
Formal Property Verification by Abstraction Refinement
with Formal, Simulation and Hybrid Engines

Dong Wang †, Pei-Hsin Ho ‡, Jiang Long ‡, James Kukula ‡

Yunshan Zhu ‡, Tony Ma ‡, Robert Damiano ‡

† Carnegie Mellon University ‡ Advanced Technology Group, Synopsys Inc.

dongw@cs.cmu.edu, {pho, long, kukula, yunshan, tonyma, robertd}@synopsys.com

We present RFN, a formal property verification tool based on
abstraction refinement. Abstraction refinement is a strategy for
property verification. It iteratively refines an abstract model to
better approximate the behavior of the original design in the
hope that the abstract model alone will provide enough evidence
to prove or disprove the property.

However, previous work on abstraction refinement was only
demonstrated on designs with up to 500 registers. We developed
RFN to verify real-world designs that may contain thousands of
registers. RFN differs from the previous work in several ways.
First, instead of relying on a single engine, RFN employs
multiple formal verification engines, including a BDD-ATPG
hybrid engine and a conventional BDD-based fixpoint engine,
for finding error traces or proving properties on the abstract
model. Second, RFN uses a novel two-phase process involving
3-valued simulation and sequential ATPG to determine how to
refine the abstract model. Third, RFN avoids the weakness of
other abstraction-refinement algorithms --- finding error traces
on the original design, by utilizing the error trace of the abstract
model to guide sequential ATPG to find an error trace on the
original design.

We implemented and applied a prototype of RFN to verify
various properties of real-world RTL designs containing
approximately 5,000 registers, which represents an order of
magnitude improvement over previous results. On these designs,
we successfully proved a few properties and discovered a design
violation.

1. INTRODUCTION
ATPG techniques [1] have been widely used for manufacturing
tests. Recently [3][9] shows that ATPG can also be used for
functional verification, especially for finding error traces for
safety properties.

BDD-based symbolic model checking [4][11] is still the most
widely used technology for formal property verification.
However, the capacity of symbolic model checking is restricted
to designs that contain a couple of hundred sequential cells
(flops or latches). To verify real-world designs, the user must
obtain from the RTL design an abstract model that is within the
capacity of the symbolic model checker.

Abstraction refinement [2][6][7][10][12] is a strategy that
automates this process. Starting from a simple abstract model of
the design, abstraction refinement incrementally refines the
abstract model by including more and more details from the
original design until the underlying formal verification engine
verifies or falsifies the property. More precisely, the abstraction
refinement strategy consists of the following four major steps:

1. Generate the abstract model,
2. Prove the property or search for an error trace on the

abstract model,
3. Search for an error trace on the original design, and
4. Analyze the error trace of the abstract model to identify a

refinement scheme.

RFN is an abstraction-refinement algorithm developed to
formally verify unreachability properties of real-world RTL
designs. Informally, unreachability properties specify that some
“bad” states are NOT reachable from the initial states through
any traces. An error trace of the design for an unreachability
property is a trace that reaches a bad state from an initial state. It
is well known that all safety properties, the most commonly used
properties, can be modeled as unreachability properties.

Most formal verification engines today operate on gate-level
designs. Therefore, RFN also operates on gate-level designs that
can be obtained from RTL designs through logic synthesis.
Informally, a gate-level design N is a subcircuit of a gate-level
design M if N is a subset of M. If an unreachability property is
True for a subcircuit, then the property must also be True for the
original design (See Section 2).

We now provide an overview of the four major steps of RFN. In
Step 1, the abstract models used by RFN are subcircuits of the
original design. In the very first iteration, the abstract model is
the subcircuit that contains the transitive fanins (up to register
outputs) of the signals that were mentioned in the property. In
Step 2 we often see abstract models containing thousands of
inputs, which would make pre-image computation almost
impossible to find an error trace on the subcircuit. To resolve this
issue, RFN applies a hybrid method that combines both ATPG

ABSTRACT

and BDD-based symbolic image computation to find an error
trace on the subcircuit. RFN also computes a forward fixpoint
using post-image computation to verify the unreachability
property on the subcircuit. If the property is True for the
subcircuit, RFN reports that the property is True for the original
design and terminates. Otherwise it proceeds to Step 3.

In Step 3 we want to find error traces on real-world designs.
RFN utilizes the error trace found on the subcircuit to guide
sequential ATPG to search for an error trace on the original
design. If an error trace of the original design is found, RFN
reports that the property is False, prints out the error trace and
terminates. Otherwise RFN proceeds to Step 4.

In Step 4 we select a set E of registers that are in the original
model but not in the abstract model to refine the abstract model.
The refined abstract model will be the current abstract model
augmented with the set E of registers plus their transitive fanins
up to register outputs. We want to select the registers that can
enable the proof of the property on an abstract model that is as
small as possible. To achieve this objective, RFN first performs
3-valued simulation on the original design to identify a
preliminary set of registers that can potentially help invalidate
the error trace of the abstract model. Second, RFN removes some
of the registers in the preliminary set using an ATPG-based
greedy minimization algorithm. RFN repeats Step 1 to Step 4
until either it terminates at Step 2 (verified) or Step 3 (falsified),
or exceeds some memory or time limits.

We implemented the algorithm and applied the prototype to
verify various real-world designs containing approximately 5,000
registers, which represents a 10x capacity improvement over
previous results. On these designs, we successfully proved a few
properties and discovered a design violation. We also compared
the abstract models generated by RFN with the abstract models
generated by the BFS method [8].

The rest of the paper is organized as follows. In Section 2 we
describe the details of the RFN algorithm. In Section 3 we
present the experimental results. We discuss related work in
Section 4 and conclude the paper in Section 5.

2. RFN ALGORITHM
We explain in details the four major steps of RFN in the
following four subsections. Before that, we need to define some
terminology.

A gate-level design M=(G,L) is an ordered pair where G is a set
of gates and L a set of registers. A gate-level design N=(G’,L’) is
a subcircuit of M if G’ is a subset of G and L’ a subset of L. A
cell of a gate-level design M is a gate or a register. Each cell
contains at least one input and at least one output. A cell x drives
a cell y if an output of x is an input of y. A signal is an input or
output of a cell. The transitive fanin of a signal s is the set of
gates that transitively drives the signal s through some other
gates (not registers). Conversely, the transitive fanout of a signal
s is the set of gates that are transitively driven by the signal s
through some gates. The primary inputs of a gate-level design is
the set of inputs that are not the outputs of any other cells of the
design.

A cube of a gate-level design M is a valuation of some signals of
M. A state of a gate-level design M is a valuation of all registers

of M. An input vector is a valuation of all primary inputs of M.
A gate-level design M determines a transition function TM that
maps a state a and an input vector v to a state b of M. In that
case, we say that the state b is the next state of the state a with
the input vector v. A sequence t=a1,v1,a2,v2,…,ak is a trace of M
if for each i, the state ai+1 is the next state of the state ai with the
input vector vi. If there is some trace t=a1,v1,a2,v2,…,ak of M such
that a=a1 and b=ak, then we say that the state b is reachable
from the state a. An unreachability property P specifies a set A
of initial states and a set B of target states (or “bad states”) of
the gate-level design M. An unreachability property is True for M
if no target state is reachable from any initial states. Otherwise
the unreachability property is False. An error trace
t=a1,v1,a2,v2,…,ak of M is a trace such that a1 is an initial state
and ak is a target state. It is clear that if an unreachability
property is True for a subcircuit, then the property must also be
True for the original design.

For the simplicity of the explanation of the algorithm, we assume
that the input constraints have been modeled as part of the gate-
level design. Thus all input vectors are considered valid to the
gate-level design under verification.

Given a gate-level design M, a cycle number k, a sequence of
cubes C1, C2, …, Ck at cycles 1, 2, …, k, and some resource
limits, the ATPG engine may report that either: (1) all cubes can
be satisfied by a k-cycle trace of the design M, (2) the cubes
cannot be satisfied, or (3) some resource limits are exceeded. If
the answer is (1), the ATPG engine also produces a trace that
satisfies all cubes. An ATPG run is combinational if the cycle
number is one. Otherwise, the ATPG run is sequential.

Given a gate-level design M and a set Q of states of M, the post-
image computation computes the set R of all the states that are
reachable from a state in Q in one cycle. Conversely, the pre-
image computation computes the set S of all the states that can
reach a state in Q in one cycle. A forward fixpoint from a set Q
of states is the set of all the states that can be reached from a state
in Q through any traces.

2.1 Generating abstract model
The abstract models of RFN are subcircuits of the original
design. In the very first iteration, the abstract model is the
subcircuit that contains the transitive fanins of the signals that
were mentioned in the property. In the subsequent iterations, the
refined abstract model is obtained from the previous subcircuit
by including some extra registers and their transitive fanins (to
be selected at Step 4).

2.2 Proving the property or searching for
an error trace on the abstract model

Given an unreachability property P and an abstract model N, we
first perform BDD-based post-image computation from the set of
initial states A to compute a forward fixpoint. We also check on-
the-fly whether any target state of B has been included in the
post-images. If the fixpoint is reached and none of the target
states is included in the fixpoint, we can conclude that the
unreachability property is True for the abstract model N and also
for the original design M. RFN will report that the property is
True and terminate.

Otherwise some target states have been included in the reachable
states computed by the post-image computation. We want to
compute an error trace that shows why the abstract model N can
go from an initial state to a target state. The standard method of
computing this error trace involves BDD-based pre-image
computation. But in our experience, a subcircuit containing 50
registers might contain 1,000 inputs. As a result, the pre-image
computation cannot complete. Note that the post-image
computation can usually handle abstract models with lots of
primary inputs because most of the primary inputs will be
quantified out early during the image computation.

One may suggest that BDD sub-setting [13] can be used to
under-approximate the BDD during the pre-image computations.
But in our experience, BDD sub-setting is usually too drastic to
produce any useful results. Our solution to the problem is a novel
BDD-ATPG hybrid method for finding an error trace on the
abstract model.

To use this method, we need to compute a min-cut subcircuit MC
of the abstract model N. The details of the algorithm for
computing the min-cut design can be found in [8]. A high-level
description of the algorithm is as follows. We first compute a
free-cut design FC that contains the registers of the abstract
model N plus the gates in the intersection of the transitive fanin
and transitive fanout of the registers. We then compute from the
abstract model N a subcircuit MC, called the min-cut design,
which includes the free-cut design FC and has the smallest
number of primary inputs. The min-cut design MC usually
contains fewer primary inputs than the abstract model. For
example, the min-cut subcircuits of abstract models that contain
thousands of primary inputs tend to contain less than a couple
hundred primary inputs.

Also notice that when the forward fixpoint computation on the
abstract model N intersects with the target states B, we would
have accumulated a sequence of BDDs that represent the sets S1,
S2, …, Sk of states that are reachable from the initial states after 1,
2, …, k cycles, respectively.

The BDD-ATPG hybrid method works as follows. First we select
a fattest cube T (with least number of assignments) in the
intersection of the sets B and Sk of states. Second, we compute
the intersection of the set Sk-1 of states and the pre-image of the
cube T on the min-cut subcircuit MC. Since the pre-image
computation is carried out on the min-cut subcircuit MC, the
number of primary inputs is less likely to be an issue. Let R be
the result of the above computation.

If a cube of R contains only the variables corresponding to the
registers or primary inputs of N, then we call such a cube a no-
cut cube. Otherwise it is called a min-cut cube. Figure 1 depicts
the abstract model N, the min-cut design MC, and the signals that
would appear in no-cut and min-cut cubes. A no-cut cube can be
partitioned into two cubes --- an input cube that is an assignment
to the primary inputs of N (including the primary inputs of M
and the outputs of the registers of M-N) and a state cube that is
an assignment to the registers of N. Both the input cube and the
state cube become part of the error trace that we are computing.
The state cube also replaces the cube T in the next pre-image
computation. The computation repeats until a complete error
trace is computed.

Otherwise, R only contains min-cut cubes; that is, each cube of R
contains some primary inputs of MC that correspond to some
internal signals of the abstract model N. In that case we apply
combinational ATPG to find on the abstract model N a no-cut
cube that is consistent with a min-cut cube of R. We use each
min-cut cube of R, one at a time, as the target for combinational
ATPG, until a consistent no-cut cube is found. Notice that such a
no-cut cube must exist for some min-cut cubes of R, so this
process will terminate. Once we find such a no-cut cube, we
continue the next pre-image computation as before.

When we find an error trace on the abstract model, RFN will
proceed to Step 3. During Step 2, we allow automatic dynamic
BDD variable reordering. At the end of Step 2, we save the
current BDD variable ordering to use as the initial BDD variable
ordering for the next iteration of RFN.

Figure 1. No-cut cubes and min-cut cubes

2.3 Searching for an error trace on the
original design

In Step 3 we check to see if the error trace created on the abstract
model N corresponds to an error trace of the original design. If
the error trace contains only assignments to the primary inputs of
the original design M, then we know that the error trace is also
an error trace for the original design M.

If it is not the case, we still want to find an error trace for the
original design. Since RFN aims at real-world designs, it is not
practical to expect any BDD-based image computation method to
effectively find a trace on the original design. On the other hand,
if the error trace is relatively short, sequential ATPG has a very
good chance to find an error trace. But the shortest error trace
can still be too long to be found by sequential ATPG.

We resolve this problem by guiding the sequential ATPG search
with the error trace found on the abstract model. First of all, we
know that the shortest error trace on the original design M is
equal to or longer than the error trace found on the abstract
model N. We can therefore use the length of the error trace
found on the abstract model as the depth for our ATPG search.
Furthermore, the error trace found on the abstract model N can
be used as the constraint cubes of the ATPG search on the
original design M. These constraint cubes can provide cycle-by-
cycle “guidance” to the ATPG search process. In some of our
experiments, sequential ATPG with guidance can search for an
order of magnitude more cycles. It is clear that the closer the
abstract model approximates the behavior of the original design
the better guidance the error trace found on the abstract model

Inputs of the
registers of N

Signals in no-cut
cubes

Signals in min-cut
cubes

Gates of N
and MC

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

Gates of N but
not in MC

provides. If an error trace is found in this step, RFN reports the
error trace and terminates. Otherwise RFN proceeds to Step 4.

2.4 Analyzing the error trace of the abstract
model to identify a refinement scheme

In Step 4 we want to find a set E of registers to refine the abstract
model. The refined abstract model is the current abstract model
augmented with the set E of registers and their transitive fanins.
We call the set E of registers the crucial registers.

We want to find the set of registers whose addition to the abstract
model are necessary for invalidating the error trace of the
abstract model, and make this set of registers the crucial
registers. The intuition is simple --- if we do not include those
registers in the abstract model, we cannot verify the property on
the abstract model. We made the key observation that a register
whose output is a primary input of the abstract model and
appears in the error trace makes a good candidate. The
appearance of the register output in the error trace tends to
indicate that the value of the register at certain cycles needs to be
of certain value for violating the property. The register would
make an even better candidate if the inclusion of the transitive
fanin of the register into the abstract model would force the value
of the register to disagree with its value shown in the error trace.
This observation actually leads to the first phase of the crucial-
register identification algorithm of RFN --- we simulate step-by-
step on the original gate-level design the error trace of the
abstract model to find out which register would disagree with the
error trace of the abstract model.

Each step of the error trace involves (1) a beginning state, (2) an
ending state and (3) an input vector of the abstract model. We
initialize the original design with the beginning state of the
abstract model and drive the primary inputs of the original design
with the input vector of the abstract model. Since not all registers
or primary inputs of the original design are assigned with
concrete binary values in the error trace, we perform the gate-
level simulation with a third value, the unknown value X. The
registers and primary inputs not assigned in the error trace are
assigned with the unknown value. If the value of a register
conflicts with the value in the error trace at a certain cycle, the
register is added to a crucial-register candidate list. We consider
the unknown value X not conflicting with 0 or 1. If there was a
conflict, the value from the error trace will be used for the next
step of 3-valued simulation. Since 3-valued simulation is very
fast compared to most formal engines, this phase of the
identification algorithm is very efficient. If there was not any
conflict, which is rare in our experience, the registers that appear
most frequently in the error trace are added to the crucial-register
candidate list.

In our experience, the crucial-register candidate list may still
contain registers whose removal does not impact the invalidation
of the error trace. Thus we developed a greedy minimization
algorithm to filter out some redundant candidates as the second
phase of this process.

The greedy algorithm works as follows. For each register in the
crucial-register candidate list, we first add the register and its
transitive fanin to the current abstract model (that contains all the
candidate registers and their transitive fanins that have been
added so far). Second, we apply sequential ATPG to the new

abstract model to verify if the error trace is still satisfiable. We
add the candidate registers one-by-one into the abstract model
until sequential ATPG concludes that the error trace is no longer
satisfiable on the refined abstract model. At this point, all the
registers in the candidate list that have not been added to the
abstract model can be safely discarded. If sequential ATPG
cannot produce a definitive satisfiability result for the abstract
model within the resource limit (has never happened to us), all
registers in the crucial-register candidate list are included in the
abstract model.

The algorithm proceeds to remove more registers. We start to try
to remove the previously added registers (not the very last one
that made the error trace invalid) one at a time. If sequential
ATPG concludes that the error trace becomes satisfiable again
after the removal of a register, we put the register back and try to
remove the next register down the list, until we have tested all of
the previously added registers. The abstract model at the end of
this process becomes the refined abstract model that will be used
in the next iteration of the RFN algorithm.

The RFN algorithm continues until the property is verified,
falsified or some memory or time limit is exceeded.

Table 1. Property Verification Results

Properties No. registers
in COI

No. gates
in COI

Time
(sec)

Result No. registers
in abstract
model

mutex 4,982 111,151 9,795 T 57

error flag 4,986 111,203 5,830 F 55

psh_hf 135 3,770 480 T 49

psh_af 135 3,771 1,075 T 42

psh_full 135 3,765 180 T 42

3. EXPERIMENTAL RESULTS
We have implemented the RFN algorithm in C. The prototype
system includes a symbolic model checker implemented using
the BDD package in [14], an ATPG program and a 3-valued
simulation program.

We performed two types of experiments on some real-world RTL
designs. The first type of experiments is property verification, in
which we verify that none of the target states specified by the
unreachability property can be reached from an initial state. The
purpose of this type of experiments is obvious --- we would like
to compare the property verification (and falsification) capability
of RFN against plain symbolic model checking. To be fair, we
perform symbolic model checking with cone-of-influence (COI)
reduction.

We verified five properties against two real-world Verilog
designs. The gate-level designs were obtained from logic
synthesis. The first two properties “mutex” and “error_flag” were
verified against a module of a processor design. The next three
properties “push_hf”, “push_af” and “push_full” were verified
against a FIFO controller design. All properties are interesting
safety properties that the designers wanted to verify. Each safety
property was modeled as an unreachability property with a
watchdog module that asserts its output when the property is
violated. In Table 1, the first column shows the names of the

properties. The second and the third columns respectively show
the number of registers and the number of gates in the COI of the
properties. The fourth column shows the CPU time that RFN
took to verify or falsify the properties. The fifth column shows
the verification results (T=True and F=False). The last column
shows the number of registers in the abstract model when RFN
terminates.

We also applied our symbolic model checker to verify these
properties with the COI reduction. Our symbolic model checker
failed to verify any of the above five properties. Therefore, RFN
enabled the formal verification of these properties that cannot be
verified by our symbolic model checker. The violated property
“error_flag” indicated a violation to the specification of the
design. The generated error trace was 30-cycle long.

The second type of experiments is unreachable-coverage-state
analysis. The unreachable-coverage-state analysis problem is as
follows. We are given a set of signals, called the coverage
signals, of the gate-level design. A coverage state is a
combination of the values of the coverage signals. The objective
is to identify as many unreachable coverage states (on the
original design, not the subcircuit containing only the coverage
signals) as possible. The application of unreachable-coverage-
state analysis to coverage analysis is described in [8].

RFN can be used to perform unreachable-coverage-state analysis
as follows. In Step 2, we project the forward fixpoint to the set of
coverage signals and identify the coverage states that are not in
the projected fixpoint as unreachable. In Step 4, we mark the
reached coverage states by projecting the reached states of the
original design to the coverage signals. At the end of an iteration,
the coverage states that have not been identified as unreachable
or marked as reachable become the target states for the next
iteration of RFN.

An alternative method for generating abstract models is the BFS
method introduced in [8]. The BFS method relies on topological
information of the gate-level design to generate abstract models.
Given a size k, the BFS method first computes from the original
design a min-cut subcircuit that contains the closest k registers to
the coverage signals. Then it performs forward fixpoint
computation on the min-cut subcircuit to identify unreachable
coverage states.

The purpose of this type of experiments is to compare the quality
of the abstract models generated by RFN against the quality of
the abstract models generated by BFS, in terms of the number of
unreachable coverage states that they identify. We performed
unreachable-coverage-state analysis for seven sets of coverage
signals selected from two real-world Verilog designs. The first
five sets of coverage signals are selected from the Integer Unit
(IU) of the Sun picoJava microprocessor [15]. The next two sets
of coverage signals are selected from a USB bus controller
design. Each of the first five sets of coverage signals contain 10
distinct coverage signals that introduce 1024 coverage states.
The last two sets contain 6 and 21 coverage signals, respectively.
The coverage signals were selected among the registers that
encode control state machines.

The results of the experiments are summarized in Table 2. The
BFS abstract models contain exactly 60 registers in each
experiment. We picked the number 60 based on our experience

that the forward fixpoint computation almost always completes
on an abstract model with 60 registers. We applied a time limit of
1,800 CPU seconds to each RFN experiment.

In table 2, the first column shows the code names of the sets of
coverage signals. The second and third columns respectively
show the number of registers and gates in the COIs of the
coverage signals. We were a little bit surprised when we saw that
the sizes of the COIs of the first five sets of coverage signals are
exactly the same. The coverage signals are likely to be in a
strongly connected component of the gate-level design. The
fourth column shows the number of unreachable coverage states
identified by RFN. The fifth column shows the number of
registers in the abstract model before the time out. The sixth and
seventh columns respectively show the number of unreachable
coverage states identified by BFS and the time taken by BFS.

From Table 2 we can see that RFN uniformly beats or matches
the BFS results. In addition, the time taken by BFS is more
unpredictable (10,000 seconds for IU5) than RFN.

Table 2. Unreachable-coverage-state analysis results

Cov.
signals

No.
registers
in COI

No. gates
in COI

No.
unreach by

RFN

No.
registers
in RFN

No.
unreach by

BFS

BFS
time
(sec)

IU1 4,458 74,258 448 40 256 5,006

IU2 4,458 74,258 736 43 256 767

IU3 4,458 74,258 880 48 880 867

IU4 4,458 74,258 448 36 256 2,667

IU5 4,458 74,258 784 42 664 10K

PE1 6,747 252,935 42 30 32 183

PE2 4,460 173,924 2,076,160 50 2,067,136 562

4. RELATED WORK
RFN was inspired by the general abstraction refinement strategy
introduced by Kurshan in [10]. Kurshan proposed the high-level
strategy called localization reduction for the language
containment problem between a system of L-processes and a
specification of the system in terms of L-automata. The abstract
models are subsets of the L-processes. Refinement is based on
adding L-processes to invalidate the error trace, which is guided
by the dependency graph among L-processes. However, the
description of the algorithm in [10] does not provide enough
detail to implement a practical tool.

Balarin et al [2] reported a similar iterative algorithm for
checking language emptiness of networks of communicating
automata. The abstract models are subsets of the communicating
automata. Refinement is based on adding some extra
communicating automata to the abstract model. The choice is
based on the degree of common support between the current
abstract model and the automata that have not been included in
the abstract model. The verification result of a collection of
dining philosophers using BDD-based image computation
method is reported. We believe that refinement schemes based
on error traces are more effective than refinement schemes based
on support information.

Rather than building abstract models explicitly and relying on
counter examples to guide the refinement, Pardo and Hachtel
[12] used BDD sub-setting to perform on-the-fly abstraction and
refinement. Based on the polarity of a CTL subformula, under or
over approximation is used. In our experience, the behavior of
subsetting-based abstraction methods is very unpredictable and
too drastic to prove properties. The scalability problem of BDD-
based methods also makes finding error traces on original
designs with thousands of registers almost impossible.

More recently Govindaraju and Dill proposed in [7] an
abstraction refinement algorithm for verifying safety properties.
The abstract models are collections of state machines that form
an overlapping partition of the original design. Post-image and
pre-image computation methods are used to prove the property
or generate an error trace on the partitioned design. Refinement
is based on enlarging individual state machines in the
overlapping partition of the original design, guided by heuristics
based on the Hamming distance. An experiment on the
verification of a PCI chip with 429 latches is reported. We
believe that this method also suffers from the scalability issue of
BDD-based methods, which will have difficulties in handling big
original designs even when they are partitioned.

Clarke et al [6] proposed a counter-example-guided abstraction-
refinement algorithm for ACTL* model checking. Abstract
models are constructed in the form of abstract transition
relations, based on syntactical information of the RTL design.
Refinement is based on adding more distinguishing details back
to the abstract transition relation. The algorithm was successfully
applied to verify an industry design with 500 registers with some
manual guidance to the tool. But the capacity of this method is
essentially limited by the capacity of BDD-based image
computation, since the algorithm relies on using BDD-based
image computation to check on the original design if the error
trace is spurious. In addition, the reliance on the syntactical
information at the RTL level prevents this algorithm from
working on gate-level designs.

5. CONCLUSIONS AND FUTURE WORK
We have presented RFN, a formal property verification tool for
verifying safety properties of RTL designs. This novel
technology combines multiple verification techniques including
symbolic model checking, ATPG and 3-valued simulation to
implement the abstraction refinement strategy. As a result, it can
handle designs of more than 5,000 registers, an order of
magnitude bigger than published results on formal property
verification.

RFN uses abstract models that can be easily constructed at the
gate level. RFN employs a hybrid BDD-ATPG method and an
abstract-error-trace-guided ATPG method to find error traces on
the abstract model and the original design, respectively. Both
methods can be used for property falsification in general. To
effectively identify a minimal set of registers whose addition to
the abstract model can invalidate the error trace, RFN applies a
novel 2-phase algorithm using 3-valued simulation and
sequential ATPG to identify the most crucial registers to refine
the abstract model. RFN never performs any form of symbolic
image computation on the original design, which greatly
improves the scalability of RFN.

We plan to extend this work in two directions. First, to prove the
property on abstract models containing hundreds of registers, we
plan to use the overlapping partition technique from [5][7].
Second, to enhance the capability of finding error traces on the
original design, we plan to develop techniques of guiding ATPG
with a set of error traces rather than a single error trace.

6. REFERENCES
[1] M. Abramovici, M.A. Breuer and A.D. Friedman. Digital

Systems Testing and Testable Design. Piscataway, NJ: IEEE
Press, 1990.

[2] F. Balarin, and A. Sangiovanni-Vincentelli. An Iterative
approach to language containment. In Proceedings of CAV,
pp. 29-40, July 1993.

[3] V. Boppana, S. Rajan, K. Takayama, and M. Fujita. Model
Checking Based on Sequential ATPG. In Proceedings of
CAV 1999, pp. 418-430, 1999.

[4] J. Burch, E. Clarke, K. McMillan, D. Dill and L. Hwang.
Symbolic Model Checking: 1020 States and Beyond. In
Proceedings of the Fifth Annual Symposium on Logic in
Computer Science, June 1990.

[5] H. Cho, G. Hatchel, E. Macii, M. Poncino, and F. Somenzi.
Automatic state space decomposition for approximate FSM
traversal based on circuit analysis. IEEE TCAD, 15(12), pp.
1451-1464, 1996.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith.
Counterexample-Guided Abstraction Refinement. In
Proceedings of CAV, pp. 154-169, July 2000.

[7] S. Govindaraju and D. Dill. Counterexample-guided Choice
of Projections in Approximate Symbolic Model Checking.
In Proceedings of ICCAD, November 2000.

[8] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V.
Bertacco, J. Taylor, and J. Long. Smart Simulation Using
Collaborative Formal and Simulation Engines. In
Proceedings of ICCAD, November 2000.

[9] C.-Y. Huang and K.-T. Cheng. Assertion Checking by
Combined Word-Level ATPG and Modular Arithmetic. In
Proceedings of DAC, pp. 118-123, June 2000.

[10] R. Kurshan. Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994.

[11] K.L. McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. Kluwer Academic
Publishers, 1993.

[12] A. Pardo and G. Hachtel. Incremental CTL Model Checking
Using BDD Subsetting. In Proceedings of DAC, pp. 457-
462, June 1998.

[13] K. Ravi and F. Somenzi. High-Density Reachability
Analysis. In Proceedings of ICCAD, November 1995.

[14] F. Somenzi. CUDD: CU Decision Diagram Package.
ftp://vlsi.colorado.edu/pub/.

[15] Sun Microsystems. picoJava technology.
http://www.sun.com/microelectronics/communitysource/pic
ojava.

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

