
Test Strategies for BIST at the Algorithmic
and Register-Transfer Levels

Kelly A. Ockunzzi Chris Papachristou
IBM Microelectronics EECS Dept., Case Western Reserve University
Burlington, VT 05452 Cleveland, OH 44106

(802) 769-8757 (216) 368-5277
ockunzzi@us.ibm.com cap@eecs.cwru.edu

ABSTRACT
The proposed BIST-based DFT method targets testability

problems caused by three constructs. The first construct is recon-
vergent fanout in a circuit behavior, which causes correlation. The
second construct, control statements, also cause correlation, and
relational operations degrade observability. The third construct is
random-pattern-resistant RTL modules, which cannot be tested
effectively with random patterns. Test strategies are presented that
overcome the testability problems by modifying the circuit behav-
ior. An analysis and insertion scheme that systematically identifies
the problems and applies the strategies is described. Experimental
results from seven examples show that this scheme improves fault
coverage while minimizing the impact on area and critical delay.

Categories and Subject Descriptors: B.8.1 [Performance and
Reliability]: Reliability, Testing, and Fault-Tolerance.

General Terms: Design, Theory

Keywords: design-for-test, built-in self-test, test synthesis

1. INTRODUCTION
Design-for-test (DFT) methods offer an economical and effec-

tive solution to the problem of testing circuits for manufacturing
defects. As technology improvements enable the production of
more complex circuits, circuit design moves to higher levels of
abstraction. Considering testability early in the circuit design
allows more opportunities to improve the testability of a design
while minimizing the impact on performance and area.

Our approach applies pseudorandom built-in self-test (BIST)
and we assume a scan-based approach will not be used. We exam-
ine a circuit in its functional RTL form, which includes high level
and register-transfer level (RTL) information. For example, a con-
trol data flow graph that has been scheduled and bound to RTL
modules describes circuit behavior and hardware usage.

We focus on three constructs that cause testability problems,
combining ideas from [10, 11]. The first construct is reconvergent
fanout in the circuit behavior, which causes correlation. Correla-
tion has a detrimental effect on fault coverage because it restricts

test patterns and masks fault effects. The second construct, control
statements, can cause correlation as well. In addition, observability
through a relational operation is poor because the response is
always one bit wide. The third construct involves random-pattern
resistance. Pseudorandom techniques assume all RTL modules in
the circuit are random-pattern testable. However, some modules
are tested more effectively with specific patterns or patterns with a
particular characteristic.

We propose a set of test strategies to overcome the testability
problems caused by these constructs. Our objective is to improve
testability while minimizing the impact on area and performance.
We present an analysis and insertion scheme to systematically
locate problems and implement the strategies accordingly. Both
data-flow and control-flow intensive behaviors are considered. The
strategies modify the control signals for the datapath, so the con-
troller may be affected but the datapath is not. Results from seven
example behaviors show that our method improves fault coverage
and generates minimal overhead.

The basis of our approach is delivery of high quality test pat-
terns to each RTL module from the primary input and delivery of
response patterns to the primary output. The patterns are propa-
gated via other RTL modules and existing connections in the cir-
cuit. This idea comes from a deterministic approach called
hierarchical test generation [9, 7]. Test patterns and responses are
derived for each module, then propagated unmodified by using
identity operations of the RTL modules. [1, 5, 12, 8] create a test
environment for each module, which consists of a justification path
and a propagation path. [4] extends the technique to pseudorandom
BIST. Our approach uses the one-to-one property of operations,
instead of the identity property, to propagate patterns. We do not
derive a test environment for each RTL module.

2. BACKGROUND
Our work uses the test behavior approach [2]. A test behavior

is derived from the original circuit behavior. The result is a circuit
that implements both behaviors with minimal test control logic. A
pseudorandom pattern generator supplies test patterns to the pri-
mary input. A signature analyzer collects response patterns at the
primary output and compresses the patterns into a signature. The
circuit is exercised according to its behaviors.

A fault is a manufacturing defect in a circuit. At the gate level,
these faults are modeled as lines that are stuck-at-1 or stuck-at-0.
Fault coverage is determined as the percentage of detected stuck-at
faults from all possible stuck-at faults. At the RTL, faults manifest
themselves as incorrect values. Fault detection involves sensitiza-
tion and propagation. A fault is sensitized when an incorrect
response is produced at the fault location. The incorrect value is a

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00.

fault effect. To detect a fault, its fault effect must be propagated to
an observable point. Controllability is the ability to sensitize the
fault, and observability is the ability to propagate the fault effect.

An F-path is a data channel with a one-to-one transformation
from its primary input to its primary output [3]. The data channel
may have other inputs and outputs, which can be data or control
signals. Modules that have F-paths and are connected serially have
an overall F-path [3]. An F-path preserves the observability of
faults because it allows fault effects to propagate from the primary
input to the primary output of a data channel. Test patterns applied
to the other inputs must be independent of the patterns applied to
the primary input, but these other inputs are not required to remain
fixed during test.

3. THREE CONSTRUCTS
This section describes three constructs that cause testability

problems.

3.1 Reconvergent Fanout
Reconvergent fanout is illustrated in Figure 1 with the data

flow graph for the FACET behavior. A variable that drives more
than one operation, such as v3 in Figure 1, is a fanout point. When
two or more fanout paths converge at the inputs for an operation,
such as the addition operation for v8 in Figure 1, that operation is a
convergence point.

Reconvergent fanout introduces correlation at the convergence
point. Correlation affects both controllability and observability,
and can be measured with the correlation metric [10]. Correlation
at the inputs to an operation restricts the test patterns that can be
applied to that operation [2]. Because of the restricted input pat-
terns, the response patterns for this operation are restricted as well.
Correlation decreases observability by masking fault effects. If the
inputs to an operation are not independent, then the operation is
not guaranteed to have an F-path.

At the gate level, reconvergent fanout can make some stuck-at
faults undetectable. To ease the complexity issue of modern cir-
cuits, we focus on breaking correlation at the RTL. The reconver-
gent fanout present in the behavior will remain once the circuit is
synthesized to the gate level. By modifying the circuit at the RTL
we can improve the fault coverage at the gate level.

3.2 Control Statements
Control statements such as if-then-else and while statements

can introduce several testability problems. As discussed in [11],
branch probabilities determine test session length for each branch
of a control statement. Correlation occurs when variables are used

in both the conditional expression and the branches of a control
statement, because the conditional expression determines which
branch is executed. [11] demonstrates how correlation affects test
pattern quality for the branch operations, using the randomness and
expected state coverage metrics to quantify the degradation.

Figure 2 illustrates another correlation example. The variables
w and x are independent for the relational operator in the condi-
tional expression. However, w and x are correlated in each branch,
with a correlation value of 0.50 for the multiplication and addition
operations. The variables are correlated because of the restrictions
imposed by the conditional expression: in the true branch w is less
than x, and in the false branch w is greater than or equal to x.

Finally, control statements add relational operations to the
behavior, which are implemented as comparators in the datapath.
A comparator converts multi-bit inputs to a one-bit response,
which is output to the controller as a status signal. Comparators do
not have F-paths, so fault effects that appear at the inputs to a com-
parator are not easily observable through the comparator. More-
over, this status signal has no direct access to an observable point,
so detecting faults within the comparator is difficult.

3.3 Random-Pattern Resistance
For some modules, random test patterns do not detect all faults

effectively or efficiently. A module might require specific test pat-
terns, and the probability of randomly generating these input pat-
terns might be very low. Other modules may require test patterns
with some characteristic that is difficult to generate randomly.
These modules are random-pattern resistant. Fault coverage for
these modules depends on the actual patterns generated and
applied during the test.

For example, modules that implement relational operations
become more random-pattern resistant as the bit width (n) of their
inputs increases. The comparator shown in Figure 3a determines
whether X is equal to zero. Figure 3b shows the gate-level descrip-
tion, generated by Synopsys, for this module when the bit width is
six. The structure for other values of n is similar. This module
requires n+1 specific patterns to be fully tested. X must be set to
zero and to the n values where only one bit is set to ‘1’, as shown
in Figure 3c for a bit width of six. No other test patterns will detect

Figure 1. FACET behavior with reconvergent fanout.

v1

v4

v5

v6

v7

v8 v9

v3

v10

v11

v14 v15

+

+

+

- *
/

& |

v2

v1

v1
Figure 2. Conditional statement with correlation.

Figure 3. Specific test patterns required.

w < x
T F

Corr(w, x) = 0.00

Corr(w, x) = 0.50 Corr(w, x) = 0.50

w w xx

* +

= 0

X[5]
X[4]
X[3]
X[2]
X[1]
X[0]

X 1: 000000
2: 100000
3: 010000
4: 001000

7: 000001
6: 000010
5: 000100

n

1

a. RTL b. Gate-level description c. Test patterns
module. when n = 6. when n = 6.

the faults in this module. If the probability distribution of X is uni-
form, then each of the test patterns will be randomly generated

with probability 2-n. As n increases, the likelihood of generating
any specific pattern decreases exponentially.

A second comparator, shown in Figure 4a, determines whether
X is greater than Y. This module compares X and Y on a bit-by-bit
basis, starting with the most significant bits and working towards
the least significant bits. If the corresponding bits in X and Y are
the same, then the process continues to the next pair of bits. As
soon as the bits are different, the module can output the result and
the remaining bits are ignored. Figure 4b illustrates this process for
a bit width of eight.

For this module, the logic for the higher bits is exercised more
frequently than the logic for the lower bits. The most significant
bits are compared for all possible test patterns, but the least signifi-
cant bits are compared only when all other corresponding bits are
the same. Assuming uniform probability distributions, the proba-

bility that p corresponding bits are the same is 2-p. As bit width
increases, the opportunity to exercise the logic for the lower bits
decreases exponentially. Instead of specific test patterns, this mod-
ule requires some test patterns with the characteristic that corre-
sponding higher bits in X and Y are the same.

From experimentation, we have determined that comparators
with eight-bit-wide input variables or smaller can be easily tested
with random patterns.

4. APPROACH
This section presents test strategies to overcome the testability

problems caused by the three constructs.

4.1 Techniques for Reconvergent Fanout
One way to break correlation caused by reconvergent fanout is

to insert a delay load to create an F-path across time. As the behav-
ior is executed, registers within the datapath store values from the
previous execution until they are loaded with the new values for
the current execution. If we delay the load signal for a register,
then the old value is used in the current execution instead of the
new value. The new value is not lost, however, because it is used in
the next execution. Load signal delays were introduced by [7].

Figure 5 demonstrates the delay-load insertion using the
FACET example from Figure 1. Part of the original behavior is
shown in Figure 5a. Figure 5b illustrates the test mode behavior,
where the load signal for the register that stores v3 is delayed one
clock cycle. During the ith execution of the behavior, v5 depends
on the current v3 (v3i) in normal mode. This value is used to com-

pute v8. In test mode, v5 and v7 are computed from the v3 gener-
ated in the previous execution (v3i-1). However, v8 is computed

from the v3 and v5 generated in the current execution (v3i and v5i).

Correlation is broken because v3i-1 and v3i are not the same value.

Inserting a multiple load breaks reconvergent fanout when a
primary input of the circuit is involved. The register storing the
primary input can be loaded more than once during the current
execution, which allows a new value to be introduced into the
computations. This technique assumes the test pattern generator at
the primary input generates new patterns every clock cycle.

Figure 6 demonstrates the multiple-load insertion. Figure 6a
shows part of the data flow graph from Figure 1 and the modified
behavior is shown in Figure 6b. In normal mode both inputs for the
v9 computation depend on v1. In test mode, the register that stores
v1 is loaded again in control step 2. The first value for v1 (v1a) is

used to compute v3, and the second value for v1 (v1b) is used to

compute v9. Since v1a and v1b are two different values, the corre-

lation between v7 and v1 is broken.
These techniques are implemented by modifying the control-

ler. An input signal to the controller indicates whether the circuit is
in test mode or normal mode. In normal mode, the controller pro-
duces the control signals for the datapath according to the circuit
behavior. In test mode, the normal mode behavior is followed
except when delay loads and multiple loads are required to break
the correlation. The state machine is altered to produce the new
load and select signals for the affected registers and multiplexers.
Alternatively, delay elements could be inserted on the control sig-
nals to implement the delay loads.

4.2 Techniques for Control Statements
The delay-load and multiple-load techniques can be used to

break the correlation caused by control statements. For the exam-
ple shown in Figure 2, suppose the load signal for w is delayed.
The w computed in the previous execution is used to compute the
conditional expression. Then the w computed in the current execu-
tion is loaded. This value is used for either the addition or multipli-

Figure 4. Test patterns with particular characteristic required.

>

X

n

1

a. RTL module.

X = 01 1 01001
Y = 01 0 11111

b. Compare process.

Y

n

corresponding bits
are the same

bits are ignored

bits are different:
result is determined

Figure 5. Delay-load insertion technique.

Figure 6. Multiple-load insertion technique.

v1i

v4i

v5i

v6i

v7i

v8i

v3i-1v3i
v4i v3i-1 v2i v6i

+

+

+

- *

v2i

v1i

v5i

-*

+

v8i

v7iv3i

v8i = (v3i - v4i) + v3i v8i = (v3i-1 - v4i) + v3i
a. Normal mode. b. Test mode: v3 delayed.

v1

v6

v7

v9

v3
+

+
*

v2

v1

v1a

v6

v7

v9

v3
+

+
*

v2

v1b

v9 = (v1+v2)v6 + v1 v9 = (v1a+v2)v6 + v1b
a. Normal mode. b. Test mode: load v1 again.

cation operation, depending on which branch is taken. As a result,
the correlation value for these operations is now 0.

Another technique, proposed in [11, 6], breaks correlation and
changes branch probabilities. The conditional expression is aug-
mented by inserting an AND, an OR, or an XOR operation. One
input to this operation is the output of the conditional expression,
and the other input comes from a pseudorandom pattern generator.
In test mode, this augmentation allows better control of test session
length and test pattern quality for the branches. In normal mode,
the extra input is set so that the conditional expression alone deter-
mines which branch is taken. This technique modifies the status
signal sent to the controller.

To improve testability for relational operations, we recom-
mend binding a relational operation to a subtractor or adder. Faults
in the ALU can then be detected via the subtraction or addition
operations present in the circuit behavior. This binding also creates
an opportunity to better observe the inputs to a comparator. A sec-
ond test mode, called invert mode, allows the comparator inputs to
be observed through the subtractor instead. Invert mode inverts
multiplexer select signals.

The sample datapath shown in Figure 7 illustrates the tech-
nique. Faults in the multiplexer and fault effects that appear at its
inputs are difficult to observe because of the “less than” operation.
The ALU has an F-path only when (b - c) is computed. To improve
observability, invert mode inverts the select signal for the subtrac-
tion operation. The multiplexer passes a instead of b, so the sub-
traction operation is (a - c). For the “less than” operation, the select
signal is not inverted and the multiplexer passes a. Invert mode
must be a separate test mode because the (b - c) subtraction is elim-
inated. This subtraction is tested in the “regular” test mode, during
which the multiplexer select signal is not inverted.

Invert mode is implemented by modifying the controller. The
multiplexer select signals are inverted as needed by altering the
state machine or by directly inserting inverter gates on the control
signals. An input signal to the controller indicates whether the cir-
cuit is in invert mode.

4.3 Techniques for Random-Pattern Resistance
The general approach for testing random-pattern-resistant

modules is to manipulate the circuit behavior so the desired test
patterns are applied to these modules. These modifications become
one or more new test modes, and each mode fulfills an objective.
The modes are distinguished by codes input to the controller. The
controller, modified to implement each test mode as well as normal
mode, then executes the test behavior indicated by the code.

To demonstrate the techniques for testing random-pattern-
resistant modules, the algorithm shown in Figure 8 is used. This
algorithm uses a series of subtraction operations to determine the

greatest common divisor (GCD). The bit width of the variables is
twelve, so the relational operations are random-pattern resistant.

Sometimes the behavior itself is effective in testing random-
pattern-resistant modules. For the GCD example, the (X > Y) com-
parison requires some test patterns where the corresponding higher
bits of X and Y are the same. In this case, the algorithm provides
patterns with this requirement. As the behavior is executed, the
values for X and Y decrease, so that more of the higher bits for both
variables are set to ‘0’. These smaller values allow more of the
gate-level comparator logic to be exercised and tested.

Other times, however, the circuit behavior needs to be modi-
fied to allow desired test patterns to reach a module. In the GCD
example, both the (X = Y) and the (X > Y) comparisons require test
patterns where X equals Y. However, the (X = Y) comparison
receives many test patterns where X and Y are not equal, and only a
few test patterns where the variables are equal. Moreover, the
nature of the GCD algorithm does not allow test patterns where X
equals Y to reach the (X > Y) comparison.

To increase the number of test patterns where X equals Y, the
behavior is modified. In normal mode, the greater of X and Y is
loaded during the subtraction step. In this test mode, however, both
variables are loaded with the subtraction result. The rest of this test
mode is the same as normal mode. By forcing X and Y to be equal,
the (X = Y) comparison is tested more effectively. A second test
mode forces X and Y to be equal, then allows these patterns to
reach the (X > Y) comparison.

Finally, some modules require specific test patterns, such as
the (X = 0) comparison in the GCD example. To generate the test
patterns, the X register is replaced with a shift register that can be
set to zero or to “100000000000”. In one test mode, the controller
resets the X register to zero. In another test mode the controller
resets the X register to “100000000000”, then shifts this value.
Each reset or shift replaces the step where the register is loaded
with a pattern from the test pattern generator. Two more test modes
for the (Y = 0) comparison are similar.

5. METHOD
Our DFT method has two phases. In the first phase, testability

problems due to reconvergent fanout and control statements are
identified and resolved. In the second phase, random-pattern-resis-
tant modules are identified and test schemes are devised to make
these modules testable. The result is a circuit that implements the
original behavior and one or more test behaviors.

Figure 7. Invert-mode insertion technique.

a b

c

<, -

stat, y

normal mode

invert mode

stat = (a < c)
y = b - c

stat = (a < c)
y = a - c

sel

Figure 8. GCD algorithm with random-pattern resistance.

X = 0
or Y = 0

GCD = 0

GCD = X

X = Y

X > Y

X = X - Y Y = Y - X

true

true

true

false

false

false

To analyze reconvergent fanout, the correlation metric is com-
puted for the input variables of operations at the convergence
points. For each control statement, the randomness, expected state
coverage, and correlation values are computed for the conditional
variables. In addition, branch probabilities for each conditional
statement and the average number of iterations for each loop state-
ment are computed. If the metrics indicate a testability problem,
then one of the techniques described in Sections 4.1 and 4.2 is
inserted into the behavior. The metrics are recomputed and the
behavior is examined again. The process is repeated until all prob-
lems are resolved. At this point, we have a circuit that implements
the original behavior, a test behavior, and possibly an invert-mode
behavior. All random-pattern testable faults should be covered.

Testability problems related to random-pattern-resistant mod-
ules are considered after all other problems have been identified
and resolved. Often random-pattern-resistant modules can be iden-
tified by inspecting the circuit behavior or the datapath. Modules
can be classified by their properties. For example, any comparator
with twelve-bit-wide input variables or larger is random-pattern
resistant. In other instances, examination of the fault coverage
results reveals the modules that are difficult to test. Modifications
that target other testability problems will not improve the fault
coverage for random-pattern-resistant modules. In fact, modifica-
tions that increase the randomness of variables can actually
decrease the testability of random-pattern-resistant modules. The
list of undetected faults and the gate-level description of the mod-
ule can be used to determine the specific patterns or pattern charac-
teristics needed to test this module.

The behavior, the datapath, and the fault coverage results are
inspected to identify any untestable random-pattern-resistant mod-
ules. For each random-pattern-resistant module in the datapath, a
test scheme is devised based on the techniques described in Sec-
tion 4.3. The behavior is modified to implement each test scheme.
The procedure is complete when all random-pattern-resistant mod-
ules are testable. The result is a modified behavior with a normal
mode and one or more test modes.

6. RESULTS AND DISCUSSION
We applied our DFT method to six example behaviors and one

ITC’99 benchmark. The FACET and cubic polynomial behaviors
are data dominated and have multiple instances of reconvergent
fanout. The bit widths vary for each example so no bits are trun-
cated. For the FACET example, the bit width ranges from five bits
to twelve bits. The inputs for the cubic polynomial example are
four bits wide, and the output is sixteen bits wide.

The next three behaviors are control dominated. The postage
calculator example has three conditional statements. The package
weight and the weight ranges are eight bits wide, and the price
increments are four bits wide. The floating-point addition example
has six conditional statements and one instance of reconvergent
fanout. The exponents are four bits wide and the mantissas are
eight bits wide. The ITC’99 benchmark example, b11, has seven
conditional statements and two loop statements. The data input and
output are six bits wide. The last two behaviors, GCD and integer
division, are control dominated as well. Both examples have data-
path modules that are random-pattern resistant. The bit width of
the variables in both examples is twelve.

The test modifications proposed in this paper were imple-
mented by altering the states in the controller state machine or by

augmenting the status lines input to the controller. The control-
dominated examples were synthesized so the comparators were
bound to subtractors when possible, and invert modes were used
when needed. For modules that did not have an F-path in the
FACET, postage calculator, and floating-point addition examples,
the datapath was modified so these modules would have an F-path
in test mode. To supply the specific test patterns required by the
“equals zero” comparators in the GCD and integer division exam-
ples, the input registers were replaced by shift registers, as
described in Section 4.3.

For each example, two circuits were produced. Each circuit
consisted of a datapath and a controller. The original circuit imple-
mented the original behavior with no test insertion. The modified
circuit implemented the original behavior and the test behavior.
Synopsys was used to compile the circuits, calculate area and criti-
cal delay, and run the fault simulations. For the fault simulations
pseudorandom patterns were applied to the primary inputs of each
circuit. The entire circuit was used in the fault simulation, and each
of its behaviors was exercised. For each example, the same set of
test patterns was applied to the original and modified circuit.

Table 1 summarizes the results for the seven examples. The
number of gates, the critical delay, the total number of faults, the
number of undetected faults, and the fault coverage are listed for
each circuit. Area and delay overheads for the modified circuits are
included in the table. The undetected fault counts include untest-
able faults; the FACET and cubic polynomial behaviors each have
a couple untestable faults. The original and modified circuits for
each example were simulated for the same number of clock cycles;
the “Clock Cycles” column reports the clock cycle at which the
last fault was detected for each circuit.

For each example, the test modifications improved the fault
coverage. Although the fault simulations ran longer for some mod-
ified circuits, more faults were detected earlier in the test sessions
for all modified circuits. Since we made no modifications to
improve the testability of the controller, we did not expect to
achieve 100% fault coverage. Nearly all remaining undetected
faults were related to the controller. However, the test modifica-
tions did decrease the number of undetected controller faults.

The impact of our method on area and critical delay was less
than 3.5% for most of the examples. For the modified cubic poly-
nomial and GCD circuits, the critical delay decreased because Syn-
opsys was better able to optimize the circuit. For the modified
FACET circuit, observation of the remainder (from the division
operation, to give this operation an F-path) caused most of the
overhead. For the modified floating-point adder circuit, the modi-
fied datapath modules caused most of the area overhead.

Most of the very high area overhead in the modified GCD and
integer division circuits was caused by the shift registers used to
test the “equals zero” comparators. Although flip-flops can be
designed and optimized with “set”, “clear”, and “shift” capabili-
ties, only a basic flip-flop was available in the Synopsys library. A
multiplexer was added to each register to implement the desired
functions, which made the registers approximately 4.5 times larger.

7. CONCLUSION
Our contribution is a DFT method that addresses testability

problems caused by reconvergent fanout, control statements, and
random-pattern resistance. Behavioral modifications break correla-
tion in the behavior, improve the observability of comparator

inputs, and efficiently test random-pattern-resistant modules.
These modifications affect the controller. The datapath might be
modified if a module implements a function that is not one-to-one
or if a module requires specific test patterns. To help test the com-
parators in a datapath, we suggest binding the relational operations
to subtractors or adders.

The controller modifications are independent of the bit width
in the datapath, which reduces area overhead and performance
degradation. The modified controller incorporates the original
behavior and the test behavior, which reduces test complexity and
allows the circuit to be tested at the designed speed. Our test strate-
gies improve fault coverage, as shown by the results for seven
example circuits.

Although the work presented in this paper is described in terms
of control data flow graphs, our approach can be applied to other
types of behaviors. In fact, the ITC’99 example behavior is written
like a finite state machine in VHDL, without separate descriptions
for the datapath and controller. Our method does not impose RTL
design restrictions. Future work includes applying this approach to
the system level, where the modules are interacting behaviors and
the system behavior is known.

The analysis and insertion scheme can be applied either during
or after high-level synthesis, because most of the modifications are
made to the control and status signals. As a post-synthesis tech-
nique, the binding information for the datapath is used to guide the
insertions. If correlation is considered during synthesis, the behav-
ioral modifications are used to guide the binding decisions.

8. ACKNOWLEDGEMENTS
The first author did this work as a graduate student at CWRU.

The work was supported by the National Science Foundation
under Grant #CCR-9901160 and by an NSF Graduate Fellowship.

9. REFERENCES
[1] Bhatia, S., and N.K. Jha, “Integration of Hierarchical Test

Generation with Behavioral Synthesis of Controller and Data

Path Circuits”, IEEE Trans. on VLSI Systems, Vol. 6, No. 4, pp.
608-619, Dec. 1998.

[2] Carletta, J.E., and C.A. Papachristou, “Behavioral Testability
Insertion for Datapath/Controller Circuits”, J. of Electronic
Testing: Theory and Appl., Vol. 11, No. 1, pp. 9-28, Aug. 1997.

[3] Freeman, S., “Test Generation for Data-Path Logic: The F-
Path Method”, IEEE J. of Solid-State Circuits, Vol. 23, No. 2,
pp. 421-427, April 1988.

[4] Ghosh, I., N.K. Jha, and S. Bhawmik, “A BIST Scheme for
RTL Controller-Data Paths Based on Symbolic Testability
Analysis”, Design Auto. Conf., pp. 554-559, June 1998.

[5] Ghosh, I., A. Raghunathan, and N.K. Jha, “Design for Hierar-
chical Testability of RTL Circuits Obtained by Behavioral
Synthesis”, IEEE Trans. on CAD, Vol. 16, No. 9, pp. 1001-
1014, Sept. 1997.

[6] Hsu, F.F., E.M. Rudnick, and J.H. Patel, “Enhancing High-
Level Control-Flow for Improved Testability”, Intern. Conf.
on CAD, pp. 322-328, Nov. 1996.

[7] Karam, M., R. Leveugle, and G. Saucier, “Hierarchical Test
Generation Based on Delayed Propagation”, Intern. Test Conf.,
pp. 739-747, Oct. 1991.

[8] Makris, Y., and A. Orailoglu, “Channel-Based Behavioral Test
Synthesis for Improved Module Reachability”, Design, Auto.,
and Test in Europe Conf., pp. 283-288, March 1999.

[9] Murray, B.T., and J.P. Hayes, “Test Propagation Through Mod-
ules and Circuits”, Intern. Test Conf., pp. 748-757, Oct. 1991.

[10]Ockunzzi, K.A., and C.A. Papachristou, “Breaking Correlation
to Improve Testability”, VLSI Test Symp., to appear, May 2001.

[11]Ockunzzi, K.A., and C.A. Papachristou, “Testability Enhance-
ment for Control-Flow Intensive Behaviors”, J. of Electronic
Testing: Theory and Appl., Vol. 13, No. 3, pp. 239-257, Dec.
1998.

[12]Ravi, S., G. Lakshminarayana, and N.K. Jha, “TAO: Regular
Expression Based High-Level Testability Analysis and Opti-
mization”, Intern. Test Conf., pp. 331-340, Oct. 1998.

Table 1. Experimental results.

Circuit

Gates Critical Delay Clock
Cycles

Faults Fault
Coveragecount overhead ns overhead total undet.

FACET original 1816 114.69 6825 1919 77 95.99%

modified 1889 4.02% 129.32 12.76% 11991 2079 30 98.56%

cubic original 1740 75.20 1933 1634 110 93.27%

modified 1759 1.09% 75.08 -0.16% 2374 1670 48 97.13%

postage original 1187 42.32 14625 1162 86 92.60%

modified 1228 3.45% 42.40 0.19% 10917 1211 34 97.19%

adder original 1529 45.29 17969 1938 73 96.23%

modified 1663 8.76% 45.64 0.77% 15609 2189 33 98.49%

b11 original 835 43.62 12268 1154 95 91.77%

modified 853 2.16% 44.24 1.42% 18398 1189 49 95.88%

GCD original 979 69.76 18586 1107 102 90.79%

modified 1188 21.35% 60.49 -13.29% 10810 1411 26 98.16%

divider original 1046 34.76 18416 1059 85 91.97%

modified 1194 14.15% 35.39 1.81% 10206 1296 35 97.30%

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

