Factoring and Recognition of Read-Once Functions using
Cographs and Normality

Martin C. Golumbic
Department of Mathematics
and Computer Science
Bar-llan University
Ramat Gan 69978, Israel

golumbic@cs.biu.ac.il

ABSTRACT

An approach for factoring general boolean functions was
described in [5] which is based on graph partitioning al-
gorithms. In this paper, we present a very fast algorithm
for recognizing and factoring read-once functions which is
needed as a dedicated factoring subroutine to handle the
lower levels of that factoring process. The algorithm is based
on algorithms for cograph recognition and on checking nor-
mality. Our method has been implemented in the SIS envi-
ronment, and an empirical evaluation is given.

Categories and Subject Descriptors

J.6 [Computer Application]: Computer Aided Engineer-
ing; 1.1.2 [Computing Methodologies]: Symbolic and Al-
gebraic Manipulation

General Terms
Factoring Algorithms

Keywords

Read-Once Functions, Factoring, Normality, Cograph

1. INTRODUCTION

A Boolean function F' is called a read-once function if it
has a factored form in which each variable appears exactly
once. For example, the function F = F1 = aq + acp +
ace is a read-once function since it can be factored into the
read-once formula F = F2 = a(q + ¢(p + ¢)). Read-once
functions were first introduced by Hayes [8] and were called
fanout-free functions and are also known as non-repeatable
tree functions since the parse tree of a read-once formula has
no variable repeated. Read-once functions have interesting
special properties [6], [9], [10] and according to [11] account
for a large percentage of functions which arise in real circuit

Permission to make digital or hard copies of all or part of this work for
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.

Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

Aviad Mintz
Department of Mathematics
and Computer Science
Bar-llan University
Ramat Gan 69978, Israel

mintz@cs.biu.ac.il

Udi Rotics
School of Mathematics and
Computer Science
Netanya Academic College
Netanya 42365, Israel

rotics@mars.netanya.ac.il

applications. They have also gained recent interest in the
field of computational learning theory [2].

Hayes described an algorithm for identifying and factor-
ing fanout-free functions based on adjacency of the function
variables [8], however its algorithm suffers from high com-
plexity.

Peer and Pinter described in [11] a factoring algorithm
for read-once functions. They have proved that their al-
gorithm gets the optimal results but the main drawback
of the algorithm was its non-polynomial complexity. The
main reason for this non-polynomial complexity is due to
the need for repeated calls to a routine that converts sum-
of-products boolean function representation to a product-
of-sums boolean function representation, or vice-versa.

In [5] a factoring algorithm for general Boolean functions
was described which builds the factored form from top to
bottom using graph partitioning, and where read-once func-
tions are handled specially as they appear at the lower levels
of the factoring process. It was noted there, that this algo-
rithm incorporates read-once recognition and factoring with
a new method having polynomial complexity. As an integral
component of general factoring using graph partitioning, the
polynomial algorithm for read-once functions is presented in
this paper.

Algorithms based on Algebraic factoring (Quick Factor,
Good Factor) [1],[13] can also be used in order to factor read-
once functions. These general factoring algorithms have
polynomial complexity and from our experiments they pro-
duce the read-once tree for read-once functions. No formal
proof has been given (nor any counter example) showing
that they correctly recognize read-once functions, but even
in the case that such a proof can be given, the algorithms
will spend redundant time (they will have to run to comple-
tion) before they identify that a function is not read-once.
We will refer to these algorithms according to their factor-
ing engine (ex. QF and GF') and compare their performance
with our method.

2. PROPERTIES OF READ-ONCE FUNC-
TIONS

The underpinnings of our algorithm are based on the prop-
erties of read-once functions in [6] and on the properties of
Py-free graphs [3]. First, we will introduce several defini-
tions in order to explain the main theorem of [6] that we use
in our algorithm. Then we will describe the theorem and

we will discuss Ps-free graphs, also known as cographs. The
graph P; denotes a chordless path containing only 3 edges
and 4 vertices. A graph is Ps-free if it contains no copy of
P, as an induced subgraph.

A wunate function is a Boolean function represented by a
formula such that each variable appears either in the positive
or in the negative form throughout the formula. Read-once
functions are unate, but F' = ab + ac + bc is an example of
a unate function which is not a read-once function.

Let F be a boolean function. We define the Dual function
F* of F by the following: F* = F*(a1,...,a,) = F'(a},...,a})
where a’ and F' denotes the negation of a and F resp. For
example, let F = ab + cd, according to the definition of the
Dual function we will have F* = (a'b’ 4+ c'd’)" which is equal
to (a+b)(c+d). Here we note the well known property that
the dual function replaces each * operator with + operator
and vice versa.

The dual operation * has several properties including

e """ =F

. (P = (FY

o (Fi+ F2)* = Fi* % Fy*
o (FixFy)"=F1" + Fy"

where the last two are De Morgan laws.

We define a graph I' = (V,E) of a unate function F
which is given in sum of products form F. The vertices
in V ={a1,... ,an} represent the different literals in F, so
the number of vertices in the graph I' is equal to the size of
the support of F. (We remind that the support of a function
is the set of the function’s variables). An edge (a;,a;) in E
exists if and only if its literals a;,a; both appear in some
product term of F. Thus each product in F induces a clique
in I

The mapping of F to I' is not one to one, there can be
more than one function mapped to the same graph I'. As
an example, the functions F = abc and F» = ab + bc + ac
are mapped to the same graph I'.

Similar to the mapping of F to I' we define a mapping
of T to function Fr as follows. For each arbitrary graph
I’ let us find the set of all maximal cliques of the graph
and transform each maximal clique to a cube in Fr, thus
obtaining a sum-of-products.

We will say that a function F' is normal if mapping it to a
graph I’ and vice versa will yield the original function, i.e.,
F = Fr. As an example the function F; = abc is normal
while the function Fy = ab + ac + bc is not.

The following is the main theorem for read-once functions
stated by [6]:

THEOREM 1. Let F be a unate function and F* be its dual
function and let T be the complement graph of T' (E are the
edges of the graph T'). Then all the following statements are
equivalent:

e F (F*) are read-once functions.

e F (F*) is normal and its graph T' (I'*) contains no
subgraph isomorphic to Py (Py-free).

e The graphs T' and T'" have no edges in common.

e The union of the graphs T' and T forms a complete
graph on the support of F (F*).

Figure 1: CoGraph and CoTree example

e I'=(V,E) and " =T = (V,E).

From this theorem one can sketch a procedure to recognize
a read-once function. Given a formula, generate the graph
[, check if the graph I is a Ps-free graph and then check if
the function that is represented is normal.

We note here, that checking for normality is not simple.
Although mapping a formula F to the graph I' is obvious,
the reverse mapping is not. This reverse mapping should
find all maximal cliques of a graph, a problem which is NP-
complete in general. We will solve this problem differently
for P4-free graphs as will be seen in section 3.1.

Py-free graphs are known also by the name of cographs -
complement reducible graphs and are discussed in [3]. We
mention the following properties of cographs:

e Any subgraph of a cograph is also a cograph.
e The complement of a cograph is also a cograph.
e A complement of a connected cograph is disconnected.

A cograph has a unique tree representation called the
cotree, it forms the basis of cograph recognition, and in our
case for generating all maximal cliques.

The cotree is constructed as follows: The cotree leaves
are the vertices of the corresponding cograph. Every inter-
nal node except possibly the root, will have two or more
children; the root will have only one child exactly when the
represented cograph is disconnected. Moreover, the cotree
for a particular cograph is unique up to a permutation of
the children of the internal nodes.

The internal nodes in the cotree are labeled as follows:
the root is labelled 1, the children of a node with label 1 are
labelled 0, the children of a node labelled 0 are labelled 1.
We will refer to the internal nodes of cotree as 0-nodes and
1-nodes. Two nodes z and y of the cograph are adjacent if
and only if the unique path from z to the root of the tree
meets the unique path from y to the root of the tree at a
1-node.

For example, Figure 1 illustrates a cograph and its related
cotree of the function F = acd +aef +ag—+bed+bef +bg =
(a + b)(cd + ef + g). We can see that the nodes of the
cograph are the literals of F' and that each product in F' is
represented by a clique in the cograph. Furthermore, nodes
a and c in the cograph are adjacent and their paths in the
cotree meets at the root which is a 1-node, while nodes ¢
and e are not adjacent in the cograph and their paths in the
cotree meets at a 0-node.

An algorithm recognizing cographs and building the cotrees
is based on the properties of cographs and is described in

Figure 2. We will use T to represent the cotree, {T;} to
represent the cotree’s nodes which are labelled by 0 or 1 for
any internal nodes, or labelled by the literal name for any
of the tree’s leaves (T represents the root of the cotree).
The CoGraph_Rec algorithm is initially called with G =T,
label(To) =1 and k = 0.

CoGraph_Rec(G, T)
if (G contains only one vertex)
label(T;) = literal_-name
return true
else
if (G is connected)
if (T; # To) return false
else
k++
Generate a new son to T; named T
label(T}) = — label(To)
return (CoGraph_Rec(G, T}))
else
foreach connected component G of G (j =1, ...,1)
k++
Generate a new son to T; named T},
label(Ty) = — label(T;)

i

return (CoGraph_Rec(Gj, Tk))

Figure 2: CoGraph_Rec Algorithm

At each iteration of CoGraph_Rec, the algorithm first
checks for a degenerate graph which includes only one ver-
tex (a success) and ends its recursion. Otherwise it checks if
the given graph is connected, this is a failure condition (in-
dicates that the given graph is not a cograph) for all vertices
except for the root where it calls itself with the complement
of the graph. If the given graph is disconnected, for each
connected subgraph the CoGraph_Rec algorithm calls itself
using the complement of a connected subgraph as the given
graph. During each iteration the cotree is built, each in-
ternal node is labelled with 1 or 0 according to the cotree
properties (k is the node’s index). Figure 3 shows the cotree
generation process on the example from Figure 1 (which
represents Go) using the CoGraph_Rec algorithm.

Two other efficient recognition algorithms are based on
the generation of a cotree and are described in [4] and [7].

e f
Go

c

G,

a b

D

G,

a b

. °

Figure 3: CoTree generation using the Co-

Graph_Rec algorithm

3. PROPOSED READ-ONCE ALGORITHM

Any unate function has the property that its simplified
SOP or POS representations include only prime implicants
which are all essential [8]. We assume that a given form
is simplified and is composed of a sum of prime implicants
or a product of prime implicates. A prime implicant (resp.,
prime implicate) is a minimal product (resp., sum) of literals
whose truth (resp., falsehood) implies the truth (resp., false-
hood) of the function and whose removal from the formula
would change the function.

The parse tree (or computation tree) of an SOP (resp.,
POS) may be regarded as a three level circuit with the liter-
als labeling the leaves of the tree, the level one nodes being
the operation * (resp., +) and the root being the operation
+ (resp., *). In an SOP the level one nodes represent the
prime implicants; in a POS they represent the prime impli-
cates.

The algorithm, so called Is_Read-Once_Function (Here:
IROF) is built from several procedures; it is given a function
F in its parse tree representation and produces the read-once
tree if F' is a read-once function, and reports failure other-
wise. Figure 4 includes the major steps of the algorithm.

In the first step, Check_Unate procedure checks if F'is a
unate function by scanning the tree in a BFS order while
checking that no literal and its negation exist simultane-
ously. Success in this step will yield IV, the size of the sup-
port of F, while a failure will finish the algorithm.

In the next step, the Build_Graph procedure generates the
graph T of the function F. The graph itself is implemented
by an N % N matrix which we call the adjacency matriz
M. Since I' is an undirected, unweighted graph, M is a
symmetric binary matrix. M (4,) is equal to 1 iff the literals
i and j share a common implicant (implicate).

Now the procedure Graph_Partition determines if the I’
graph is a cograph. Since the read-once function recogni-
tion has cograph recognition as its first stage, according to
Theorem 1 the CoGraph_Rec algorithm is used (Figure 2)
in order to generate the cotree, then a simple conversion
transforms the cotree to the read-once parse tree. The con-
version maps each 1-node in the cotree to an AND node in
the read-once tree, and each 0-node to an OR node. It is
obvious that a failure on the cograph recognition step will
conclude the algorithm with a failure.

The final step, Check_Normality, checks if the function
is normal, also as required by Theorem 1. In order to
check normality the algorithm compares the read-once func-
tion represented by the read-once tree with the original
input function. If the functions are logically equivalent,
then the algorithm switches the original tree with the read-
once tree, otherwise it fails. The efficient implementation of
Check_Normality will be described in section 3.1

Is_Read_Once_Function(root)
if (= Check_Unate(root)) return false
I' = Build_Graph(root)
if (- Graph_Partition(I", new_root)) return false
if (= Check_Normality(root, new_root)) return false
Swap_Net_Subtree(root, new_root)

Figure 4: Is_Read_Once_Function Algorithm

The algorithm was implemented in the SIS environment,
using SIS database and functions. The algorithm was also

Check_Normality(input_root, ro_root)
input_root_operation = input_root’s operation
input_cube_array = Build_Cube_Array(input_root)
ro_cube_array = Build_Cube_Array(ro_root)
return (Is_Equal(input_cube_array, ro_cube_array))

Figure 5: Check_Normality Algorithm

Build_Cube_Array(node)
if (node’s operation == PRIMARY _INPUT)
val = Get_Val(node)
Insert val to cube_array
if (node’s operation == input_root_operation)
foreach (node’s fanin)
tmp_array = Build_Cube_Array(fanin)
cube_array = Append
(cube_array, tmp_array)
else
foreach (node’s fanin)
tmp_array = Build_Cube_Array(fanin)
cube_array = Vector_Multiply
(cube_array, tmp_array)

Figure 6: Build_Cube_Array Algorithm

tested in the SIS environment, and our empirical results are
reported in section 4. A full description of the SIS environ-
ment can be found at [12].

3.1 Check Normality

One of the major steps of the algorithm is checking that
F, the original function, is normal. In other words, the
algorithm checks that the conversion from F to the graph
I' and back to a function Fr, yields the original function
(F =Fr).

The comparison is between the input SOP/POS repre-
sentation of the F' represented by a parse tree whose root is
named input_root and between the generated read-once tree
whose root is named ro_root. The goal is to do the compar-
ison with minimum complexity and without collapsing the
read-once tree.

The procedure Check_Normality receives the input parse
tree and the generated read-once tree. It represents each tree
by an integer vector and then checks for vector equivalence.
If the vectors are equal the two formulas represents the same
function, thus the original formula is a read-once function.
The vector representation is needed to prevent sorting lit-
erals on each of the formulas before testing for equivalence.
Figure 5 describes the Check_Normality procedure.

Each value in the vector of the input tree represents each
product/sum in a Sum-Of-Product/Product-Of-Sum repre-
sentation of the input function. In the case of the generated
read-once tree, the generated vector represents an equiva-
lent Sum-Of-Product/Product-Of-Sum form. Both vectors
are made by Build_Cube_Array procedure and the equiva-
lence check is made by Is_Equal procedure.

The Build_Cube_Array procedure builds the integer vector
while scanning the tree bottom up, in a DFS order, taking
care that the final form of both trees will be the same. On
each leaf (representing a literal), the Build_Cube_Array pro-
cedure generates a vector containing one value given by the

Vector_Multiply(cube_array, tmp_array)
if (Size(cube_array) == 0)
new_array = tmp_array
else
new_array = 0, k =0
for(i=0; i < Size(cube_array); i++)
for(j=0; j < Size(tmp_array); j++)
new_arraylk] =
cube_array[i] + tmp_array|j]
k++

Figure 7: Vector_Multiply Algorithm

Get_Val procedure. This value is different from leaf to leaf
and is equal to 2¢, where i is the literal’s index given earlier
(7 varies from 1 to N, where N is equal to the size of the
support of the function).

On each internal node, the Build_Cube_Array procedure
checks the node’s operation (OR/AND). It compares the
node’s operation to the input_root’s operation (getting same
format of both trees). If the operations are equal, the
Build_Cube_Array procedure appends all the vectors of the
node’s sons to one vector which represents the current node.
Otherwise, the Build_Cube_Array procedure performs a vec-
tor multiply operation between all the vectors of the node’s
sons, yielding one vector which represents the current node.
The Build_Cube_Array procedure is given in Figure 6.

A wvector multiply operation is an operation between vec-
tors which outputs a vector with a size equal to the product
of the sizes of the input vectors, and where each value is
equal to a sum of one element from each vector. For exam-
ple a vector multiply of (1,2), (4, 8), (16, 32,64) will yield a
vector with a size of 12 and with a value of
(21, 37,69, 25,41, 73, 22,38, 70, 26, 42, 74). The vector multi-
ply operation is done by the Vector_Multiply procedure and
is given in Figure 7.

On the last step, the Check Normality routine has to
check that the vectors are equal. This is done by first check-
ing the sizes and only if they agree, then sorting each vector
and checking element by element.

3.2 An Example

In this section we will examine an example of the algo-
rithm. Let

F = ace + ade + bce + bde + f

be a logic function which is represented in a three level tree.
First, the algorithm checks if F' is a unate function and
finds F' as a positive unate function. During this check the
algorithm sets IV to 6 which is the size of the support of F.
The algorithm builds the adjacency matrix according to the
graph of the function (Figure 8).

After generating the adjacency matrix, the algorithm runs
the cograph recognition algorithm which yields a cotree.
This cotree is transformed to an AND/OR tree presented
in Figure 9.

Then, the algorithm checks for normality. This procedure
uses the Build_Cube_Array procedure to calculate the integer
vectors of the original tree and of the read-once tree. Here,
the original tree is given by: F1 = ace + ade + bce + bde + f
and the generated tree is given by Fo = f +e(a +b)(c+d).

The following is the calculation of the integer vectors

0]
Q

ORRROR
ORRRRO
ORORRR
ORRORR
ORRRRR
ROOOOO

Figure 8: The graph of the function and its adja-
cency matrix

over the original tree: Build_Cube_Array starts with the in-
put_root where it finds a node which has the same operator
as original input_root operator (which is itself), so it calls it-
self with each of its sons (Here: cubes) and then appends all
the son’s vectors. During each recursive call (for each son)
Build_Cube_Array performs a wvector multiply operation on
each of the input_root’s grandsons. But, all these nodes are
primary inputs which are assigned with a vector which in-
cludes one integer. Thus, the vector multiply operation is
reduced to a simple sum and each son is represented by a
one element vector.

+

Figure 9: The Read Once tree

For an arbitrary assignment of integers (powers of 2) for
each literal given by Get_Val procedure:

(ae1,be2,ce4d,de8ee 16, f < 32)

the content of input_root vector is: 21, 25,22, 26, 32.

In the case of the read-once tree, the vector calculation
process is represented in Figure 10.

After calculating of both vectors, the Is_Fqual procedure
checks for equivalence by first comparing vectors sizes (Here:
5) and then sorting each vector and comparing them.

3.3 Complexity Analysis

In order to compute the complexity of the algorithm, we
will need several notations. Let L be the size of the in-
put length of F (in SOP or POS representation). Let F be
composed of K cubes/sums, where each of the cubes/sums

{21,22,25,26,32} +

{21,22,25,26} *

{1,2} +

a b C d
{1} {2} {4} {8}

Figure 10: Vector Calculation Process

includes at most C literals, thus L < K x C. Let N be the
number of different literals in the read-once function. Note
that N > C. For the worst case we can assume N = C (thus
L~ K x N).

The algorithm is built from a number of different proce-
dures, thus the one that has the maximum complexity will
dominate the algorithm complexity.

Check_Unate - the procedure scans the input tree, thus
its complexity is O(L).

e Build_Graph - the procedure runs over the input tree
and for each cube/sum it generates a clique, thus the
complexity is equal to K times the complexity of build-
ing a clique which is C2. Thus, the complexity is
O(K x C?), taking C =~ N yields O(L x N).

Graph_Partition - this procedure has a known linear
implementation [4],[7] in O(E+N), where E represents
the number of edges in graph I". Thus the complexity
is O(E + N) which is bounded by O(N?).

e Check_Normality - this procedure builds two vectors of
integers, where each integer is represented by N bits.
It first counts each appearance of each literal in the
input tree and in the read-once tree, then it sorts the
two vectors and compares them. The complexity of
building the vector corresponding to the original func-
tion is O(L x N). Building the vector corresponding
to the read-once tree can be implemented in O(L x N)
as follows. The Build_Cube_Array procedure will keep
a counter for the sizes of the intermediate vectors it
generates while scanning the read-once tree. The pro-
cedure will perform an append/multiply operation on
two vectors only if the size of the resulted vector will
not exceed K. Otherwise, the procedure will stop and
claim that the function is not normal. This test guar-
antees that the size of the vector resulted from the
read-once parse tree will not exceed K. If the read-
once tree is binary, then each append/multiply oper-
ation takes at most O(K x N) time and since there
are at most O(NN) operations, the total complexity
is O(K x N?) = O(L x N). If the read-once tree
is not binary, it can be transformed to a binary tree
by replacing each non-binary append/multiply oper-
ation by a sequence of binary append/multiply oper-
ations, such that the total number of operations in

the resulted binary tree is at most O(N). The com-
plexity of sorting the two K length vectors is O(N x
Klog K), since the operation of comparing two ele-
ments of these vectors takes O(N) time. Thus the
total complexity of Check_Normality function is the
maximum between O(L x N) and O(N x Klog K).
But O(L x N) and O(N x Klog K') are equal, since
O(L) = O(N x K) and log K < N. Thus the com-
plexity of the Check_Normality procedure is given by
O(L x N).

o Swap_Net_Subtree - this procedure just swaps pointers,
and thus has a complexity of O(1).

Gathering all this data, we can see that the most criti-
cal procedures are Build_Graph and Check_Normality with
complexity of O(L x N) time. Thus the complexity of the
whole algorithm is given by O(L x N).

4. EMPIRICAL RESULTS

We compared our IROF algorithm to the PPF algorithm
[11] and to the QF and GF algorithms from the SIS pack-
age by running them on various read-once functions. All the
algorithms generate the read-once factorization in all the ex-
amples and the results given in Table 1 compare the CPU
time (given in seconds) running each algorithm on each ex-
ample. SOP indicates the number of literals in the Sum Of
Product form and N denotes the number of variables.

We named each formula we tested by a sequence of char-
acters containing two numbers and two letters 1 and b. The
number after the letter | represents the number of levels in
the read-once tree and the number after the letter b repre-
sents the number of branches in the first level. Results are
given textually in Table 1.

Table 1: Read Once results (CPU time)
| | SOP | N | QF | GF | PPF | IROF |
12.b10 | 10240 | 20 | 0.11 fail 44.67 0.3
14_b3 3072 | 24 | 0.11 4.67 8.43 0.1
14_b6 7290 | 24 | 0.19 | 147.41 25.1 0.21
16_b4 672 | 20 | 0.03 0.3 0.41 0.02
16_b8a 132 | 52 | 0.04 0.06 0.48 0.02
16_b8b | 24192 | 52 | 1.52 fail | 345.04 0.74
18_b5 3380 | 29 | 0.09 5.88 6.16 0.09
110_b3 2160 | 30 | 0.11 2.33 2.67 0.07
114_b3 6720 | 42 | 0.44 20.96 22.45 0.2

From the results given in Table 1 we can see that both
PPF and GF algorithms are much slower than QF and our
IROF algorithms. The PPF algorithm suffers from Sum of
Products to Product of Sums and Product of Sums to Sum
of Products conversions which consumes much CPU time.
The GF algorithm suffers from finding all the kernels of each
example which is a very difficult process.

The difference in run time between the QF and IROF
results are quite small, from the table we can see that except
for the first example (12_b10), the IROF algorithm consumes
less or equal CPU time as QF. We also observe that QF is
faster on read-once functions with few levels while IROF is
faster on read-once functions with many levels.

However, another major difference between our IROF al-
gorithm and algorithms based on Algebraic division is when

they are executed with a non-read-once function. In that
case, IROF finds that the function is not read-once during
its Graph_Partition and Check_Normality routines (see Fig-
ure 4) while the algorithms based on Algebraic division need
to complete their Algebraic factoring and only then check
that there are literals that appear more than once.

5. CONCLUSIONS

We have presented a very fast algorithm for recognizing
and factoring read-once functions. This algorithm appears
in the general factoring algorithm [5] as an essential subrou-
tine for factoring the read-once functions which appear at
the lower level of the general factoring process. Our method
is based on cograph recognition and on normality checking.
We discussed the algorithm complexity and we showed em-
pirical results running the algorithm in the SIS environment
in comparison to other methods.

6. REFERENCES

[1] R. Brayton and C. McMullen. The decomposition and
factorization of boolean expressions. In Proceedings of
the International Symposium on Circuits and Systems,
(Rome, May 1982), pages 49-54, 1982.

[2] N. Bshouty, T.R.Hancock, and L. Hellerstein.
Learning boolean read-once formulas with arbitrary
symmetric and constant fan-in gates. J. Comput.
System Sci., 50:521-542, 1995.

[3] D. Corneil, H. Lerchs, and L. Burlingham.
Complement reducible graphs. Discrete Applied
Mathematics, 3:163-174, 1981.

[4] D. Corneil, Y. Perl, and L. Stewart. A linear
recognition algorithm for cographs. STAM Journal of
Computing, 14:926-934, November 1985.

[6] M. Golumbic and A. Mintz. Factoring logic functions
using graph partitioning. In Proc. IEEE/ACM Int.
Conf. Computer Aided Design, November 1999, pages
195-198, 1999.

[6] V. Gurvich. Criteria for repetition-freeness of
functions in the algebra of logic. Soviet Math. Dokl.,
43(3):721-726, 1991.

[7] M. Habib, C. Paul, and L. Viennot. Partition
refinement techniques: An interesting algorithmic tool
kit. International Journal of Foundations of Computer
Science (IJFCS), 10:147-170, 1999.

[8] J. P. Hayes. The fanout structure of switching
functions. J. of the ACM, 22:551-571, 1975.

[9] M. Karchmer, N. Linial, I. Newman, M. Saks, and
A. Wigderson. Combinatorial characterization of
read-once formulae. Discrete Math., 114:275-282,
1993.

[10] I. Newman. On read-once boolean functions. In
Boolean Function Complezity: Selected Papers from
LMS Symp. Durham, July 1990, pages 24-34, 1990.

[11] J. Peer and R. Pinter. Minimal decomposition of
boolean functions using non-repeating literal trees. In
IFIP, November 1995, 1995.

[12] UCB. SIS: A System for Sequential Circuit Synthesis.
UCB - Electronic Research Library M92/41, 1992.

[13] A. R. R. Wang. Algorithms for Multilevel Logic
Optimization. Ph.D. Thesis, University of California,
Berkeley, CA, 1989.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

