
�������

�	��
�������������������	�����������	��������	������������

Chair: Rajesh Gupta, UC Irvine
Organizers: Shishpal Rawat, Intel Corporation and Ingrid Verbauwhede, UCLA

���������

The focus of this panel is on issues surrounding the use of C++ in
modeling, integration of silicon IP and system-on-chip designs. In
the last two years there have been several announcements promot-
ing C++ based solutions and of multiple consortia (SystemC,
Cynapps, Accellera, SpecC) that represent increasing commercial
interest both from tool vendors as well as perhaps expression of
genuine needs from the design houses. There are, however, seri-
ous questions about what value proposition does a C++ based
design methodology bring to the IC or system designer? What has
changed in the modeling technology (and/or available tools) that
gives a new capability? Is synthesis the right target ? or Valida-
tion? Tester modeling or testbench generation? This panel brings
together advocates and opponents from the user community to
highlight the achievements and the challenges that remain in use
of C++ for use in microelectronic circuits and systems.

Position Statements

Gerard Berry
Esterel Technologies, France
Modern electronic design deals with larger and functionally richer
objects than before. They must be described at several interrelated
levels: physical netlists, RTL, behavioral, embedded software, etc.
Checking the functional correctness of large designs can only be
done at higher levels of abstraction, using fancy simulation and
verification algorithms. Classical HDLs are targeted to lower lev-
els and are inadequate for general algorithmic programming.
Therefore, it is tempting to embed both the designs and the algo-
rithms in a general-purpose language such as C++, relying on
mechanisms such as object-orientation to ease integration. Then,
designs can be massaged, simulated, and verified in a single
framework, whose linguistic basis furthermore belongs to the
common background of most users.

However, there are many hidden drawbacks. C++ is a complex
language with a complex semantics. It is unclear that the embed-
ded designs will themselves have a well-defined semantics, a pre-
liminary to any verification activity. Object-oriented design is
much more complex than beginners believe, and badly designed
object structures become a rigid nightmare. Code reuse is non-
trivial: template libraries inflate rapidly even for classical data
structures. Finally, making users agree on unified, understand-
able, and flexible C++ descriptions of the various levels will be
difficult.

Problems will not be magically solved by Esperanto-C++, as for
any other field of computing. The initial enthusiasm should rap-
idly leave place to a serious study of the concerns above. Finally,
there is clearly still room for high value-added cleanly designed
languages for specific problems (data paths, pipeline structures,
controllers, etc.).

Ramesh Chandra
ST Microelectronics, San Diego, CA
The proliferation of C++ based design techniques and the wide
interest generated is an indication of the fact that the designers
were increasingly facing questions that were not answered satis-
factorily with current HDL-based design techniques. These ques-
tions include:
- Shorter TTM and more complex designs are demanding higher
designer productivity and design management. This requires mov-
ing up a ladder in design abstraction. C++ is an ideal choice for
behavioral levels and beyond.
- Verification is increasingly becoming a bottleneck in delivering
designs. The designers are faced with multiple vendor specific
simulation tools, languages, co-simulation, PLI etc. C++ inte-
grates the design and verification into a common framework, fa-
cilitating improved verification productivity.
- SOC designers are increasingly facing the need for a common
platform for hardware-software co-design. Until the arrival of
recent C++ based techniques they had to manage separately the
HDL for hardware and c/c++ for software and struggle at times
with a late integration.
- Hardware architecture design and design exploration was mostly
limited to careful architecture and RTL design by expert designers
and gate-level optimizations by synthesis tools. C++ based design
techniques have opened new frontiers for architecture and design
space exploration.
- For complex designs, functional or performance models have
normally been built in C/C++ and at some point the design with
HDL is kicked off. With the advent of C++ oriented techniques,
the designer can now make a smooth and transparent migration
from modeling to design phase and maintain a complete consis-
tency between the executable models and design implemented
through different phases.

Daniel Gajski
University of California, Irvine
"C++ as presently practiced in EDA industry is creating more
chaos than progress and if the path is followed it will slow down
progress in EDA for 10 years to come." I make this statement
based on two observations: firstly, let us not deceive ourselves
that adding classes is just another use of C++. In fact, we have to
learn the meaning of every class and understand what it is going
to do in our design. Therefore we are creating a new language—
we call it C++, but C++ with classes for hardware is essentially a
new language. Secondly, simulation is a weaker concept than
synthesis and verification. As long as it is syntactically correct and
produces correct results, anybody can make a model and do simu-
lation. To synthesize and verify, we have to understand what that
model means. Therefore, synthesis and verification imposes much
stronger requirements on the language, on the tools, and every-

71

thing else. Therefore, the only way to solve this problem is to
have some fixed levels of abstraction and their meaning, which is
semantics, so that I know what you mean when you write a + b.
Syntax is not enough. Consider VHDL: it is a simulation lan-
guage, and it really is not synthesizable. However, after ten years
of messing around, we have a VHDL subset, in fact, many subsets
introduced by different EDA vendors, which are synthesizable. To
avoid this mess for the coming next 10 or 15 years, let us now
define a synthesizable subset and not expand it. Then we will have
one language that’s synthesizable, verifiable, and simulatable

Kris Konigsfeld
Intel Corporation
C++ is a bad answer to a poorly phrased question. The quest for
abstraction, HW/SW co-simulation, simulation performance,
faster SOC development, and inexpensive development environ-
ments are all reasonable requests of hardware developers and
architects. In many domains, hardware developers are coding
analysis and automation solutions in languages much better than
their HDLs allow them to build hardware. When they code in
their HDL, they feel overly restricted and without power to ex-
press large portions of the design. Architects, executing in a less
constrained environment, have employed C/C++ solutions to
achieve fast and abstract descriptions of large systems. So why
isn’t C/C++ the answer to the designer’s dilemma? It is the same
reason that Verilog and VHDL were invented instead of using C.
The constraints of language analysis, code predictability, hierar-
chy analysis, netlist generation, synthesis, correct by construction
development, and controlled parallel execution all point to an
HDL language solution.
The problem is that the EDA industry has been unable or unwill-
ing to re-define, extend, or re-invent a language that comprehends
the power of a HDL but achieves the requirements motivated by
larger designs.
C++ and other object-oriented languages have improved coding
productivity, enabling larger software development projects with
faster production and less defects. I believe the EDA industry
should use this power to produce a better HDL, not eliminate it.
So, the question is: “What’s going to be the definition of the HDL
that enables 21st century hardware development?” I don’t believe
C++ is a good answer, it is just the easiest.

Patrick Schaumont
IMEC, Leuven, Belgium
This position statement builds on the opinion of designers with
hands-on experience in creating silicon proof with C++ based
design tools. In the past years, several designs were completed at
IMEC using C++ design technology. Feedback was collected
from their designers by interview and their messages are summa-
rized as follows.

For design at system level, C++ is king. At block level, a symbio-
sis of HDL and C++ likely is needed. In any case there are clear
benefits that come with the use of C++ for electronic system de-
sign. First, some specialized system design tasks like fixed point
refinement, operation profiling and the construction of hybrid
simulations are easy to do with a programming language like C++.
In addition, advanced design styles based on object oriented tech-
niques are possible. Next, the openness of C++ provides an ideal
container for design management like script creation, gluing of
heterogeneous formats and custom code generation.
So where does the confusion, suggested in the panel question,
come from? To begin with, advocating C++ as a replacement
HDL is a bad idea. It creates false expectations, and it offers a
solution on top of an existing one.
Next, the introduction of new design languages like C++ requires
education. Universities help in this process. But also EDA com-
panies should not leave everything to their marketing depart-
ments. Also the system houses should take some time to really try
things out rather then hoping to hear canned answers on trade
shows.
And finally, let’s keep an eye on the core of the problem. That is,
the art of design itself is changing and new design methodologies
are needed.

Ingrid Verbauwhede
University of California, Los Angeles
Looking at the latest ISSCC proceedings for true systems on a
chip: a fully integrated Bluetooth contains a RF front-end, a base-
band processor, an embedded micro-controller for the complete
protocol stack, audio codecs, etc. A universal cable set-top box
contains cable modems, 2D/3D graphics processor, several ADC’s
and DAC’s, an embedded micro-controller, and so on.
What components of these SOCs can be efficiently modeled, veri-
fied, designed with C++? The answer is not the RF front-end, not
the ADCs and DACs, not the FFT architecture, not the parallel
processing of the video processor. Most likely the protocol stack,
some parts of the baseband processors and cable modems can be
modeled using C++. It is still possible to model the other compo-
nents using C++ for verification purposes, but a designer will not
want to use it for design purposes because the level of abstraction
is not right: for instance, how do I describe efficiently a FFT
butterfly in C++?\
I believe C++ will work fine to capture sequential processing. To
quote an experience, a design experiment with graduate students
showed that the design time for a speech processing algorithm
(sequential in nature) in a C++ design environment, took the same
amount of design time as implementing the same algorithm on a
programmable DSP. However, for C++ to be accepted by the
broader design community, the technology proponents have to
realize that their technology has a useful but limited application
field. Even more important, education of designers is a must.

72

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

