
ABSTRACT
We introduce a new verification methodology for modern micro-
processors that uses a simple checker processor to validate the exe-
cution of a companion high-performance processor. The checker
can be viewed as an at-speed emulator that is formally verified to be
compliant to an ISA specification. This verification approach en-
ables the practical deployment of formal methods without impact-
ing overall performance.

1. INTRODUCTION
Modern microprocessors are enormously complex systems. Archi-
tectural features, such as out-of-order and speculative execution,
branch prediction, and multi-level caches, significantly enhance
performance but create serious functional verification challenges.
By far, the most common verification paradigm in use today is sim-
ulation. A typical microprocessor design is simulated for months us-
ing a battery of test programs that are intended to “wring the bugs
out” before the design is released for manufacture. Such a verifica-
tion strategy is becoming increasingly untenable, however, because
of increasing design complexity and time-to-market pressures. In
addition, simulation-based verification cannot guarantee that a de-
sign is bug-free; at best, simulation can reduce the probability of re-
leasing a buggy design to acceptable levels but can never
completely certify design correctness.

In this paper, we present a new verification methodology that sig-
nificantly lowers the burden of verifying modern microprocessor
designs. The verification process is decomposed into two steps: a)
dynamic on-line verification of the core processor Pcore by a com-
panion checker processor Pcheck and b) static off-line formal verifi-
cation of Pcheck with respect to the instruction set architecture (ISA)
specification. Pcheck resides in the final “commit” stage of Pcore and
dynamically verifies Pcore’s execution of each instruction before re-
tiring it to architected storage (register file and memory.) Pcheck op-
erates in two modes: a check mode in which it concurrently checks
the computation, communication and control information generated
by Pcore, and a recovery mode which it enters when the check mode
indicates potential errors in the data it is receiving from Pcore. In
such cases, Pcheck stalls Pcore, re-executes the “faulty” instruction,
and then re-starts Pcore and resumes operating in its check mode.
The correctness of Pcheck is established formally by comparing its

implementation to a specification that is extracted from the corre-
sponding ISA reference manual. The comparison is performed for
every instruction (or instruction type) and yields a formula in the
Logic of Equality with Uninterpreted Functions (LEUF) that is sub-
sequently checked for validity.

The viability of such a hybrid verification approach rests on the
availability of a checker processor that is both fast and simple. It
should be fast so that it doesn’t degrade the performance of Pcore,
and simple so that its formal verification is tractable. We show in
this paper that it is indeed possible to design such a processor and
show how we plan to formally verify it.

The paper is organized as follows. In Section 2 we review relevant
work in formal microprocessor verification and show how it relates
to the particular approach we describe in this paper. Section 3 is de-
voted to the description of dynamic verification; in particular, we
describe the architecture of a proposed checker processor and show
that it does not lead to a degradation in the performance of the core
processor. Section 4 briefly reviews the logic of equality with unin-
terpreted functions, its use in hardware verification, and how the va-
lidity problem in this logic is converted to a Boolean satisfiability
(SAT) problem. In Section 5, we describe our methodology for ver-
ifying the checker processor against the ISA specification and illus-
trate it with an example. Experimental verification results for a
prototype checker are discussed in Section 6 and the paper is con-
cluded in Section 7 with some pointers to future work.

2. PREVIOUS WORK
Formal microprocessor verification methods represent an alterna-
tive to traditional verification by simulation. Formal verification es-
tablishes a relation between a microprocessor implementation and
its specification. The first attempts were aimed at specifying a sim-
ple microcoded computer and formally verifying its RTL imple-
mentation using HOL [12]. In HOL, the user formulates the
theorems to be proved and provides guidance to the mechanical
proof system. Thus, using the system requires a great deal of exper-
tise. The authors reported that the verification procedure required
six hours of run time and about two man-months of effort to con-
struct the HOL equations. Another early effort was the attempt to
verify the FM8501 [11], a computer similar in complexity to a PDP-
11. The specification was described at the instruction set level and
the implementation at the register transfer level. The Boyer-Moore
theorem prover was used to show that, after the execution of a mac-
roinstruction in the specification and the corresponding N microin-
structions in the implementation, corresponding machine states in
both models were equivalent. The reported advantage of the Boyer-
Moore theorem prover was its use of heuristics that speed up the
proof process and that require less user expertise than HOL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

Scalable Hybrid Verification of Complex Microprocessors
Maher Mneimneh, Fadi Aloul, Chris Weaver, Saugata Chatterjee, Karem Sakallah, Todd Austin

University of Michigan

{maherm, faloul, chriswea, saugatac, karem, taustin}@umich.edu

Recently theorem provers [15] were used to verify a pipelined mi-
croprocessor. The microprocessor was described at two levels: an
abstract specification which captures the semantics of the instruc-
tion set and an abstract realization which models the activities that
occur in every clock cycle. The correctness properties were con-
structed and proved interactively. The authors indicated that the ver-
ification task took about four man-months by an expert user of the
theorem prover. The PVS theorem prover was also used to establish
the correctness of another pipelined microprocessor [9]. The imple-
mentation and specification were described using state machines
and the correctness criteria were based on showing that traces gen-
erated by the two machines are the same. Timing differences be-
tween the specification and implementation were accounted for
either by “slowing down” the specification state machine or “speed-
ing up” the implementation state machine.

In all of the above methods, human interaction was an essential fac-
tor guiding the proof of correctness. In addition, the processors ver-
ified were simple compared to current state-of-the-art processors.
The method proposed by Burch and Dill [7] greatly enhanced veri-
fication techniques. By using an automated decision procedure, cor-
rectness proofs required less human interaction and made possible
the verification of complicated designs that previous methods failed
to handle. Their method is composed of two phases. In the first
phase, an implementation is extracted from the RTL description and
modeled in a Lisp-like language. Similarly, the corresponding spec-
ification is extracted from the ISA description and modeled using
the same language. These compiled models of the specification and
implementation are then used to construct a formula that is correct
if and only if the implementation correctly realizes the specification.
In the second phase, the validity of the constructed formula is
checked. Proving the validity of the generated equation is an auto-
mated task. This significantly reduces the burden of verification
when compared to the mechanical proofs conducted in previous
methods. The logic they used is the quantifier-free logic of uninter-
preted functions with equality and propositional connectives. This
logic proved to be effective in verifying microprocessors because it
allows the abstraction of the processor datapath by using uninter-
preted functions. In addition, the validity problem in this logic is de-
cidable. Although their method was able to verify a DLX
implementation, they report that their decision procedure presented
a bottleneck when applied to commercial processors.

More efficient procedures for the logic of equality with uninterpret-
ed functions were proposed by Bryant et al. [6]. These procedures
exploit the structure of the formulas generated to reduce the com-
plexity of the decision procedure for the logic. By distinguishing be-
tween positive and negative terms, proving the universal validity of
a positive formula can be reduced to proving its validity in all max-
imally diverse interpretations. Thus, the decision procedure can sig-
nificantly reduce the different interpretations it should consider.
Their method was able to efficiently verify complex pipelined mi-
croprocessors that defied all previous methods.

The technique we present in this paper for formally verifying the
checker processor borrows from the previous work described
above. Yet, it has several distinct advantages, the most significant
being its scalability. The complexity of microprocessor designs
tends to grow rapidly with the introduction of advanced microarchi-

tectural features. Although recent methods were able to verify some
of these modern designs, the techniques used are not guaranteed to
perform efficiently on future designs. Our approach scales well as
designs get more complex since the architecture of the checker pro-
cessor will not drastically change. In addition, our approach relaxes
the requirement on the specification. Whereas previous techniques
required an “executable” specification, our approach uses an “inter-
pretation” of the ISA reference manual as a specification.

3. DYNAMIC VERIFICATION
Dynamic verification [4] is an online instruction checking technique
that stems from the simple observation that speculative execution is
fault tolerant. Consider, for example, an incorrectly designed
branch predictor that indexes the predictor array with the most sig-
nificant bits of the program counter (instead of the least significant
bits.) The design would operate correctly even though the branch
predictor contained a design error. The only effect on the system
would be significantly reduced branch predictor accuracy (i.e.,
more mispredictions) and accordingly reduced system performance.
From the point of view of a correctly-designed branch predictor
check mechanism, a bad prediction from a broken predictor is indis-
tinguishable from a bad prediction from a correct predictor design.

Given this observation, the burden of verification in a complex de-
sign can be decreased by simply increasing the degree of specula-
tion. Dynamic verification does this by pushing speculation into all
aspects of core program computation, communication, and control.
Accordingly, a robust speculation check mechanism will ensure that
permanent or transient faults do not impact program correctness.
Figure 1 illustrates the approach.

To implement dynamic verification, a microprocessor is construct-
ed using two heterogeneous internal processors that execute the
same program. The complex core processor Pcore is responsible for
pre-executing the program to create the prediction stream. The pre-
diction stream consists of all executed instructions (in program or-
der) with their input values and memory addresses referenced. The
core processor is identical in every way to a traditional complex mi-
croprocessor core up to (but not including) the retirement stage. The
core processor is “predicting” values because it may contain latent
design errors that could render some instruction results incorrect.

The simple checker processor Pcheck follows the core processor,
verifying the activities of the core processor by re-executing all pro-
gram computation in its wake. The high-quality stream of predic-
tions from the core processor serves to simplify the design of the
checker processor and speed its processing. In the event the core
produces a bad prediction value (e.g., due to a design error), the
checker processor will fix the errant value and flush all internal state
from the core processor, and restart it after the errant instruction.
Once restarted, the core processor will re-synchronize with the cor-
rect state of the machine as it reads register and memory values from
non-speculative storage. The resulting dynamic verification archi-
tecture should benefit from a reduced burden of verification, as only
the checker need be completely correct. Since the checker processor
will fix any errors in the instructions that are to be committed, the
verification of the core is reduced to locating and fixing commonly
occurring design errors that could affect system performance.

In normal checking mode, when the core processor retires an in-
struction, the checker pipeline receives the instruction with core
processor predictions. These predictions include the next program
counter, instruction, inputs to the instruction, and memory address-
es referenced (for loads and stores.) Using these high quality predic-
tions, the checker processor re-executes in parallel the four
fundamental steps of instruction execution: fetch, decode, execute,
and memory access. These processing steps, which ordinarily exe-
cute serially, proceed in parallel in the checker processor because
the core processor predictions break dependencies that exist be-
tween these steps. If each prediction from the core processor is de-
termined to be correct, the result of the current instruction (a register
or memory value) as computed by the checker processor is allowed
to retire to non-speculative storage in the commit (CT) stage of the
checker processor. In the event any predictions from the core are
found to be incorrect (e.g., due to a design error), the errant result is
fixed by the checker and the core processor is flushed and restarted.

Instruction recovery is implemented by reconfiguring the checker
pipeline into a serial unpipelined processor, similar to the classic
five-stage pipeline. In this mode, stage computations are sent to the
next logical stage in the checker processor pipeline, rather than used
to verify core predictions. Unlike the classic five-stage pipeline,
only one instruction is allowed to enter the pipeline at a time. As
such, the recovery pipeline configuration does not require bypass
datapaths or complex scheduling logic to detect hazards. Once the
instruction has retired, the checker processor re-enters normal pro-
cessing mode and restarts the core processor after the errant instruc-
tion. An important aspect of the checker design is that the check and
recovery modes use the same checking modules, thereby reducing
the area cost of the checker and its design complexity.

Pre-execution of the program on the complex core processor elimi-
nates most of the processing hazards (e.g., branch mispredictions,
cache misses, and data dependencies) that could slow the simple
checker pipeline. A recent paper [8] used detailed cycle-based sim-
ulation to gauge the performance impacts of the checker processor.
For a large collection of benchmarks including programs from the
SPEC benchmark suite, slowdowns due to instruction checking
were at most 0.2%. The study found that very few checker pipeline
stalls existed. Branch hazards were cleared by the high quality next-
PC predictions from the core processor, generated during pre-exe-
cution of the program. Data hazards from long latency instructions
were eliminated by the input value predictions supplied by the core
processor. With these values, instructions need not wait for earlier
dependent operations to finish. Finally, data hazards from cache
misses were virtually non-existent in the core processor because the

core processor ran ahead of the checker initiating cache misses (and
tolerating their latency) in advance of checker execution. An earlier
study [4] found that while recovery mode performance was quite
poor, overall slowdown were less than 1% if fault rates were limited
to at most one fault per 1000 cycles. A moderate level of core pro-
cessor verification should be sufficient to locate and fix frequent de-
sign errors that could adversely impact system performance.

Besides reducing the burden of verification in complex micropro-
cessor designs, dynamic verification may render other benefits and
opportunities in the design of complex microprocessors. A number
of promising directions have been suggested (additional details are
available in [4].) These proposals include beta-release processors to
reduce time-to-market and design cost, SER and transient fault tol-
erant designs, aggressive core circuitry implementations, and de-
signs that reduce core processor complexity.

4. DATAPATH/MEMORY ABSTRACTION
Microprocessor verification is typically split into independent data-
path and control logic verification tasks. This naturally leads to a hi-
erarchical verification methodology wherein datapath and memory
subsystems are verified separately and are assumed to be correct for
purposes of verifying the control logic. In most modern formal ver-
ification approaches for control logic, the quantifier-free logic of
equality with uninterpreted functions (LEUF) [7] provides a conve-
nient formalism for datapath and memory abstraction.

Using this logic, an instruction such as “ADD R1, R2, R3” which
adds the integer contents of registers R1 and R2 and stores the result
in register R3 would be represented by the LEUF formula “v3 =
A(v1, v2)” where v1, v2, and v3 are symbolic term variables that de-
note the contents of their corresponding registers, and A is the func-
tion symbol for the uninterpreted integer ADD function. Note that
this type of abstraction makes the width of the datapath transparent
to the verification process, significantly reducing its complexity
without affecting its correctness.

Efficient algorithms exist for checking the validity of formulas in
this logic. In particular, the Stanford Validity Checker, SVC [5], has
been successfully used to prove the correctness of formulas gener-
ated for pipelined microprocessor verification. An alternative ap-
proach for checking the validity of LEUF formulas is based on
converting them to propositional logic and testing them for satisfi-
ability using a Boolean SAT solver. In general, this conversion re-
sults in an exponential increase in the size of the formula and is
impractical except in certain special cases. In our case, as we show
in Section 6, this conversion did not present an obstacle and proved
to be very effective due to the simplicity of Pcheck.

LEUF formulas are typically converted to propositional form by in-
stantiating new terms (domain variables) for each uninterpreted
function occurrence, and subsequently encoding these terms using
Boolean variables. The details of such conversions differ [6,10], but
they all yield a Boolean formula that is equivalent to the original
LEUF formula. One of the simplest conversion algorithms is Ack-
ermann’s method [1] which replaces uninterpreted functions in the
original formula by new domain variables (as described above) and
augments it with additional constraints on those variables to pre-
serve equivalence. For example, the LEUF formula

 non-speculative inputs

Core Processor

CHK CT

 Checker ProcessorPrediction
stream:

insts, inputs,
addresses,

results

Architected
Reg/Mem

IF ID REN SCHEDULER

EX/
MEM

REG

Figure 1: Dynamic Verification Architecture

 which contains two occurrences of the uninter-
preted function A with different arguments is replaced by

where and are two new domain variables that denote the
two separate occurrences of uninterpreted function A. To complete
the conversion of the formula to propositional form, the k domain
variables are suitably encoded by Boolean variables. This
encoding follows from a theorem, by Ackermann, that the universal
validity of a formula in the logic of equality is preserved when it is
proved valid in a domain with k elements regardless of the domain
size of the formula’s variables. With such an encoding, each equal-
ity term of the form is finally replaced by

5. ISA VERIFICATION METHODOLOGY
Using our hybrid verification methodology, the correctness of the
Pcore/Pcheck system can now be comprehensively established by
only proving the correctness of Pcheck’s implementation against the
ISA specification. This verification task is considerably simpler
than those proposed for verifying an out-of-order complex instruc-
tion processor against a corresponding unpipelined specification
and is much more amenable to automation.

A high-level overview of this verification procedure is depicted in
Figure 2. The ISA specification and the Pcheck implementation are
viewed as next-state functions that modify programmer-visible state
(memory, register file, program counter, etc.) in response to instruc-
tion execution. Most ISA specifications for general-purpose proces-
sors assume a sequential execution model in which instructions are
fetched, decoded, executed, and retired to architected storage. In ad-
dition, the effect of executing any given instruction on visible state
is completely determined by what that state is, regardless of how it
was reached. This allows us to check the correctness of individual
instructions (or instruction types) without worrying about interac-
tions with other instructions. Another way of saying this, is that the
effect of executing any instruction is completely recorded in pro-
grammer-visible state and not in any hidden control state.

Denoting the next-state functions for the ISA specification and im-
plementation of a particular instruction I as and , respec-

tively, the verification task becomes one of insuring that
 where represents the current

state of visible storage. The complexity of this check depends pri-
marily on the nature of . A simple in-order single-issue unpipe-
lined processor, such as Pcheck, yields a simple next-state function
for each of its instructions, significantly reducing the computational
requirements for verification. On the other hand, a speculative, out-
of-order pipelined implementation creates inter-instruction depen-
dencies that must be accounted for when determining an instruc-
tion’s next-state function. Such a function is likely to be complex
due to the presence of extra control state, and could drastically in-
crease the complexity of verification. It is important, though, to note
that even in such cases, these functions must conform to the sequen-
tial execution semantics at instruction boundaries.

The verification procedure checks for errors in the implementation
of Pcheck’s control logic. Datapath components, such as the ALU,
register file, and memory system are assumed to be correct and are
abstracted using suitable uninterpreted functions. In the illustrations
that follow we will use uninterpreted function symbols A to stand
for integer addition, S for integer subtraction, SE for sign extension,
and READ and WRITE, respectively, for reading from and writing
to memory or the register file.

Our verification procedure is best illustrated by an example.
Figure 3(a) shows an excerpt from the Alpha Architecture Hand-
book [3] describing the operation of the quadword subtract (SUBQ)
instruction. We extract by a ‘syntactic interpretation’ of the
instruction description. This step is illustrated in Figure 3(b) where
we interpret the effect of this instruction on a hypothetical model
having four registers and one memory location. Note that this in-

In
st

ru
ct

io
n

I

In
str

uc
tio

n
I+

1

Figure 2: An overview of the verification methodology

N
SPEC (I, S i-1

)

N IMP(I, Si-1)

Current
state of
visible
storage

Next
state of
visible
storage

= ?

Next
state of
visible
storage

α A x y,() A u v,(),()

x u=() y v=()∧() fA1 fA2=()→() α fA1 fA2,()→

fA1 fA2

klog

a b=()

()
log

0

=
�

k

i i
i

a b�

NSPEC NIMP

Rc Rav - Rbv

aR0
bR1
cR2
dR3

hM

pPC

aR0
S(c,d)R1

cR2
dR3

hM

A(p,4)PC

SUBQ R2,R3,R1

Initial State
of

Visible Storage

Next State
of

Visible Storage

Figure 3: SUBQ instruction example (a) Specification as described
in the Alpha Reference Manual (b) Effect of execution as de-
scribed by the specification

Format

Operation

Instruction Mnemonics

Description

SUBQ Ra.rq, Rb.rq, Rc.w

SUBQ Subtract Quadword

(b)

(a)

Register Rb or a literal is subtracted from register Ra and
the 64-bit difference is written register Rc.

NIMP I Si 1–,() NSPEC I Si 1–,()= Si 1–

NIMP

NSPEC

struction has no effect on memory states permitting us to abstract
memory using a single symbolic location M containing the symbol-
ic value h. changes the content of the program counter to
A(p,4) and the content of the destination register R1 to the result of
the SUBQ instruction, S(c,d). Although the Alpha Architecture
Handbook specifies 32 programmable-visible registers, we are lim-
iting this example to just 4 registers for illustrative purposes. Note,
also, that we are specifying particular, as opposed to arbitrary sym-
bolic, source and destination registers in this example, even though
this is not a requirement of the verification process.

The implementation next-state function for SUBQ is extracted from
a Verilog HDL model as shown in Figure 4 and Figure 5. The Ver-
ilog excerpt in Figure 4 highlights some of the relevant code sec-
tions that affect the control flow of this instruction. When
symbolically simulated, as shown schematically by the bold lines in
Figure 5, we obtain the implementation’s symbolic expressions for
each of the programmer-visible states.

At this point the following LEUF formula is constructed:

stating that if the specification and implementation start in identical
initial programmer-visible states, then after execution of SUBQ,
they should yield identical next states. For this simple example, the
validity of the above formula is obvious by simple inspection. In
general, though, the formula must be a) converted to propositional
form as described in Section 4, b) negated, c) translated to conjunc-
tive normal form (CNF), and finally d) checked with a SAT solver.
If the solver proves the formula to be unsatisfiable, then the imple-
mentation of the instruction is correct. Otherwise, the instruction’s
control implementation is erroneous and the satisfying assignment
returned by the SAT solver can be used to diagnose the error.

The above procedure must be repeated for each instruction in a pro-
cessor’s ISA specification, in both the check and recovery modes of
the checker processor implementation. The implementation is certi-
fied to be correct if all constructed formulas are proved valid. It is
important to remember, though, that this proof of correctness ap-
plies only to the control logic of the implementation. This includes
control logic errors that cause invalid accesses (reads or writes) to
memory or the register file, but not errors in the controllers of those
storage structures. Such errors, e.g. in the address decoder of the
register file, must be checked by other techniques. In particular,
when verifying load or store instructions, we only check that the
correct symbolic addresses are generated by the implementation’s
control unit but not that the correct memory locations are accessed.

It is interesting to note that our verification problem differs from
those studied previously in that we check an implementation direct-
ly against the ISA specification. Previous methods [6, 7] required an
unpipelined ‘executable’ model as the specification and checked a
complex pipelined implementation against it. In our methodology,
this more difficult verification problem is performed dynamically
using the Pcore/Pcheck combination whereas the simpler problem of
verifying Pcheck against the ISA is handled formally.

6. EXPERIMENTAL RESULTS
Our initial evaluation of the verification methodology proposed in
this paper was based on a prototype implementation of Pcheck based
on the Alpha ISA [3]. The current design supports 30 instructions
and consists of 2000 lines of structural Verilog code. All experi-
ments were conducted on a 333 MHz Pentium II machine having
512 MByte of RAM and running the Linux operating system.

The verification task consisted of a “manual” symbolic simulation
of the execution of each of these instructions in Pcheck’s recovery
mode. This was done by tracing instruction flow through the Ver-
ilog code and monitoring changes to architected storage. An LEUF
validity formula was subsequently generated and processed as de-
scribed in the previous section. We used the GRASP [14] SAT solv-
er as our satisfiability engine.

A sample of the verification results is shown in Table 1. Column 1
in the table specifies the instruction being verified, columns 2 and 3
give the number of variables and clauses in the corresponding CNF
formula, column 4 indicates whether the formula was satisfiable or
unsatisfiable, and column 5 shows the CPU time required for check-

Figure 4: Excerpt from the Verilog code of Pcheck prototype

// Decode an instruction given the instruction register
function [6:0] decode_cmd;
 input [31:0] IR;
 case (IR[31:26])

.....
`INTA_GRP:
 `SUBQ_INST:decode_cmd = `SUBQ;

// Decode the value of the first operand
function [63:0] decode_RA;
 input [6:0] cmd;
 input [63:0] READB_BUSRF, READA_BUSRF, CHECKER_PC;

case (cmd)
....
default: // ALU operations

decode_RA=READA_BUSRF;
....

// Decode the value of the second operand
....

// Decode the destination register
decode_DST

....

NSPEC

α =

p q=() a w=() b x=()∧ ∧ ∧
c y=() d z=() h j=()∧ ∧

→
A p 4,() A q 4,()=() S c d),() S y z,()=()∧ ∧

a w=() c y=() d z=() h j=()∧ ∧ ∧

Figure 5: Symbolic simulation of SUBQ on Pcheck prototype

wR0
xR1
yR2
zR3

hM

qPC

RegFile

decode_RA

immImm
decode_RB

A

S

SE

decode_cmd

compute_Result

A

Cond

wR0
S(y,z)R1

yR2
zR3

RegFile
4

compute_NPC

A(q,4) PC

decode_cmd

hM

decode_DST

ing the formula. As can be seen from this table, two of the instruc-
tions (ADDQ and BRNE) were found to be correct. Interestingly,
though, the other two instructions (LDQ and BR) were flagged as
having erroneous implementations.

The implementation of the LDQ instruction, which loads a value
from a calculated memory location into a specified register, yielded
the symbolic expression READ(A(R2,disp)). On the other hand, the
instruction’s specification from the Alpha reference manual result-
ed in the expression SE(READ(A(R2,SE(disp)))). The discrepancy
between these two “next states” was discovered by the SAT solver
and led to the source of the error, namely the absence of a sign-ex-
tension unit in Pcheck. It is worth noting that this type of error could
be difficult to identify using simulation, since not all calculated re-
sults exercise the bug. Actually, values with a zero in their most sig-
nificant bit would execute correctly in this buggy model since sign
extending their value doesn’t change it.

Diagnosis of the error in the unconditional branch instruction BR re-
vealed that the register indicated in the instruction was not updated
with the new value of the program counter as required by the ISA
specification. Conceivably, this type of bug can be detected by care-
ful simulation.

In some rare cases, the SAT solver returned a satisfiable assignment
for an instruction that was correct. Such false positives resulted
from LEUF specification and implementation formulas that were
identical except for different orders of arguments to, as well as dif-
ferent orders of applications of, uninterpreted functions. Such func-
tional properties (namely, commutativity and associativity) are not
modeled in the constructed LEUF formula and must be explicitly
accounted for with additional constraints.

We also discovered in this exercise some inconsistencies in the ISA
specification itself. For example, the RTL description of the LDQ
instruction clearly shows that the displacement field is sign-extend-
ed to 64 bits and then left shifted by two bits: SL(SE(Disp), 2)). On
the other hand, the English language description of the same in-
struction implies that the displacement field is first shifted left and
then sign-extended: SE(SL(Disp, 2)). Since these two operations are
not commutative, one of these descriptions (the English language
comment) is clearly incorrect. This observation reinforces the need,
recognized in previous work on bus protocol verification [2,13], to
seek formal representations of specifications.

7. CONCLUSION
We presented a design-for-verifiability technique that promises to
mitigate the current functional verification bottleneck by combining
online dynamic with offline formal verification methods. Noting
that the semantics of instruction set processors are typically quite
simple and do not grow in complexity over time, whereas the imple-
mentations of such processors continue to increase in complexity in

order to achieve higher performance targets, our approach has built-
in scalability that insures its ability to verify future highly-opti-
mized processors. Our initial data suggest that this approach to de-
sign verification has little impact on performance and is
computationally tractable to enable practical application on any
ISA. We plan to explore the automatic derivation of the validity
next-state formulas from RTL models of checker processors and to
extend this technique to all instruction types and architectural fea-
tures such as interrupts and exceptions. We will also investigate oth-
er approaches, besides Boolean satisfiability, for checking the
validity formulas. We are currently designing a complete checker
processor as a proof-of-concept vehicle for estimating area, power,
and performance costs.

8. ACKNOWLEDGMENTS
This work is funded by the DARPA/MARCO Gigascale Silicon Re-
search Center.

9. REFERENCES
[1] W. Ackermann, “Solvable Cases of the Decision Problem,”

Noth-Holland, Amsterdam, 1954.
[2] F. A. Aloul and K. A. Sakallah, “Efficient Verification of the

PCI Local Bus using Boolean Satisfiability,” in IWLS, 2000.
[3] “Alpha Architecture Handbook,” Product #EC-QD2KC-TE,

Compaq Computer Corporation, 1998.
[4] T. Austin, “DIVA: A Dynamic Approach to Microprocessor

Verification,” in Journal of Instruction-Level Parallelism, Vol.
2, 2000.

[5] Clark W. Barrett, David L. Dill, Jeremy R. Levitt, “Validity
Checking for Combinations of Theories with Equalities,” in
FMCAD, 1996.

[6] R. Bryant, S. German, and M. Velev, “Processor Verification
Using Efficient Reductions of the Logic of Uninterpreted Func-
tions to Propositional Logic,” TR CMU-CS-99-115, 1999.

[7] J. Burch, and D. Dill, “Automatic Verification of Pipelined
Microprocessor Control,” in CAV’94.

[8] S. Chatterjee, C. Weaver, and T. Austin, “Efficient Checker Pro-
cessor Design,” in Micro-33, 2000.

[9] D. Cyrluk, “Microprocessor Verification in PVS: A Methodol-
ogy and Simple Example,” Technical Report SRI-CSL-93-12,
SRI Computer Science Laboratory, 1993.

[10]A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD
based procedures for a theory of equality with uninterpreted
functions,” in CAV’98, June, 1998, pp. 244-255.

[11]W. A. Hunt, “FM8501: A Verified Microprocessor,” Tech.
Rept. 47, Institute for Computing Science, University of Texas
at Austin, 1986.

[12]J. Joyce, “Formal Verification and Implementation of a Micro-
processor,” VLSI Specification, Verification, and Synthesis, G.
Birtwistle and P.A. Subrahmanyam, eds., Kulwer Academic
Publishers, 1988.

[13]K. Shimizu, D. Dill, and A. Hu. “Monitor-Based Formal Spec-
ification of PCI”, in Formal Methods in Computer Aided
Design, 2000.

[14]J. Silva and K. Sakallah,”GRASP-A New Search Algorithm
for Satisfiability,” in ICCAD, 1996.

[15]M. Srivas and M. Bickford, “Formal Verification of a pipelined
microprocessor,” in IEEE Software, 7(5):52-64, Sept. 1990.

TABLE 1: Experimental Results

Inst V C S/U Time, sec.
ADD 542 6430 U 0.22
LDQ 583 7285 S 0.33

BRNE 563 6430 U 0.47
BR 549 6288 S 0.28

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

