Instruction-Level DFT for Testing Processor and I P Coresin System-on-a-Chip

Wei-Cheng Lai, Kvang-Ting (Tim) Cheng
Department of ECE, Univsity of California, Santa Barbar CA 93106
E-mail: {wlai, timcdheng} @yellowstoneceucsbedu

Abstract tages wer testing relying onxgernal testers. On-chip clock
speed is increasing dramatically while the tester'sr@v

Self-testing manufacturing defects in a system-ohia-c Timing Accuray (OTA) is not. This trend implies an
(SOC) by running test pgrams using a mgrammable increasing yield loss due toternal testing since guard-
core has seeral potential benefits includingt-speed test- banding to cwer tester errors results in loss of more and
ing, low DfT overhead due to elimination of dedicated testmore good chips [3]. Self-testingfefs the ability to apply
circuitry and better power and thermal mageanent during @nd analyze at-speed test signals on chip with greater accu-
testing However sud a self-test sategy might equire a ragy than that @ailable on the tester
lengthy test pgram and might not dgeve a high enough Pure embedded-sofake-based self-testing may not
fault coverage. We piopose a DfT methodaly to impove achieve a desired ieel of fault coserage. Furthermore, the
the fault coerage and educe the test pgram length, by size of the test program may be togy&ato fit in on-chip
adding test instructions to an oikp programmable c& memory The total test application time may also be too
sudh as a miooprocessor ca. This paper discusses a long. The lav controllability and obserbility of some
method of identifying fefctive test instructions witiccould wires and rgisters in an SOC is theak reason for such
result in highest benefits with lowearperformance\er- problems. In this papewe propose a DfT methodology to
head. The xperimental esults show that with the added improve the test quality of embedded-sadte-based self-
test instructions, a complete faultvesage for testable path testing by adding a small number of test instructions to
delay faults can be ageved with a geater than 20% enhance the testability of a processor core. ¢4l this

reduction in the mgram size and the pgram runtimeas methodology afstruction-level DfT.

compaed to the case without instructions DfT. Instruction-level DT, which inserts test circuitry in the

form of test instructions, should be a less intreisipproach
as compared to the ate-level DfT technique which
attempts to create a separate test mode wbhateorthogo-

to the functional mode. If the test instructions are care-

1. Introduction

A system-on-a-chip (SOC) diee usually contains one
or more programmable cores (such as processor cores - L 4
DSP cores) and usesges to connectavious programma- fully designed such that their micro-instructions reuse the
ble and non-programmable IP cores. One possible test Strg@tapath for the functional mstruct_lons and do not. require
egy for a SOC is to utilize the on-chip programmable core& Nev datapath, thewverhead, which only occurs in the
to test the manatturing defects on the SOC. Under thisController should be relately low. This methodology is
test stratgy, we viev test as an application of a program- &lS0 more attracte for applying at-speed test and for
mable SOC, which reuses on-chip resources for test puPOVver/thermal management during test, as compared to the
pose. This stragy minimizes the addition of dedicated test &iSting logic BIST approaches.oTapply at-speed tests,
circuitry for DfT or self-test. W refer to this self-test strat- €XISting structural logic BIST needs to resaleomple
egy asfunctional self-tesbr embedded-softwasbased self- timing issues related to multiple clock domains, multiple
test[1][2]. frequencies and test clockesks. In contrast, self-testing
the deices using instruction sequences wkomuch more
natural application of at-speed tests. At-speed tests are

This work was supported in part by the MARCQYRPA Gigascale Silicot app"ed by xecuting instruction sequences that are
Reksearlct& Csnter (http://giscale.eecs.begley.edu). Their support is grateful designed to achie h|gh path or ge de|aydu|t co/erages.
acknavledged. . . .

¢ Moreover, structural logic BIST applies non-functional,

Permission to makdigital or hard copies of all or part of thisnk for personal o high—switching random patterns thus causes much higher
classroom use is granted without feeviled that copies are not made or dist

uted for profit or commercial adatage and that copies bear this notice and th power Consumption than normal SyStem operation. Self-

citation on the first page.oTcopy otherwise, to republish, to post on s&s/or tc testing the dé@ces using the instruction set of processor
redistritute to lists, requires prior specific permission and/or a fee.

Copyright 2001 ACM 0-89791-88-/6/97/05.... $5.00 cores can allgate such problems.

For high-speed circuits, self-testing has clearaadv

A number of approaches [2][4][5][6][7][8][9] Wa

been proposed to generate a test program to self-test a
microprocessor for either stuck-at or delaylfs. Shen and :.:
Abraham [7] propose an approach for impng the test B8
quality by adding instructions to control theception cir- Pitg' 5 >
cuitry to the processor such as interrupts and resti.tié [PCI Wrapper| [PCl Wrapper| [PCI Wrapper]
new instructions, the test program can aechiéult coser- [VCI] [VCI] [VCI]
age between 87% and 90% for stuck-aults. This [CoreA | [CoreB | Systern
approach cannot achie a higher ceerage because their)]

test program, which is synthesized based on a random Fig. 1. A SOC design
approach, is not able tofettively control or obser some

internal rgjisters which hee low testability (__Instr. set architecture & netlists)

]

Constraint gtraction |
1]

—>| Constrained gte-leel ATPG |

In this paperwe propose a DfT methodology which |
systematically adds test instructions to an on-chip processor
core. The ne& instructions can impke the testability of a

processor core, reduce the size of the test program, and ¥

reduce the run time of the test program (i.e., reduce the test | Instruction-level justification |
application time). @ decide which instructions to add, we]]]

first analyze the testability of the processba ragister in Instrugrt_{gr}gg/gcl)gas%lt%rg@ggtlon

the processor is identified as hard-to-access, we add a test L

instruction to access thegister directly In addition, we | Instruction-level fault simulation |
obsere that, in the test program, some codgnsents

Yes 7
appear repeatedlyVe identify such frequently appeared unprodesbecatilt?
No

(hot) sgments and add avietest instructions to reduce the ¥
size of the hot sements. st instructions can be added to C Test Programs)
speed up the processes of preparing the &sors by the Fig. 2. Test program synthesis process

processor core, retiing th? responses from the on-chip the data to the corresponding address of the core.
core under test, and analyzing the responses (by the proces-

sor core). Ourperimental results skhothat test instruc- To self-test the DLX core, we can first load the test pro-
tions can reduce the program size and program runnir@f@m from an sternal tester into the on-chip memory
time by about 20%. hen, the DLX core »xecutes the test program at-speed.

illustrates the concept of embedded safvtester and test Core to test other on-chip (non-programmable) cores by
program synthesis. Section 3 sfsothe analysis of the test- running additional test programs. Here, it is assumed that
ability of a processor core and a synthesized test prograf@ach PCI wrapper implements a scaifféy which is con-
Section 4 focuses on the instructiomdeDfT techniques. nected to the scan chain of the IP core. Each PCI wrapper
Experimental results are presented in Section 5. Sectiona@so has a mode gister which can set the core in test or

concludes the paper functional mode. The scamuffer and the mode géster are
all memory-mapped. Wh this hardvare support, the DLX
2. Embedded-Softwar e-Based Self-Test processor can use normal memory read/write operations to

A processor core in a SOC design can be configured ggnﬂgure the core in test (or normal) mode, send seen v
a pattern generatora test application controller or a tors to the core, and read responses back for analysis.
response analyzer simply by runningfefi€nt programs. Figure 2 shwis the general flo of synthesizing a test
For example, consider anxemplar SOC design s in program for testing a processor or an IP core. The detailed
Figure 1. It has te programmable cores, a DLX processordescription of a test program synthesis (TPS) algorithm can
core [10] and a DSP core. There are three on-chip coresbg found in [2]. Gien the instruction set architecture, the
memory core, core A and core B. All cores are connectedetlist of the processor core and the netlists of the on-chip
by a PCI lns. The VWtual Component Inteaice (VCI) and cores, the TPS algorithm firskteacts a set of constraints
the PCI wrapper préde a common inteaice for a core to capturing correlations among input/output (1/O) signals and
communicate with the underlyingib architecture [11][12]. registers/flip-flops of the processorhese constraints are
Since DLX implements memory-mapped 1/O, portions ofused in the subsequerdtg-level ATPG process to rule out
the address space are pre-assigned to the non-memdipse test ectors which cannot be produced in the func-
cores. Therefore, DLX can send data to a core by writingional mode. Then, a constrained structusbgerel ATPG

(_for stuck-at or delayalults) is used to generate deter_minis— (1) load R1pp1 load R1,0p1 test
tic tests for a tayet fult. The generated testator which (2) load R20p2 load R2,0p2 preparatior
meets the imposed constraints, specifies requiaktes at e
the inputs and the gésters/flip-flops. Net, an instruction- (N) call misr store ;’Emk;)dfe
level justification process synthesizes a sequence of instruc- (@) 2:8:2 Rz!bﬂf o
tions which bring the circuit to the state required by the test misr() { ‘
vector In the net step, the instruction¥el response analy- (1) for T?éotol'\%??o istore Otmode 4 normal
sis process synthesizes a sequence of instructions to prop$g) Xor , ' M store 1tmode
gate the &ult efects in reisters/flip-flops to memory and (3) br_carry (5) load R1 obuf
. . : (4) xorR30,1 ’ scan

possibly further compress them into signatures. Theeabo ’ load R2,0buf

. : . (5) br_overflow (7) ' mode
procedure is repeated until eluits hae been gamined. DA A e

(6) xor R30, 4 .

- . ()} call misr 4 response
3. Testability Analysisand Test Program (b) (c) analysis
Analysis Fig. 3. Common structure in test programs

{2 ‘jJump” instruction to access them. On the other hand, sta-
tus rayisters (SR) ha poor controllability because setting
up the desired data in SR usually requires specific combina-
tion of instruction and operand sequences. The ochisibtrv

further analyze the synthesized test program. It is obderv ity O.f. status rgisters is generally poor b_ecause only
that mary program sgments appear repeatedly in the tesiconditional branches can projgag the errors in the status

program. Vé can add test instructions to transform thosd®dister to data gisters and memoryRegisters liried
repeated code gments into smaller anddter code sp deeply inside the pipeline mayJaaccessibility problems
ments. as well. D set up the desired data in theggisters, it may

be necessary to justify them through long pipeline stages
3.1. Testability analysis of a microprocessor core until it reach a fully-controllable gister This justification
.) o process could beevy complicated and thus, slalovn the
In general, instructions can be classified into three catgag; program generation process. Therefore, we can add test

gories: 1) data m@ment instructions, 2) ALU instructions jnstructions to directly load data into thesgiseers.
and 3) branch instructions. Data vement instructions

move data from memory to gester (load), rgister to mem-

ory (store), and g?gter to reister (”?‘Ve)- ALU mstrgc- .devices. The signals in this circuitry cannot be directly con-
tions such as addition and subtraction, perform anthmetlg
rolled by ary instruction which could result in W fault

and Iog!cal operauong on operands. Branch Ins’truCtlongoverage. \® can add test instructions to impecthe test-
such asjump and conditional jumptransfer the program - L
e . . ability of such circuitry

control to a taget address specified in the instruction oper-
and. 3.2. Analysisof a synthesized test program

We determine the testability of agister based on the
availability of data meement instructions betweengis- A test instruction can be added to optimize the test pro-
ters and memory\e define a mister afully contollable gram in terms of program size and program run time. W
if there &ists a sequence of data wement instructions try to identify repeated commongseents in the test pro-
which can mwee the desired data from memory to thgise ~ gram and maéthese sgments as short andiefent as pos-
ter. Similarly, we define a wgister asfully observableif sible using test instructions. Since the TPS algorithm in
there aists a sequence of data wement instructions to Figure 2 iteratiely synthesizes the code for eaellf, the
propagte the rgister data to memonGiven the micro- resulting test program siws mary similar code structures.
architecture of a processor core, we can identify thage re These common code structures are good candidates for
isters which are fully controllable or fully obsahle. For ~ optimization using test instructions.
registers not fully controllable/obseable, nav instructions Figure 3(a) shes an @ample of a common code struc-
can be added to impre their accessibility ture in the test program for testingaak inside the proces-

For example, general purposegisters are fully con- sor. First, the program requires étvioad operations to read
trollable and fully obsemable since a load/store instruction the desired operandglandop2into the CPU rgisters. It
can mae data between thegisters and memoryAnother applies a sequence of instructions (notahn the figure)
examples of fully controllable gsters are program counter to actvate the &ult and the responses are captured in the
(PC) and memory addresgjigter (MAR) since we can use CPU raisters. At the end, a response analysis subroutine

To identify good candidate test instructions, we firs
apply testability analysis to the procesdgan registers and
exception circuitry which hae lowv accessibility test
instructions are added to increase their accessibilgy

The eception circuitry (e.g., interrupt and reset cir-
cuitry) of a processor recms signals from »xernal

misr (shavn in Figure 3(b)) is moked. Themisrsubroutine
computes the response signaturevégls stored at R30) by
applying eclusive-or operations iteraly to \alues in all
registers including the statusgister (SR). Since thealues
in SR can only be obserd using conditional branch
instructions,misr needs a sequence of branch statements
(e.g., line 3 to line 6 in Figure 3(b)) to retréethe data from
SR. For example, at line 3, the branch instruction will jump
to line 6 if the carry bit in SR is logic one.

Figure 3(c) shas a common program structure for
testing a &ult in an on-chip (non-programmable) IP core
assuming the IP core has fully-scanned. It consists ef fiv
steps: (1) In the test preparation phase, the desired scan v
tors (e.g.oplandop?) are retriged from memory into the
CPU raisters (e.g., R1 and R2) using a sequence of load
instructions. (2) The CPU configures the IP core to scan
mode by writing a logic one into a memory-mapped core
register ‘tmode”. Then the CPU starts sending the scan
vectors from the gsters into the scan input gisters

Control
Uit

hizin . - i }
hdemory i bl
Status

redister

Fig. 5. DfT for exception circuitry

addition, eception circuitry such as interrupgetors, halt,

“ibuf” of the core under test using store operations. Thend reset areery difficult to control. V& add the follaing

scan input rgisters are used to aliate the speedap
among the CPU,us, and the IP core. Data on theaffdys
is shifted serially into the scan chain of the IP core during
the scan mode. Similafiithere are scan outpuuffers
“obuf’ which can recek output responses shifted out from
the scan chain. BothuEfers (buf andobuf) are mapped to

memory addresses. (3) The CPU sets the IP core in the nor-

mal mode for one clockycle by writing a logic zero to ¢e

instructions to impree the testability of the processor:
(1) Move SR to Rifs2r): This instruction can me the

data from the status gister to ay general purpose
register (Rn). Data in SR are propaed through an
existing data path from SR to ALU, togister C, to
the taget ra@ister Rn. This instruction impves the
obsenrability of the status igaster and thus, can sim-
plify the instruction-lgel fault propagtion process.

istertmode The responses are captured in the scan chain. (2) Move A to SRr2s): This instruction can me the

(4) The CPU starts loading the responses fobafto CPU
registers. (5) A response analysis subroutine (ingsy) is
invoked to analyze the responses.

As it can be obseed, the test programs in Figure 3
execute a lot of consecué loading instructions to me a
set of data from memory to CPUgisters. Therefore, we
can add a ne instruction to speed up these loading opera-
tions. Wé also obsem/that the response analysis subroutine
is the most frequently visited codegsgent. Therefore, we

can use a test instruction to optimize the response analysis

subroutine to reduce the program run time.
4. Instruction-level DfT

In adding n instructions, the »asting hardvare
should be “reused” as much as possibéerdduce the area
overhead, we shouldvaid adding &tra huses or ktra reg-
isters while implementing a meinstruction. In &ct, in most
cases, a me instruction can be added by introducingvne
control signals to the datapath without addimtyae hard-
ware to the datapath.

Figure 4 shavs an &le processor core. It consists
of an ALU, a rgister file, a status géster (SR) and a con-
troller. After the testability analysis, we find that the status
registers hae low controllability and lav obsenrability. In

data from a general purposajister A to the status
register Similarly, we reuse anxésting data path
(register A, to ALU, to SR) to load thealues from

register A to SR. This instruction impres the con-
trollability of the status wgister It can be used to
simplify the instruction-leel justification process.

(3) Read &ception signals &m register Rn This instruc-

tion allows the processor to takthe &ception sig-
nals from a general purposeayigter rather than from
external deices. A DfT for eception circuitry has
been proposed in [7]. Kver, this approach does
not consider reusing @nexisting hardvare on the
chip. In contrast, our DfT method try to reuse the
existing hardvare as much as possible. The DfT
architecture that we propose for handling tkeep-
tion circuitry is shan in Figure 5. Here, without loss
of generality we select R27 as thegister which
provides an alternate source ofxeception signals to
the controller By controlling the rgister T which is

a 1-bit r@ister we can select which signals should be
fed to the controllerWe can use a data mement
instruction to set the desiredlues in R27 before
switching the eception signal sources from the
external deices to R27. In this approach, we only

| does not impree the testability of other non-programmable

[Instruction rg) - i
cores. Therefore, instructionviel DfT cannot increase the

—{ Decode & operand regd fault coerage of the non-programmable coresweer,
. we can use the consematiload instructionl¢ad?) and sig-
[Pipeline rg A | T . L
Bus D nature computation instructiordr_all) to optimize the test
ALUL programs for testing the non-programmable cores. In other
L S Mu>v((, words, we reuse the same set of test instructions added for

self-testing the programmable cores to reduce the size and
J run time of the test programs for testing other non-program-
mable cores.

Fig. 6. DfT for pipelined design For pipelined designs, we can also add instructions to

need to add onexga instruction which can write control the rgisters loried _dee_ply in th(_a pipelines. Figure§
value into rgister T Adding this instruction will shaws the structure of a pipelined design. Suppose the pipe-

allow self-testing of &ults in the eception circuitry !ine regi;ter B is ery difficult to control. V¢ can add a test
instruction, anra tus (us D), a mux (mux C), and a mux

control signal to enable loading data directly from a gen-
eral-purpose @gster to rgister B. When the test instruction
is decoded and its operands available on s D, the test
instruction will enable mux C to seleat$D as the signal
sources for the pipelinegister B.

It is not necessary to add test instructions to control
every pipeline rgister This is because some pipelingise
ters are relatiely easy to control using instructionsorF
example, in Figure 6, after an instruction is decoded, the
operands will be latched by pipelinggigter A. W\ can set
up the desiredalues in rgister A by controlling the oper-
and \alues of the instruction. Thus, there is no need to add a
test instruction to control géster A.

[Pipeline rgg B

In Figure 3, we hae shovn some common program
segments in a test programo Teduce the program size and
improve the program run time, we can add the feiiy
instructions:

(1) Consecutive load to;Rind R (load2): This instruc-
tion can read tev (or more) consecwt words from a
memory address (stored in anothegister R) and
load them into rgisters R and R, respectiely. A
consecutie load needs threeonds in memory (one
for the instruction itself and twvfor the operands). In
contrast, tw load instructions require four onds
(two for the load instructions themse$vand tw for
the operands). By replacing awload instructions
with a consecwée load, the processor retrés faver g Experimental results
words from memory and thus, reduces the program
size and run time. df example, in Figure 3(a) and We have applied our method to basimple micropro-
Figure 3(c), we can replace the codgmsents that cessor cores: &wan processor [13] and DLX processor
have two load operations with a consesetiload [14]. The implementations of both processors are non-pipe-
operation. Therefore, the data retektime for mem- lined. Rarwan is an 8-bit processor with 1,818tgs. DLX
ory-to-processor transmissions and core-to-processas a 32-bit processor with 18,865tgs.
transmissions is reduced. We apply our methodology to both processorst F

(2) Signatue computatior{xor_all): To improve the run- PARWAN, we add tvo instructions for reading and writing
time performance of the signature computation subits status rgisters and one instruction faast computation
routine, we can add an instruction which performs 20f signatures. & DLX, we also add tw instructions for
sequence of&lusive-or operations on all CPUge reading and writing its statusgister a signature computa-
isters. Br the &le shwn in Figure 4, we can tion instruction and a conseogiread instruction based on
add an instruction which itersély moves data from the analysis of the synthesized program.

a general-purposegister to rgister B, performs an Table 1 compares the test programs synthesized with-
xor operation at ALU, and foravds the results out test instructions [2] @inst those with test instructions.
latched in rgister C to rgister A until all rgisters All test programs ta@jet path delayaults. W shev the test
are processed. Note that replacing a sequence of xprogram length (in bytes), thexezution time of the test
instructions in the response analysis subroutine witfprogram (in clock ycles), the &ult corerage for testable
xor_all, which helps reduce the runtimdpes not path delay dults, the area (in 2-inputAWD gate equia-
significantly reduce the size of the test program. Thidents), and the test generation time for both approaches. W
is because the test program contains only ong cbp also shav the reduction ratio (in parenthesis) in term of the
the signature analysis subroutine. program length, program run time and the test generation
time. For example, for the DLX processor core, our
Adding test instructions to the programmable coreapproach reduces the program size by 15%, reduces the run

Table 1.

Results of the test programs for testing processors

prog. len (bytes) run time (gcles) coverage% Area CPU (s)
PARWAN [2] 12,586 78,386 99.8 1,729 1.76
DfT 8,333 (-34%) 47,601 (-39%) 100 1,810 (+ 4.7%) 1.21 (-31%)
DLX 2] 141,776 463,185 96.3 18,865 203
DfT 120,232 (-15%) 367,237 (-21%) 100 19,165 (+1.6%) 123 (-39%)
Table 2.
Results for test programs for a DLX core to test the ISCAS-89 cores
test \ectors prog. len (bytes) run time (gcles) CPU (s)
s1238 w/o DfT 1220 48,992 125,926 0.61
DfT 1220 39,184 (-20%) 94,154 (-24%) 0.48 (-21%)
s5378 w/o DfT 952 152,432 229,492 211
DfT 952 110,512 (-27%) 149,524 (-34%) 1.29 (-38%)
s9234 w/o DfT 244 48,912 70,088 0.64
DfT 244 36,192(-26%) 45,688 (-35%) 0.39 (-39%)
38584 w/o DfT 37382 35,139,192 42,540,776 524
DfT 37382 27,812,288 (-21%) | 30,429,008 (-28%)| 306 (-42%)

time by 21%, imprees the &ult corerage to 100%, reduces software-based self-testing can asli@ higherdult coser-
the test generation time by 39% and increases the area age, shorter test generation time and smaller astef test
1.6% when compared to the results in [2]. programs with aery lov area werhead. Ourxerimental

We synthesize seral test programs for the DLX core results shw that the proposed DfT methodology can
to test other on-chip (non-programmable) cores based deduce both the program length and the program run time
the test deliery mechanism in Section 2 (the details of theby 20% at the cost of 1.6% areeechead for a couple of
mechanism can be found in [15]). Under this mechanisngxample processor cores.

the processor core supplies the scactars to the on-chip
core simply by issuing memory read operationg Wge 7.
ISCAS-89 benchmark circuits as the on-chip cores and sy
thesize a test program to apply the delay testtors 2l
derived in [16]. Bble 2 shais the characteristics of the test
programs with and without the support of test instructionsm
The third column shaes the number of teseetors (includ-
ing the scan ectors and the inputeetors) applied to the
cores. The last column shis the test program generation [5]
time in seconds. In thesgperiments, we use the same setg
of test instructions added for self-testing the DLX core to
help prepare the tesestors in DLX, retrige responses [7]
from the benchmark cores and analyze the responses in
DLX. For s9234, without the instructionviel DfT support, [8]
a test program with 48,912 bytes can\t@li244 testec- g
tors to the s9234 core in 70,088 clogkles. Wth the test
instructions, the same amount of scacters can be dei [19]
ered and analyzed using a program with 36,192 bytes. Th[iﬁ]
program can be completed by DLX in 45,688 clogkles.

On average, the added test instructions can reduce the prdg?
gram size by 23% and program run time by 29%. [13]

[4]

. 14
6. Conclusions (el
[15]

In this paperwe present an instructionvid DfT meth-
odology by adding ne instructions to an on-chip micro-
processor core. ith the added test instructions, embedded-

[16]

References

W.-C. Lai, A. Krstic, and K.-TCheng. On @&sting the Bth Delay Rults of a
Microprocessor Using its Instruction SELSI st Symp pp. 15-20, 2000.
W.-C. Lai, A. Krstic, and K.-TCheng. €st Program Synthesis foath Delay
Faults in MicroprocessoProceedings of Internationale$t Confeznce pages
1080-1089, 2000.

The National &hnology Roadmap for SemiconduapBemiconductor Indus-
try Association,1997.

L. Chen and S. Be DEFUSE: A Deterministic Functional Selédt Methodol-
ogy for Processord/LS| st Sympp. 255-262, May 2000.

D. Brahme and J.A. Abraham. Functionasiing of MicroprocessorsEEE
Transactions on Computgnvol. C-33, pages. 475-485, 1984.

F. Distante and MPiuri. Optimum Behaoral Test Procedure for VLS| Dées:

A Simulated Annealing ApproacRroceedings of the IEEE International Con-
ference on Computer Desigmages 31-35, 1986.

J. Shen and J.A. Abraham. NatiMode Functional 8st Generation for Proces-
sors with Applications to Selfébt and Designalidation.Proceedings of Inter-
national Bst Confegnce pages 990-999, 1998.

K. Batcher and C.A.&pachristou. Instruction Randomization Sed§ffor Pro-
cessor Cored/LS| Bst Symposiunpages 34-40, 1999.

J. Lee and J.H.a®el. Architectural Leel Test Generation for Microprocessors.
IEEE Transactions on Computaided Design of Ingated Cicuits and Sys-
tems 13(10):1288-1300, October 1994.

D. A. Patterson and J. L. Hennessyomputer Oganization & Design: the
Hardware/Softwae Interface Morgan Kaufmann, San Mateo, California, 1994.
PCI Special Interest GroupCl Local Bus Specification, ®sion 2.2,Porland,
Oregon, Dec. 1998.

Virtual Soclet Interbice Alliance.VSI Alliance Yftual Component Interface
Standad(OCB 2 1.0)March, 2000.

Z. Navabi, VHDL: Analysis and Modeling of Digital SystenMcGraw-Hill,
New York, December 1997.

M. Gumm.VLSI Design Couge: VHDL-Modelling and Synthesis of the DLXS
RISC PocessarUniversity of Stuttart, Germay, December 1995.

J.-R. Huang, M. K. lyerand K.-T Cheng. A Self-&t Methodology for IP
Cores in Bus-based Programmable System-on-a-¢fi$,2001.

K.-T. Cheng, S. Deadas, and K. Butzer Delay-Fault Test Generation and Syn-
thesis for Bstability Under a Standard Scan Design Methodold&gyE Trans-
actions on ComputeAided Design of Ingrated Cicuits and Systems,
12(8):1217-1231, August 1993.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

