fail 44.67 0.3
l4 b3 3072 24 0.11 4.67 8.43 0.1
l4 b6 7290 24 0.19 147.41 25.1 0.21
l6 b4 672 20 0.03 0.3 0.41 0.02
l6 b8a 132 52 0.04 0.06 0.48 0.02
l6 b8b 24192 52 1.52 fail 345.04 0.74
l8 b5 3380 29 0.09 5.88 6.16 0.09
l10 b3 2160 30 0.11 2.33 2.67 0.07
l14 b3 6720 42 0.44 20.96 22.45 0.2

From the results given in Table 1 we can see that both
PPF and GF algorithms are much slower than QF and our
IROF algorithms. The PPF algorithm su�ers from Sum of
Products to Product of Sums and Product of Sums to Sum
of Products conversions which consumes much CPU time.
The GF algorithm su�ers from �nding all the kernels of each
example which is a very di�cult process.
The di�erence in run time between the QF and IROF

results are quite small, from the table we can see that except
for the �rst example (l2 b10), the IROF algorithm consumes
less or equal CPU time as QF. We also observe that QF is
faster on read-once functions with few levels while IROF is
faster on read-once functions with many levels.
However, another major di�erence between our IROF al-

gorithm and algorithms based on Algebraic division is when

they are executed with a non-read-once function. In that
case, IROF �nds that the function is not read-once during
its Graph Partition and Check Normality routines (see Fig-
ure 4) while the algorithms based on Algebraic division need
to complete their Algebraic factoring and only then check
that there are literals that appear more than once.

5. CONCLUSIONS
We have presented a very fast algorithm for recognizing

and factoring read-once functions. This algorithm appears
in the general factoring algorithm [5] as an essential subrou-
tine for factoring the read-once functions which appear at
the lower level of the general factoring process. Our method
is based on cograph recognition and on normality checking.
We discussed the algorithm complexity and we showed em-
pirical results running the algorithm in the SIS environment
in comparison to other methods.

6. REFERENCES
[1] R. Brayton and C. McMullen. The decomposition and

factorization of boolean expressions. In Proceedings of
the International Symposium on Circuits and Systems,
(Rome, May 1982), pages 49{54, 1982.

[2] N. Bshouty, T.R.Hancock, and L. Hellerstein.
Learning boolean read-once formulas with arbitrary
symmetric and constant fan-in gates. J. Comput.
System Sci., 50:521{542, 1995.

[3] D. Corneil, H. Lerchs, and L. Burlingham.
Complement reducible graphs. Discrete Applied
Mathematics, 3:163{174, 1981.

[4] D. Corneil, Y. Perl, and L. Stewart. A linear
recognition algorithm for cographs. SIAM Journal of
Computing, 14:926{934, November 1985.

[5] M. Golumbic and A. Mintz. Factoring logic functions
using graph partitioning. In Proc. IEEE/ACM Int.

Conf. Computer Aided Design, November 1999, pages
195{198, 1999.

[6] V. Gurvich. Criteria for repetition-freeness of
functions in the algebra of logic. Soviet Math. Dokl.,
43(3):721{726, 1991.

[7] M. Habib, C. Paul, and L. Viennot. Partition
re�nement techniques: An interesting algorithmic tool
kit. International Journal of Foundations of Computer

Science (IJFCS), 10:147{170, 1999.

[8] J. P. Hayes. The fanout structure of switching
functions. J. of the ACM, 22:551{571, 1975.

[9] M. Karchmer, N. Linial, I. Newman, M. Saks, and
A. Wigderson. Combinatorial characterization of
read-once formulae. Discrete Math., 114:275{282,
1993.

[10] I. Newman. On read-once boolean functions. In
Boolean Function Complexity: Selected Papers from
LMS Symp. Durham, July 1990, pages 24{34, 1990.

[11] J. Peer and R. Pinter. Minimal decomposition of
boolean functions using non-repeating literal trees. In
IFIP, November 1995, 1995.

[12] UCB. SIS: A System for Sequential Circuit Synthesis.
UCB - Electronic Research Library M92/41, 1992.

[13] A. R. R. Wang. Algorithms for Multilevel Logic
Optimization. Ph.D. Thesis, University of California,
Berkeley, CA, 1989.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

