
Symbolic RTL Simulation

Alfred Kölbl
Institute for EDA

Technical University of Munich
80290 Munich, Germany

alfred.koelbl@ei.tum.de

James Kukula
Advanced Technology Group

Synopsys, Inc.
Beaverton, OR-97006

kukula@synopsys.com

Robert Damiano
Advanced Technology Group

Synopsys, Inc.
Beaverton, OR-97006

robertd@synopsys.com

ABSTRACT
Symbolic simulation is a promising formal verification technique
combining the flexibility of conventional simulation with power-
ful symbolic methods. Unfortunately, existing symbolic simulators
are restricted to gate level simulation or handle just a synthesiz-
able subset of an HDL. Simulation of systems composed of design,
testbench and correctness checkers, however, requires the com-
plete set of HDL constructs. We present an approach that enables
symbolic simulation of the complete set of RT-level Verilog con-
structs with full delay support. Additionally, we propose a flexible
scheme for introducing symbolic variables and demonstrate how
error traces can be simulated with this new scheme. Finally, we
present some experimental results on an 8051 micro-controller de-
sign which prove the effectiveness of our approach.

1. INTRODUCTION
Verification and error diagnosis are considered to be serious bot-

tlenecks for the timely design of complex integrated circuits. It
is estimated that verification requires more than half of the design
resources, and slows the ”time-to-profit” of new products substan-
tially. Current industrial practice relies mostly on RTL or gate-level
simulation with manually generated test cases or pseudo-random
inputs, along with timing analyzers and other simple rule checkers.
Unfortunately, simulation-based approaches cover only a small per-
centage of the design’s state space, limiting their ability to detect
difficult design errors. Over the past decade, advances in formal
verification techniques have resulted in verification tools that ex-
ceed the capabilities of traditional, simulation-based approaches in
their ability to detect and diagnose hard design errors. Despite these
advances, existing formal verification tools cannot yet replace sim-
ulation as mainstream verification methodology for the following
reasons. First, formal methods don’t scale well with the size and
complexity of today’s multi-million gate systems. The correspond-
ing verification tools are still limited to small or medium sized de-
signs. Second, these tools still require expert knowledge for writ-
ing specifications. They require use of specialized temporal logics
like LTL or CTL which are very different from traditional simu-
lation languages. Using conventional simulation, designers have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

greater flexibility in writing a testbench since checkers may either
be coded in the HDL of the design or as a postprocessing program
which parses the simulation output.

Recently, some techniques have evolved that enhance conven-
tional simulation with symbolic methods to form hybrid approaches.
They provide higher state space coverage while still retaining all
the advantages of simulation. One promising representative of these
approaches is symbolic simulation.

The objective of symbolic simulation is to broaden the single
trace of conventional simulation to a large number of traces that
are simulated concurrently. In conventional simulation, a pattern
of explicit values is applied to the circuit inputs and the simulator
computes the explicit values at the circuit outputs. Thus, only one
pattern is simulated per simulation run. In symbolic simulation, for
each input a symbolic variable is introduced which represents all
values this input may take (e.g., 0 and 1). The symbolic simulator
then computes symbolic expressions for each output in terms of the
input variables. These expressions implicitly represent the values
of the outputs for all possible input assignments. Thus, ifn sym-
bolic variables are applied to the circuit inputs, one symbolic simu-
lation run concurrently simulates2n patterns in parallel, increasing
the probability of finding design errors by orders of magnitude.

Existing symbolic simulation tools are mainly restricted to gate
level simulation or handle just a synthesizable subset of the HDL.
For many designs, this is sufficient because designs are usually syn-
thesizable. However, problems arise if the designer wants to simu-
late the whole system, i.e., the design together with its testbench:

• Testbenches are not normally written to be synthesizable.
Consequently, designers have the freedom to use all con-
structs of their HDL and usually they take advantage of it.
This implies that the simulator must be capable of simulat-
ing the complete set of HDL constructs.

• Testbenches can be asynchronous and may include complex
delay- and event-control constructs. This means we cannot
fall back on cycle based simulation but need a full featured
delay simulator.

• Testbenches can be large and complex. A major criterion
for the acceptance of a symbolic simulator is the amount of
code that has to be changed in order to switch from conven-
tional simulation to symbolic simulation. Ideally, no changes
should be necessary.

In this paper, we present methods that enable symbolic simulation
of the complete set of Verilog HDL constructs including delays and
events. In Section 2, we review related work on symbolic simu-
lation. In Section 3, we demonstrate the challenges of symbolic
simulation at the RT-level, especially if delay- and event-control

is involved. In Section 4, we propose a mechanism called ”event
accumulation” that reduces the average complexity of event-driven
symbolic simulation by combining execution paths that were split
due to unbalanced delays or events. As already pointed out, another
goal is to simulate testbenches with as few changes as possible.
This leads to a very flexible method of introducing new symbolic
variables into the simulation run. Unfortunately, this method com-
plicates the task of reporting an error trace to the user. The solution
to this problem will be discussed in Section 5. Finally, we describe
the implementation of our simulator and present some experimental
results in Sections 6 and 7.

2. RELATED WORK
Several publications on STE (Symbolic Trajectory Evaluation)

[9, 4, 1] and other techniques [11] have already demonstrated the
power of symbolic simulation in hardware verification. However,
these papers only tackle gate- and switch-level simulation. As we
will demonstrate in Section 3, RT-level simulation necessitates ad-
ditional concepts. Borrione et al. [2, 3] use the theorem prover
ACL2 for symbolic simulation of a behavioral VHDL subset. They
assume that all VHDL processes are synchronized on a single clock
edge which prevents the use of delays and asynchronous events.
Minato [8] proposed a technique for generating BDDs from hard-
ware algorithm descriptions. He showed how to perform symbolic
execution of if-then-else statements and while-loops. In our sim-
ulator, we have extended this scheme to the complete set of Ver-
ilog constructs including delay. Recently, McDonald and Bryant
[7] published a paper on cluster scheduling where events with dif-
ferent time stamps are combined and simulated together. This ap-
proach is similar to our technique of ”event accumulation”, but their
method addresses gate-level designs with fine grained delays while
our method addresses RTL control structures.

To the best of our knowledge, no paper has been published yet
that shows the feasibility of symbolic simulation of full Verilog or
that handles the problem of RTL simulation with full delay support.

3. SYMBOLIC RTL SIMULATION
In contrast to a gate-level symbolic simulator, a RTL symbolic

simulator directly operates on the RT-level constructs of the HDL,
thereby enabling the use of non-synthesizable statements like zero-
delay loops. The example in Fig. 1 gives an impression of the sym-
bolic execution of RTL statements by means of a Verilog testbench
fragment.

Verilog specification Symbolic execution Control variable

rega, b;

initial begin initial{ control := 1
a = $random; a := sa
b = 0; b := 0
if (a == 0) begin control := (a == 0)

b = $random; b := ite(control, sb, b)
end else begin control := (a != 0)

b = 1; b := ite(control, 1, b)
end control := 1
#5; schedule(label, 5,control)

returnToSimulator()
label:

end }

Figure 1: Symbolic execution of a sample testbench.

Let’s assume that the scalar registersa andb denote inputs to
the design and are stimulated in the given initial-block. Generally,
registers can also be vectors. A brief overview on the symbolic
representation of bitvectors can be found in [8, 6].

3.1 Introducing symbolic variables
The $random statement is frequently used in testbenches to gen-

erate patterns at the circuit inputs for random simulation. The goal
is to simulate as many different patterns as possible to obtain a good
state space coverage of the design. In symbolic simulation, it is nat-
ural to replace each call to $random by a function that returns a new
symbolic variable, thereby not just simulating one particular ran-
dom pattern, but all possible patterns. The advantage of using the
$random statement to control introduction of symbolic variables is
twofold:

• In many cases, no changes have to be made in the testbench
when switching from conventional simulation to symbolic
simulation.

• As $random statements can be placed anywhere in the code,
we can also introduce new symbolic variables anywhere, even
within zero-delay loops. This contrasts to gate level symbolic
simulation, where inputs which should be treated symboli-
cally must be specified a priori.

Although our mechanism of introducing new variables is very flex-
ible, it also makes generating an error trace harder. This particular
problem will be discussed in Section 5 in more detail.

3.2 Symbolic execution of statements
Returning to our example, the statement ”a = $random” intro-

duces a new symbolic variablesa, which is assigned to the Verilog
registera. Next, we have to deal with the if-then-else statement.
In a conventional simulator, depending on the value ofa, either the
then-branch or the else-branch of the statement would be executed.
In the symbolic case,a contains a symbolic variable that represents
both possible values 0 and 1. Thus, we actually have to simulate the
statement for both values, the then-branch assuming that condition
(a == 0) is true and the else-branch assuming that this condition is
false. We use the internal variablecontrol to maintain the symbolic
condition for the execution of each statement as it is simulated.
Initially control is set to 1. When entering the if-statement, the
control flow is split into two disjoint execution paths, namely the
then-branch wherecontrol is set to (a == 0) and the else-branch,
wherecontrol is set to (a != 0). Now, the assignments within each
branch can be expressed relative tocontrol: b := ite(control, sb, b)
andb := ite(control, 1, b) where ite denotes the if-then-else opera-
tor ite(f , g, h) = f ·g+ f ·h. So, only ifcontrol is true, a new value
is assigned tob, otherwiseb retains its old value. When leaving the
if-statement, both execution paths are merged andcontrol becomes
1 again.

In the actual simulation run, the symbolic simulator computes
symbolic expressions for all Verilog variables in terms of previ-
ously injected symbolic variables. In our simulator, these expres-
sions are represented with BDDs [5]. Here, the following symbolic
expressions would be computed (in this order):

control := 1
a := sa
b := 0
control := (a == 0) = sa
b := ite(control, sb, b) = sa ·sb +sa ·0 = sa ·sb
control := (a != 0) = sa
b := ite(control, 1, b) = sa ·1+sa · (sa ·sb) = sa +sb
control := 1

Note that the assignment tob in the else-branch does not overwrite
the value ofb assigned earlier in the then-branch, because the two
assignments were performed with disjointcontrol.

The last statement in the initial-block is a delay-control statement
that delays further execution of the block by 5 time units. We can

implement this statement by scheduling an event that causes the
simulator to resume operation at ”label” after 5 time units with the
currentcontrol. Thecontrol expression is saved in the event and
will be restored when the event is triggered.

Summarizing, the following differences to conventional simula-
tion apply:

• All data is stored symbolically. Thus, all operations such as
bitwise operations, arithmetic operations, comparisons and
assignments must also be performed symbolically.

• All statements that split the control flow (e.g., if-then-else,
case, loops) must be executed symbolically. In contrast to
conventional simulation, all execution paths are simulated.

In the following, we will have a closer look at the if-statement. It
reveals that the scheme of Fig. 1 only works if there are no delay-
or event-control statements within the two branches. If delays are
present, both branches cannot simply be processed consecutively
because the execution of one (or both) branches may be interrupted
and deferred to a later time step. A more general scheme that also
works with delay- and event-control is shown in Fig. 2.

Verilog specification Symbolic execution

if (condition) if: schedule(else, 0,control);
begin control := control·condition;
· ·
· ·

end goto endif;
else else:

begin control := control·condition;
· ·
· ·

end endif:

Figure 2: General translation scheme for if-statements.

Both branches of the if-statement must be simulated at the cur-
rent time step. To ensure proper execution of the else-branch re-
gardless of any delays in the then-branch, we schedule an event for
label ”else” with a delay of zero and with the currentcontrol. Then,
the statements in the then-branch are simulated using acontrol ex-
pression that incorporates the condition of the if-statement. Since
the then-branch is only executed for assignments to symbolic vari-
ables whereconditionand currentcontrol is true, the newcontrol
of the then-branch is computed ascontrol := control·condition.

Regardless of any delay or event statements in the then-branch,
there is still an event on the queue that will force the simulator to
execute the else-branch at the current time step. Note thatcontrol
(which is actually thecontrol from the beginning of the if-statement)
is restored from the event. In this branch, all statements are now
processed withcontrol incorporating the complemented condition.

Analogous schemes can be applied to all other control statements
like while-/repeat-/for-loops or case-statements. Note that in gen-
eral, these schemes enable symbolic simulation of all behavioral
Verilog constructs with complete delay and event support.

4. EVENT ACCUMULATION
The scheme of Fig. 2 still has a severe deficiency which is de-

picted schematically on the left hand side of Fig. 3. When enter-
ing the if-statement, control flow splits into two disjoint execution
paths, namely the then-path withcontrolT := control · condition
and the else-path withcontrolE := control · condition. Unfortu-
nately, these paths never merge again. So, all statements after la-
bel ”endif” will be executed twice, once by the execution path of
the then-branch (withcontrolT) and a second time by the execu-
tion path of the else-branch (withcontrolE). In the worst case,

if (condition) if (condition)

Merge !

control

controlT controlE

control

controlT controlE

condition conditioncondition condition

control := controlT +controlE
Figure 3: Merge problem.

this can result in an exponential increase in the number of execu-
tion paths and thus in the number of events on the event queue.
McDonald and Bryant [7] termed this problem ”event multiplica-
tion”. Therefore, it is essential to improve the scheme of Fig. 2
with a mechanism where both paths can merge again in order to
prevent this exponential blowup. As depicted on the right hand
side of Fig. 3, executing statements twice with disjointcontrol ex-
pressions has the same effect as executing them once with the com-
binedcontrol := controlT +controlE, thereby merging both execu-
tion paths.

Some cases where it is allowed to merge execution paths are dis-
cussed in the following examples. Our goal is to find a mechanism
that is able to handle all those cases.

1. Merge in future:
In the example of Fig. 4, both branches cannot be merged
in the current time step because both have a delay of 5 time
units in them. However, after 5 time steps, both branches will
resume their operation and can be merged at the end of the
if-statement.

if (a == 0)
begin

#5;
end

else
begin

#5;
end

#5 #5

(a != 0)

Merge!

(a == 0)

Figure 4: Merge in future.

2. Partial merge:
Sometimes it is not possible to merge all previously split ex-
ecution paths. However, we should be able to merge as many
paths as possible. In the example of Fig. 5 there are three
different execution paths. The first one for (a == 0, b != 0),
the second one for (a == 0, b == 0) and the third one for
(a != 0). As illustrated on the right hand side of Fig. 5, we
can merge the second and the third one because both have an
overall delay of 5 time units. We cannot merge the first one
because this path is only delayed by 2 time units. In such a
case, we need a mechanism that is able to merge at least the
balanced execution paths.

if (a == 0)
begin

if (b == 0)
#3;

#2;
end

else
begin

#5;
end

#2
#3

#2

#5

(a != 0)

(b == 0)

Merge!

(a == 0)

(b != 0)

Figure 5: Partial merge.

3. Merge in different statement:
In this example, control flow splits at the first if-statement but

both execution paths cannot be merged immediately because
the path for (a == 0) is delayed by 2 time units. However,
when execution reaches the second if-statement, the other
execution path for (a != 0) is also delayed by 2 time units
(assuming thata has not changed its value meanwhile). So,
after the second if-statement, both paths again have a bal-
anced overall delay of 2 units and can be merged. Note that
here we try to merge execution paths in a statement that is
different from the one that originally split the paths.

if (a == 0)
begin

#2;
end

if (a != 0)
begin

#2;
end

#2#2

#2

Merge!

(a != 0)(a == 0)

(a == 0)(a != 0)
(a != 0)

Figure 6: Merge in different statement.

4. Merge in loop:
At first glance, it seems that in the example of Fig. 7 we
cannot merge the execution paths that are split by the if-
statement because they have different delays in them. How-
ever, if we unroll the always-loop, we see that after 4 time
units execution paths (a0 == 0, a2 == 0) (we denotea at
time t asat) and (a0 != 0) have balanced delays and can be
merged. The same applies at time step 6 and 8.

always
if (a == 0)

#2;
else

#4;

#2

#2 #4

#2#4

#2 #4

#4
t = 8

t = 6

t = 4

t = 2

t = 0
(a0 != 0)(a0 == 0)

(a4 != 0)(a4 == 0)

(a2 == 0)(a2 != 0)

(a6 != 0) (a6 == 0)

Figure 7: Merge in loop.

Two execution paths can be merged at a specific statement if both
paths execute this statement at the same time step.

a) For statements that create events on the event queue, merging
can be achieved by searching the queue for an event with the
same label but with a differentcontrol expression. If such
an event is present, itscontrol expression is disjoined with
thecontrol of the new event, combining the execution paths.
The pseudo code of the routine that schedules events on the
queue is depicted in Fig. 8. This alone, however, does not
suffice because it still doesn’t prevent multiple execution of
the code following an if-statement, for example.

b) For all statements that split the control flow, we have to check
at the end of the statement if there are any execution paths
that can be merged. We realize this by scheduling so-called
”accumulation events” whenever an execution path leaves a
control splitting statement. The mechanism in a) is then used
to merge these events.

c) For the mechanism in b) to work properly, we must ensure
that nested statements are executed in depth first order so that
execution paths that are split in inner statements are merged
before execution paths in outer statements. This implies that
all events scheduled by these statements are also processed
in depth first order. We accomplish this by assigning prior-
ities to all events. Events created by a nested statement are
scheduled with higher priority. A specialized event queue
ensures that high priority events are processed before events
with lower priority (see also Fig. 8).

/* schedule an event for ”label” with the current control and priority */
schedule(label, deltatime, control, prio)
{

/* search for an existing event at simulation time + delta time with given label */
Event event = findEventOnQueue(simtime + deltatime, label);
if (event exists){

/* disjoin controls of new and existing event */
event.replaceControl(computeOr(event.getControl(), control));

} else{
/* insert new event on queue sorted by priority */
putEventOnQueueWithPriority(simtime + deltatime, label, control, prio);

}
}

Figure 8: Pseudo code for scheduling events.

The final translation scheme is shown in Fig. 9.

Verilog specification Symbolic execution

if (condition) if: prio := prio+2;
begin schedule(else, 0,control, prio);
· control := control·condition;
· ·
· schedule(endif, 0,control, prio−1);

end returnToSimulator();
else else:

begin control := control·condition;
· ·
· schedule(endif, 0,control, prio−1);

end returnToSimulator();
endif: prio := prio−1;

Figure 9: Translation scheme for event accumulation.

When the simulator enters the if-statement, priority is increased
by 2 making sure that all events scheduled within then- and else-
branch are processed before all other events. Like in the scheme
of Fig. 2, an event is then scheduled to ensure execution of the
else-branch in the current time step. The currentcontrol and prio
are stored in the event. Then, the newcontrol expression is com-
puted and the statements in the then-branch are simulated. At the
end of the branch, an accumulation event is scheduled for label
”endif” with priority prio−1. Thus, this event will be processed
after all events that are scheduled within the else-branch but before
any other event on the queue. Next, the event for the else-branch
will be processed and the simulator will resume operation at label
”else”. control and prio are restored from the event and, again, a
newcontrol is computed and all statements in the branch are exe-
cuted. At the end of the else-branch, a second accumulation event
is scheduled for label ”endif” with priorityprio−1.

Now, if both branches have balanced delay or event control, the
two accumulation events for the two execution paths will be merged
by the mechanism described in a) because both events have the
same label ”endif” but differentcontrol expressions.

This combined scheme with priority scheduling and accumula-
tion events works for all the cases discussed above (merge in future,
partial merge, merge in different statements, merge in loop) and can
easily be extended to other control statements like while-loops. In

the worst case, complexity is still exponential, however, the average
complexity is effectively decreased.

5. ERROR TRACES
The objective of symbolic simulation is to discover hard design

errors. In our simulator, we added two new system tasks for er-
ror detection: $error and $assert(condition). Whenever symbolic
simulation reaches a $error statement in any execution path, simu-
lation is suspended and an error trace is reported to the user based
on thecontrol expression that leads to the $error statement. The
$assert(condition) statement is used to check for the given condi-
tion at the end of each time step. If there is any assignment to
symbolic variables that makes the condition false, this assignment
is reported to the user. In either case, the reported error trace can be
used to resimulate and debug the design with explicit values. The
problem of resimulation will be addressed in this section in more
detail.

Symbolic simulation constructs a Boolean expression to repre-
sent the conditions for an error to occur. The variables in this ex-
pression represent the possible values that could be returned by the
various invocations of $random in the RTL code. In order to resim-
ulate with the proper explicit values that lead to the error, the cor-
relation between the variables and the invocations must be main-
tained. Each variable can be labelled by the particular $random
statement in the RTL code whose execution introduced the variable,
and also by the simulation time at which that execution occurred.
But since our RTL symbolic simulator allows zero-delay loops, this
is still not enough information to uniquely determine which invo-
cation corresponds to the variable. Executions of an RTL statement
cannot be given well-defined sequence numbers, since event accu-
mulation will merge paths with different numbers of executions. In
this section we show how to determine, for a particular error trace,
which $random statements are actually executed, how often they
are executed and which explicit values they must return.

a = 3, b0 = 5, b1 = 7, b2 = 2, b3 = 6
Error trace:

sa (3)
(1)1

reg [1:0]a;
reg [2:0]b;
integerc, i;

initial begin
a = $random;
c = 0;

begin

c = c + b;

end

end

for (i = 0; i <= a; i = i + 1)

if (a != i+1) b = $random; (a≥ 0)(a 6= 1)
sb0 (5)

(1) (a≥ 1)(a 6= 2)
sb1 (7)

(1)

(a≥ 2)(a 6= 3)
sb2

(0) (a≥ 3)(a 6= 4)
sb3 (6)

(1)$assert(c < 20); (-)

Figure 10: Resimulating error traces.

The example in Fig. 10 illustrates this task. In the Verilog spec-
ification on the left hand side, there are two $random statements
that introduce new symbolic variables. However, the second one is
inside a for-loop whose condition depends on the symbolic variable
introduced by the first $random statement.

This means that the body of the for-loop will be executed sev-
eral times, but the actual number depends on the execution path
that is used for the error trace. Symbolic simulation will simulate
all possible execution paths and thus the loop will be executed 4
times becausea is a 2-bit register that can take values 0 to 3. The
execution of statement ”b = $random” depends on another condi-
tion, namely (a != i+1). This implies that if (a≥ 1), this $random
statement will not be executed in one loop pass, e.g., ifa = 3, the
loop will be executed 4 times, but $random will only be executed
in passes (i=0, i=1 andi=3).

The assertion $assert(c < 20) will be triggered because there are
several execution paths that violate the condition. Some possible
error traces found by symbolic simulation are for example:

a=2, b0=7, b1=7, b2=7, b3=0 or
a=3, b0=5, b1=7, b2=2, b3=6 or
a=3, b0=4, b1=6, b2=0, b3=5.

In the symbolic simulation run, ”b = $random” is executed 4 times.
In the resimulation, depending on which error trace we choose, this
statement will be called 2 or 3 times and each call will return a
different valuebi (denotes the value returned forb at loop indexi).
Thus, it is necessary to find out, which calls to b=$random in the
symbolic simulation run are actually executed for a particular trace
and which values are returned.

The solution to this problem is to store a list of returned symbolic
variables together with thecontrol expression for each $random
statement in the code. Each symbolic execution of such a statement
will append a new variable/control pair to this list. The list elements
are depicted on the right hand side of Fig. 10. For example, the first
call to ”b = $random” appends an item with variablesb0 andcontrol
(a≥ 0)(a 6= 1) to the list, because this call is only performed if the
loop is executed(a≥ 0) and the condition for the if-statement is
true(a 6= 1).

If we now want to resimulate a specific error trace, we substitute
the error trace values into thecontrol fields of the list elements. If
control evaluates to 1 we can be sure that this call to $random will
be executed, ifcontrol evaluates to 0, this call will not be executed
for this particular trace and can be removed from the list. In all
calls with control == 1, we can substitute the symbolic variables
with the explicit values from the error trace.
Let’s assume, we pick error tracea=3, b0=5, b1=7, b2=2, b3=6 in
our example. The values of the variable/control fields are given in
parentheses in Fig. 10. For this error trace,control for the third
element of ”b = $random” evaluates to 0. This means in the resim-
ulation run, this statement will only be executed three times. The
first call returns 5, second call 7, and third call 6. Please note
that it is not sufficient to just pick items from the beginning of
the list because, as in this example, entries withcontrol == 1 and
control == 0 can be intermixed. Thus, we must evaluatecontrol
first and remove the items withcontrol == 0.

6. IMPLEMENTATION
Our simulator is implemented as compiled code simulator that

translates a given Verilog specification into C++ code. The C++
code is then compiled using GNU g++ and linked together with a
simulation library and a symbolic simulator core. For the BDD op-
erations we use the CUDD [10] package. The translator and the
simulator comprise about 30000 Lines of C++ code. The simula-
tor supports full Verilog IEEE 1364-1995 semantics and is able to
perform complete four-valued (0,1,X,Z) symbolic simulation.

We added some new Verilog system tasks for the symbolic sim-
ulator, such as $random which no longer returns a random value
but a new binary symbolic variable and $randomxz which returns a
new four valued symbolic variable. To check for invalid conditions,
the two tasks $error and $assert(condition) have been added.

Note that although our simulator supports Verilog, all concepts
presented in this paper can be applied to VHDL as well.

7. RESULTS
The simulator has been tested on several industrial circuits. One

of them is an 8051 micro-controller design, comprising about 11,000
lines of Verilog code (about 8,000 gate equivalents), with a known
bug. A checker for the bug was written in non-synthesizable Ver-

ilog code that sets a signal ”goal” to one if the bug was detected.
An assertion was introduced into the code to check if the goal could
ever become one ”$assert(goal == 0)”. Except for this single asser-
tion, nothing had to be changed in the testbench for the conven-
tional random simulation.

Random simulation did not detect the bug within 24 hours be-
cause this particular bug only occurs for one specific sequence of
instructions and operands. With symbolic simulation, the bug was
hit after 65 processor cycles after 4 minutes of computation time on
a 400 MHz Sun UltraSPARC-II. Symbolic variables were assigned
to the data-in lines (for instructions and operands) and interrupt
lines on every rising clock edge. The total number of introduced
variables was 65*12=780 (8 data lines, 4 interrupt lines).

We additionally conducted some experiments that demonstrate
the impact of event accumulation on the 8051. We ran symbolic
simulation for 730 time units and monitored the number of pro-
cessed events and the CPU time with and without even accumula-
tion.

The diagram on the left hand side of Fig. 11 shows the cumula-
tive number of events processed for each simulation time. The ini-
tialization phase of the processor requires about 300 time units, so
almost no differences can be detected in this time. From there on,
the injected symbolic variables affect the operation of the proces-
sor. It can be seen that the number of events increases significantly
without event accumulation. At time 730, the total number of pro-
cessed events is 33619 events with event accumulation and 67798
events without.

The diagram on the right hand side of Fig. 11 shows the cu-
mulative CPU time for each time step. With event accumulation,
the complete simulation took 1086.5 CPU seconds, compared to
2620.2 seconds without accumulation. Note that here, the expo-
nential curve is not caused by the number of events on the queue
but by the time for the BDD operations. In order to allow a fair
comparison, dynamic variable ordering had to be disabled.

3000

2500

2000

1500

1000

500

00 100 200 300
simulation time

400 500 600

with event acc.

700

without event acc.

simulation time

70000

60000

50000

40000

30000

20000

10000

00 100 200 300 400 500 600 700

with event acc.
without event acc.

cu
m

ul
at

iv
e

#e
ve

nt
s

C
PU

 ti
m

e

Figure 11: Effect of event accumulation on 8051.

Since the effect of event accumulation heavily depends on the
circuit type, we conducted some experiments that show the im-
pact of event accumulation on circuits with different characteris-
tics. All of the example designs/testbenches contained delay- and
event-control statements. In Table 1, we compare the CPU times
for symbolic simulation with different levels of event accumula-
tion enabled. Column 2 of Table 1 refers to the number of lines
of Verilog code, columns 3 to 5 refer to the CPU times in seconds
for symbolic simulation with full event accumulation (col. 3), with
event accumulation as depicted in Fig. 8 but without the special ac-
cumulation events (col. 4) and without any accumulation at all (col.
5).

Circuit #lines with event-acc. no acc. merge w/o event-acc.
DRAM 1048 37s 37s 37s
RISC 2531 149s 178s 388s
GCD 313 302s 353s 64199s

Table 1: CPU times for symbolic simulation.

DRAM is a timing accurate model of a DRAM memory with

testbench. For checking the different modes, address and data lines
were set to symbolic values. In this example, event accumulation
had no impact, because neither address nor data lines were used in
control statements.

RISC is a 8-bit risc processor with testbench. Symbolic vari-
ables were introduced on every clock cycle at the processor’s data-
in lines. Here, the behavioral portions of the design were not too
big, such that the design can also be simulated without event ac-
cumulation. CPU times, however, can be substantially decreased
with event accumulation. The use of accumulation events gives an
additional 19% speedup.

GCD is a greatest common divisor circuit with delays. It has
large behavioral blocks and a while loop that heavily splits exe-
cution paths. This is the reason why symbolic simulation without
event accumulation is intolerably slow here. Note that many events
are already merged by delay statements. However, adding accu-
mulation events that prevent multiple execution of code results in
additional 16% speedup.

Our examples demonstrate that event accumulation is necessary
for all circuits with larger portions of behavioral code. The im-
pact of event accumulation is the bigger the larger the behavioral
portions are.

8. CONCLUSION
We have shown that a symbolic simulator with complete Ver-

ilog IEEE 1364-1995 semantics is feasible and that all Verilog con-
structs can be simulated symbolically.

The main difference to conventional simulation is that symbolic
simulation has to simulate all possible execution paths. Further-
more, all operations and statements must be computed symboli-
cally. We have proposed a mechanism called ”event accumulation”
that prevents an exponential increase in the number of execution
paths by merging as many paths as possible. Finally, we have pro-
posed a flexible method for introducing new symbolic variables in a
simulation run and have demonstrated how to resimulate the design
for a particular error trace.

The presented approach is capable of symbolically simulating all
designs and testbenches that can be specified in Verilog, even asyn-
chronous designs and designs containing non-synthesizable con-
structs.

9. REFERENCES
[1] D. Beatty and R. Bryant. Formally verifying a microprocessor using a

simulation methodology. InACM/IEEE Design Automation Conference (DAC),
pages 596–602, 1994.

[2] D. Borrione and P. Georgelin. Formal verification of VHDL using VHDL-like
ACL2 models. InForum on Design Languages (FDL), 1999.

[3] D. Borrione, P. Georgelin, and V. M. Rodrigues. Symbolic simulation and
verification of VHDL with ACL2. In International HDL Conference and
Exhibition (HDLCONF), Mar. 2000.

[4] R. Bryant, D. Beatty, and C.-J. Seger. Formal hardware verification by symbolic
ternary trajectory evaluation. InACM/IEEE Design Automation Conference
(DAC), pages 397–402, 1991.

[5] R. E. Bryant. Graph–based algorithms for boolean function manipulation.IEEE
Transactions on Computers, 35(8):677–691, Aug. 1986.

[6] R. Herrmann and H. Pargmann. Computing binary decision diagrams for
VHDL data types. InEuropean Design Automation Conference with
EURO-VHDL (EURO-DAC), 1994.

[7] C. B. McDonald and R. E. Bryant. Symbolic timing simulation using cluster
scheduling. InACM/IEEE Design Automation Conference (DAC), 2000.

[8] S.-i. Minato. Generation of BDDs from hardware algorithm descriptions. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
Nov. 1996.

[9] C.-J. Seger and R. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. InFormal Methods in System Design, volume
6(2), pages 147–190, 1995.

[10] F. Somenzi. CUDD: CU Decision Diagram Package - Release 2.3.0, Online
User Manual. September 1998.

[11] C. Wilson and D. Dill. Reliable verification using symbolic simulation with
scalar values. InACM/IEEE Design Automation Conference (DAC), 2000.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

