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Deep submicron technology has two major ramifications on 
the design process: (i) critical paths are being dominated by global 
interconnect rather than gate delays and (ii) ultra high levels of 
integration mandate designs that encompass numerous intra-
synchronous blocks with decreased functional granularity and 
increased communication demands. These factors emphasize the 
importance of the on-chip bus network as the crucial high-
performance enabler for future systems-on-chip. By using inde-
pendent functional blocks with programmable connectivity, de-
signers are able to build systems-on-chip capable of supporting 
different applications with exceptional levels of resource sharing. 
To address challenges in this design paradigm, we have developed 
a methodology that enables efficient bus network design with ap-
proximate timing verification and floorplanning of multi-purpose 
systems-on-chip in early design stages. The design platform iter-
ates system synthesis and floorplanning to build min-area floor-
plans that satisfy statistical time constraints of applications. We 
demonstrate the effectiveness of our bus network design approach 
using examples from a multimedia benchmark suite. 

1. INTRODUCTION 
Due to high design complexities and time-to-market pressure, 

it is expected that future SOCs are designed as networks of virtual 
components. A virtual component is a core wrapped with logic that 
enables it to communicate data to the attached bus with an arbi-
trary bus protocol. Due to high deep-sub-micron (DSM) integra-
tion (100M transistors), a typical SOC is estimated to contain sev-
eral hundreds of cores with each core having less than 100K gates 
[Syl99]. Since decreased levels of module granularity in computa-
tion results in higher communication costs, inter-core communica-
tion has great impact on the performance of SOC designs. The 
communication among cores poses several design issues that can 
be classified as: (i) synchronization and (ii) performance optimiza-
tion problems. While latency insensitive synchronization between 
cores can be resolved using relay stations and appropriate commu-
nication protocols, bus network design techniques have been pro-
posed only for single-application-multi-module SOCs [Dri00]. 
However, design tools for multi-application SOCs have tremen-
dous importance as the nature of many applications such as multi-
media collaboration, ubiquitous Web browsing, and mobile VPN 
networks, encompass synchronous co-operation of a number of 
applications. Furthermore, within the mass of computationally 
demanding applications, data communication, compression, en-
cryption, and DSP, modules are commonly shared. Hence, trends 
in the design of multi-purpose SOCs are bound to converge to-
wards using independent application-specific and programmable 
blocks integrated using a highly programmable and flexible net-

work of buses that enables high levels of resource sharing. 
We present a novel vertical design framework that targets 

early-stage design of a crucial component of multi-purpose SOC, 
namely the bus network. In particular, we focus on approximate 
verification of the inter-module communication latencies and 
floorplanning. The developed platform iterates between system 
synthesis and floorplanning to build min-area floorplans with an 
aim to satisfy the real-time constraints of specified applications.  

2. RELATED WORK 
Reference [Mad95] presents a discussion on the challenges of 

designing single- and multi-processor application-specific pro-
grammable systems (ASPS). The trade-offs in building perform-
ance evaluation frameworks for ASPSs have been studied in 
[Deg90]. Inter-core communication issues such as collusion mini-
mization for such SOCs have been elaborated in [Sur96]. A de-
tailed discussion of the related work regarding bus network design 
and SOC technologies can be found in [Dri00]. 

3. GLOBAL OVERVIEW 
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Figure 1 - Global Design Flow 

The global framework shown in Figure 1 depicts the interac-
tion of the three main components: (i) Design Space Analyzer 
(DSA), (ii) Network Designer, and (iii) the latency-guided Floor-
planner. Each application is specified using functional modules 
from the module library with statistical information about timing 
and communication patterns obtained using the Communication 
Profiler. In addition to the functional (algorithmic) specifications, 
the module library contains a set of Pareto-optimal physical im-
plementation instances of each functional module. The DSA se-
lects several sets of physical modules that meet the initial timing 
and QoS requirements of all applications. The selected module set 
is passed to the Network Designer that creates a suitable bus net-
work. The Floorplanner verifies the area requirement and the fea-
sibility of the interconnection network based on the provided long-
interconnect models. The Floorplanner outputs several statistics 
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about the most-constraint and least-constraining buses to the Net-
work Designer as part of an iterative improvement loop. After this 
optimization process, the newly acquired application timing and 
communication statistics are passed back to the DSA to improve 
the module selection and repeat the optimization process. Using 
this approach, a designer is able to create designs that satisfy esti-
mations of DSM effects in the lower levels quite efficiently. In 
addition, the framework provides the necessary means to build 
systems based on complex clusters of application built on top of 
the same set of reusable modules.  

4. LATENCY-DRIVEN DESIGN 
The generic hardware model that we have adopted assumes 

the following set of constraints: Cores have the property of being 
hard, i.e. with constant layout; They are connected with buses of 
limited length which is governed by the maximum bus transaction 
clock cycle; The bus network is switched using a topology of bus 
bridges where a bus bridge is a crossover of at most four buses; 
The area of a bus bridge is approximated at 5% of an average core 
size per bridge port; Bus arbitration is performed with static prior-
ity assignments; Bus latency is modeled using a second order 
polynomial of the wire length; Data routing across the network is 
assumed to be deadlock free. 

The communication profiler summarizes the essential statis-
tics of communication patterns of the implemented application. 
The input to the communication profiler is an instance of the 
communication model of our target system. The communication 
model has been adopted from [Dri00]. In our experiments, we have 
used traffic patterns extracted and extrapolated from the Media-
Bench benchmarks suite [Lee97]. 
Definition 1: A functional module library M is a set of modules 
{M1,M2,…,Mn}. Each functional module Mi∈ M has at least one 
physical implementation (core) that is denoted using the notation 
CiA, CiB, CiC, etc, with known layout and timing characteristics. 
Definition 2: A set of applications Ai from a set A={A1,A2,…,Ak}, 
is modeled using a Functional Module Dependency Graph 
(FMDGi) and a communication correlation table (CCTi). 
Definition 3: A Functional Module Dependency Graph, FMDG is 
a directed graph with vertex set V and g-weighted edge set E. Each 
vertex v∈ V corresponds to a functional module in M. Each directed 
edge e∈ E indicates the communication dependency among the 
modules connected by e. The weight of each edge e∈ E is a Gaus-
sian random variable with mean µ and variance σ2 and is used to 
stochastically model the wide range of typically bursty traffic pat-
terns an application may generate. The communication profiler 
generates the Gaussian weights e(µ,σ2) by collecting run-time 
information for each individual application.  
Definition 4: For each FMDG with the g-weighted edge set E, we 
define the CCT as an |E|x|E| real valued matrix. For any pair of 
edges {ei,ej}∈ E, element (i,j) of the corresponding CCT represents 
the temporal correlation of ei and ej, i.e. the percentage of time ei 
and ej are simultaneously active. 

4.1 Design Space Analyzer 
We use dynamic programming to select several initial sets of 

modules to satisfy the timing requirements of all applications sub-
ject to area constraints. Since at this stage no actual interconnec-
tion network exists, we use the function exec_time to estimate and 
verify the timing (QoS) requirement for each application (FMDG). 
Given an FMDG G and a set of physical module assignments S, 
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where map(m, S) returns the selected physical implementation of a 
module m. The worst_run_time attribute is obtained from the mod-
ule library. As shown above, exec_time(G,S) approximates the 
total execution time for a given application, by adding the individ-
ual worst case module execution times along the critical path of the 
corresponding FMDG. Thus, the DSA task can be stated as: 
Problem: Physical Module Selection 
Input: FMDG set; timing constraint set T. 
Question: Is there a set of physical modules S with minimal area 
in M such that ∀  fmdgi∈ FMDG, exec_time(fmdgi, S)≤Ti? 

Figure 2 shows the pseudo-code for the key algorithms used 
in DSA, namely the FMDG merge and the module selection algo-
rithms. In addition to the edges being combined, the parameters φ1 
and φ2 are used in the Combine_Gaussian function to calculate a 
weighted average of the edge weights of e1 and e2. If for instance, 
the application represented by G1 has more total communication 
requirements that G2 (φ1>φ2), then e1 is given a higher weight in the 
averaging than e2 to satisfy the more constraining communication 
requirements of G1. The main module selection algorithm begins 
by combining pairs of FMDGs using the Combine process. The 
algorithm then replaces the original set by the newly combined 
cFMDG and repeats until all application FMDGs have been 
grouped together into one cFMDG. Since the QoS optimality and 
physical feasibility of cFMDG depends on the bus network and the 
nature of the Combine function, the initial permutation of the 
FMDGs is not relevant here. To select the set of modules that sat-
isfy the requirements of the cFMDG with respect to the area con-
straints, we calculate total_communication for each module mi in 
the cFMDG by summing the Gaussian weights of all the commu-
nication edges connected to mi. We Select the physical instance of 
mi from the module library M that can satisfy the computed statisti-
cal communication requirement using the smallest area.  

Procedure Combine (G1(V1,E1),G2(V2,E2))  
  φ1 = ∑e.weight ∀  e∈ E1 and φ2 = ∑e.weight ∀  e∈ E2 
  Create new FMDG G(V,E) 
  V=V1∪ V2 
  For Each u∈ V   
    For Each v∈ V  
     e1= edge u→v in E1 and e2= edge u→v in E2 
     If (e1≠∅  or e2≠∅ )  
      e=Create new g-weighted edge u→v in E 
      e.weight=Combine_Gaussian(e1,e2,φ1,φ2)  

Procedure Select_Physical_Module_Sets 
  S=Ø, cFMDG=Ø 
  While (|FMDG|>1)  
   For i=1,3,…|FMDG|  
    cFMDG = cFMDG ∪  Combine(FMDGi,FMDGi+1) 
   FMDG=cFMDG 
  For Each modules mi∈  cFMDG 
   total_communication =∑e.weight  ∀  e connected to mi 
   s=Select(mi, total_communication) 
   S=S∪ s   

Figure 2 – Design Space Analyzer Algorithms 
4.2 Network Designer 

To formally state the task of the network designer, we first de-
fine the CCG and the hCCG: 
Definition 5: A Communication Connectivity Graph (CCG) is a 
undirected weighted graph with a set of nodes C representing cores 
and a set of edges E modeling the communication between two 
cores. The weight of an edge in a CCG represents the overlap that 
the communication between Ci and Cj has with the communication 
among all other cores.  



Definition 6: A Hyperedge Communication-Connectivity Graph 
(hCCG) is an undirected hypergraph where a Hypernode hN is a 
collection of nodes in CCG and a Bus Hyperedge BhE is a hyper-
edge that connects at most M hNs. An hCCG formally defines a 
bus network, an hN represents a bus segment, and a BhE represents 
a bridge and its relation to adjacent buses [Dri00]. 
Problem: Balanced hCCG Partitioning. 
Input: An hCCG; set of applications A; timing constraint set T. 
Question: Is there a balanced partitioning of hCCG into a set of 
hNs that results in a valid hCCG such that QoS for each applica-
tion is satisfied? 

To address this problem, we use an iterative improvement al-
gorithm that relies on a constructed initial solution by: (i) assigning 
cores to hNs, and (ii) connecting hNs into BhEs to form a valid 
hCCG. The maximum bus length and the sum of core areas are 
sufficient to evaluate βr, the total number of hNs, and θr the aver-
age number of cores per hN. Initially, we form an array Γr of 
empty hNs of size βr. We sort Eij∈ aFMDG by weights µ(Eij) in 
order to assign cores to elements of Γr. Starting from edges that 
have the highest weight µ(Eij), we assign cores Ci and Cj to the 
same element hNa∈ Γr. The next pair of nodes Cp and Cq (µ(Eij)≥ 
µ(Epq)) are assigned to hNb where hNa≠ hNb in case when p≠i≠q 
and p≠j≠q. In cases where Cp∈ hNa, Cq is assigned to hNa except 
when |hNa|>θr. In that situation we consider the next edge from 
cFMDG with a lower weight. When all edges from cFMDG are 
processed, Cq is assigned to the hNa with the smallest number of 
elements in the array Γr. When the percentage of assigned cores 
exceed the user specified parameter π, we shift our attention to Eij 
where ))((min)(
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are assigned to hNa and hNb, where hNa≠hNb, so that in the initial 
bus network there will be one or more bridges on the data path 
between these two cores. hNa and hNb are selected according to the 
largest weights µ(Eik) and µ(Emj) where k≠j and m≠i, if such edges 
exist in cFMDG and their cardinality is less than θr. Otherwise Ci 
and Cj are placed into hNs with the smallest cardinality from Γr. 
We continue to process edges in increasing weight order until all 
edges from cFMDG are processed. If there are cores that are left 
unassigned, they are placed in hNs with the smallest cardinality. 

After assigning cores to elements of Γr, we form a βr×βr sym-
metric matrix F. Element fpq∈ F represents attractive forces 
between hNp and hNq and is calculated using the formula 

∑ ∑=
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ijpq Ef . Parameter δr represents the longest path 

(number of bridges) and is determined by the area constraint. Ele-
ments of F are distributed into categories [1…δr] where the strong-
est forces are placed in category 1 and the weakest forces are 
placed in category δr. Starting from the strongest attractive force 
fpq, we consider the following cases: (i) Both hNp and hNq are not 
assigned to any BhE: form a new BhE and assign hNp and hNq to 
this BhE; (ii) hNp is assigned to BhE while hNq is not: assign hNq to 
a BhEj on distance from hNp proportional to category of fpq with 
the largest sum of forces between hNs from BhEj and hNq; (iii) hNp 
and hNq are both assigned to a different BhEs: if the shortest path 
between hNp and hNq is larger than the category of fpq (including 
the case of the path of length ∞) assign hNq to a BhEj on distance 
from hNp proportional to category of fpq with the largest sum of 
forces between hNs from BhEj and hNq. If hNq is already assigned 
to two BhEs, repeat the search considering hNp. If hNp is also com-
mitted to two BhEs, go to next fpq. During this procedure we 
maintain the validity of hCCG with a relaxation that allows the 
hCCG to be unconnected until the final step. 

Procedure Construct CCG 
For Each r∈ S 
    Construct initial_hCCG 
  curPartition=initial_hCCG 
   While (solutions unsatisfying) 
   For Each Al∈ A 
    Verify timing for the current hCCG  
    List BhEs and hNs violating constraints 
   a = random() 
   Case (a<c1) curPartition.SwapNodes(random()) 
   Case ((a>c1) and (a<c2)) curPartition.MoveNode(random()) 
   Case (a>c2) curPartition.MoveBhE(pseudo-random()) 
   If (OFafter > OFbefore) accept move 
   Else reject move 
  Output the resulting hCCG to the floorplanning tool 

Figure 3 – Network Designer Algorithm 
4.2.1 Network Designer: Iterative improvement 

The pseudo code of the iterative improvement algorithm used 
in the Network Designer is presented in Figure 3. The first step of 
the algorithm is to build the underlying CCG. The union of func-
tional modules of all applications represents the nodes of CCG. 
The weight of the edge eij between modules Mi and Mj is calculated 
as ∑

=
=

k
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l
ijlij e

k
e
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1 α  where l

ije  is a sum of elements from the row 

that corresponds to the edge between modules Mi and Mj from 
CCTl. αl is an empirical smoothening parameter for each FMDG 
and k’ is calculated as the sum of αl over all applications where 
eij

<l>
 is non-zero.  
A cause of congestion on a bus is an attempt by two or more 

cores to deliver data at the same time. One core will get access to 
the bus and the rest of those who attempt to access the bus have to 
stall, possibly causing undesirable QoS degradation. We use the 
objective function OF to formalize the trade-offs involved in the 
generation of efficient bus networks guided by: (i) cores that com-
municate frequently should be placed on the same bus, (ii) cores 
communicating through bridges should have data paths that are as 
short as possible, and (iii) congestion of bus segments should be 
minimized. Thus, OF can be stated as: 
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where π(Cj, Ck) represents the length of the routing path between 
cores Cj and Ck (latency is modeled proportional to the number of 
bridges between Cj and Ck) and Φj,k is defined as the sum of bus 
segment workloads on π(Cj, Ck). A workload φ(hN) of a bus seg-
ment is defined as the percentage of time when a communication 
exists on the bus segment, hN.  

For each potential solution r from S the following algorithm is 
applied. After building of initial hCCG, timing and QoS violations 
are checked for every Al∈ A, by calculating workload of hNs for 
every Al using the data from FMDGs and CCTs. For each violation 
of constraints, likelihood of selection of one of the moves of hNi 
and the corresponding BhE(s) increases. Alternation of hCCG is 
done with two categories of moves. In the first case, we distinguish 
two different move actions: (i) SwapNodes(Ci,hNi,Cj,hNj) node 
swapping between hypernodes, and (ii) MoveNode(Ci,hNi,hNj) 
node transfer from one hypernode hNi to another hNj. The second 
category of moves, MoveBhE(), modifies hyperedges and conse-
quently the bus network structure. A valid hCCG must result in 
every move or it is canceled.  



Procedure Latency_Guided_Floorplanner  
  T=T0; M=C∪ BhE; F=Initila_Floorplan(M) 
  While (T>TFinal) 
   While (cumulative improvement ≥ σ) 
    a = random(LongestBus, ShortestBus) 
    Case(a > Const) : F.Greedy_Move() 
    Case(a ≤ Const) : F.Enabling_Move() 
    Current_Area =  Area(F) 
    For Each hNi∈ hCCG 
     If (LengthOfBounding_Box(hNi)> λmax) 
      Add BBi to violated constraints list 
    Current_Cost=Cost(Current_Area,BB) 
    SA Decision: Accept or reject F 
    If Current_Cost≥min(Cost(Π i ∈  Π(K)) 
     Add F to Π(K) 
   Decrease temperature T 
Figure 4 – Pseudo code for Latency Guided Floorplanner 

4.3 Latency Guided Floorplanner 
The main task of the Floorplanner is to estimate the area re-

quirements of the cores and check the implementation feasibility of 
the interconnection network. Formally, we state the problem as: 
Problem: Latency-Guided Floorplanner 
Input: Cores C; Bridges BhE; an hCCG; Bus constraint λmax. 
Question: Is there a floorplan F for the set of physical modules 
C∪ BhE such that ∀ hNi∈ hCCG, Length(hNi) ≤ λmax ? 

At each iteration of the simulated annealing process (Figure 
4), we calculate the minimum area required by each instance using 
the method presented in [Mur95]. During the search, the algorithm 
keeps track of the K best solutions encountered (Π(K)). For each 
solution Π i∈Π (K), we report the area and the violated bus con-
straints. In addition to the best solution instances found, we also 
report the percentage of instances that each bus violates the bus 
constraint. The standard simulated annealing process is augmented 
with solution transformation actions called moves. We define two 
types of moves: (i) greedy and (ii) enabling. The probability of 
performing each depends on the lengths of the shortest and the 
longest buses as shown in Figure 4. In the greedy move, we select 
the longest bus and try to improve the placement of its modules. 
We calculate the center-of-mass Cm of the bus by averaging the x 
and y coordinates of each external connection of the bus. We then 
calculate a force vector V for the module that has the longest Man-
hattan distance from Cm. V is used to update the sequence pair 
strings such that the selected module is moved in the direction of V 
in proportion to |V|. Similarly, in the enabling move, we select the 
shortest bus and try to relax the placement of its modules. We cal-
culate the center-of-mass Cm and force vector V as described above 
with the exception of selecting the module closest to Cm. We up-
date the sequence pair strings such that the selected module moves 
in the opposite direction of V in proportion to |V|. 

5. EXPERIMENTAL RESULTS 
In this section we compare the performance of each applica-

tion on the design developed using the MMSOC optimization ap-
proach to the performance of each application on an individually 
optimized design [Dri00]. The first column of the results in Table 1 
lists the name of the application being considered. The next four 
columns list the number of cores, gates, buses, and bridges in the 
final design respectively. The next two columns list the number of 
iterations and the total run-time of the optimization task. Columns 
8-11 list the total communication throughput and the median bus 
idle time ratio of each application for the single application system 
and the multi-application system respectively.  As the data in Table 
1 shows, the gate count of the MMSOC design is 40% larger than 
the worst case single application requirement. The bus count is 
14.5% larger for the MMSOC design in comparison to the worst 
case single application system. Overall, after only 4 iterations, the 
MMSOC  design can satisfy all the application requirements with 
minimal area and bus interconnection overheads. 

6. CONCLUSION 
To address the challenges arising in multi-application SOC in-

tegration, we presented a vertical system-design methodology that 
enables the design of SOC bus networks with floorplanning and 
approximate timing verification in early design stages. The design 
platform iterates system synthesis and floorplanning to build min-
area floorplans that satisfy statistical time constraints of applica-
tions. We demonstrated the effectiveness of the bus network design 
approach using a multi-core designs selected from a multimedia 
benchmark suite. The results indicate that with minimal area and 
bus network overheads, a single SOC can be optimized to meet the 
demands of multiple applications effectively. 

REFERENCES 
[Deg90] A. De Gloria, P. Faraboschi, “An evaluation system for applica-

tion specific architectures,” Microprogramming and Microarchitecture. 
p.80-9. x+299 pp. 1990. 

[Dri00] M. Drinic, D. Kirovski, S. Meguerdichian, M. Potkonjak, “Latency 
Guided On-Chip Bus Network Design”. ICCAD’00, pp. 240, 2000. 

[Lee97] C. Lee, M. Potkonjak, W.H. Mangione-Smith, “Mediabench: A 
Tool For Evaluating And Synthesizing Multimedia And Communications 
Systems,” Int. Symp. on Microarchitecture, pp.330-5, 1997. 

[Mad95] V.K. Madisetti, “Rapid Prototyping Of Application-Specific Sig-
nal Processors: Current Practice, Challenges, And Roadmap,” Procs 
ICPP Workshop on Challenges for Parallel Processing. p. 96-103. 1995. 

[Mur95] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “Rectangle-
Packing-Based Module Placement”, ICCAD'95, pp 472-479, 1995. 

[Sur96] D.R. Surma, E.H Sha, “Static Communication Scheduling For 
Minimizing Collisions In Application Specific Parallel Systems,” Int. 
Conf. on Application-Specific Systems, p. 240-9. 1996. 

[Syl99] D. Sylvester, and K. Keutzer. Rethinking deep-submicron circuit 
design. Computer, vol. 32, (no. 11), pp. 25-33, 1999. 

Table 1 - Experimental Results: Single Application Optimization and Multi-Application Single SOC Design (Tp-Throughput) 
Optimized Single Application Properties and Run-Time Statistics MMSOC 

Synthesis loop Solution properties MMSOC Properties  Application 
Specification Cores Gates Buses Bridges Iterations Time Tp Bus Idle  Tp Bus Idle 
DSP +crypto 13 1M 4 2 3 15min 1.46 0.45 1.39 0.55 

GPP + communication 30 1.8M 11 4 4 1h 1.57 0.71 1.47 0.70 
GPP+DSP 75 4.2M 21 7 5 5h 2.03 0.43 1.95 0.52 

Communication + speech 100 5.4M 31 12 5 11h 3.11 0.79 2.92 0.74 
DSP + speech 125 7.5M 41 15 5 17h 2.17 0.40 2.00 0.56 

GPP + peripherals + comm 150 9.6M 47 18 7 21h 2.42 0.43 2.12 0.49 
GPP + crypto +peripherals 200 15M 62 23 9 35h 3.16 0.67 2.97 0.76 
Single SOC Multi-App Sys 240 21M 71 26 4+1 23h     

 


	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index


