
Latency-Driven Design Of Multi-Purpose Systems-On-Chip
Seapahn Meguerdichian

UCLA Computer Science Dep.
4732 Boelter Hall

Los Angeles, CA 90095-1596
seapahn@cs.ucla.edu

ABSTRACT

Milenko Drinic
UCLA Computer Science Dep.

4732 Boelter Hall
Los Angeles, CA 90095-1596

milenko@cs.ucla.edu

Darko Kirovski
Microsoft Research
One Microsoft Way

Redmond, WA 98052
darkok@microsoft.com

Deep submicron technology has two major ramifications on
the design process: (i) critical paths are being dominated by global
interconnect rather than gate delays and (ii) ultra high levels of
integration mandate designs that encompass numerous intra-
synchronous blocks with decreased functional granularity and
increased communication demands. These factors emphasize the
importance of the on-chip bus network as the crucial high-
performance enabler for future systems-on-chip. By using inde-
pendent functional blocks with programmable connectivity, de-
signers are able to build systems-on-chip capable of supporting
different applications with exceptional levels of resource sharing.
To address challenges in this design paradigm, we have developed
a methodology that enables efficient bus network design with ap-
proximate timing verification and floorplanning of multi-purpose
systems-on-chip in early design stages. The design platform iter-
ates system synthesis and floorplanning to build min-area floor-
plans that satisfy statistical time constraints of applications. We
demonstrate the effectiveness of our bus network design approach
using examples from a multimedia benchmark suite.

1. INTRODUCTION
Due to high design complexities and time-to-market pressure,

it is expected that future SOCs are designed as networks of virtual
components. A virtual component is a core wrapped with logic that
enables it to communicate data to the attached bus with an arbi-
trary bus protocol. Due to high deep-sub-micron (DSM) integra-
tion (100M transistors), a typical SOC is estimated to contain sev-
eral hundreds of cores with each core having less than 100K gates
[Syl99]. Since decreased levels of module granularity in computa-
tion results in higher communication costs, inter-core communica-
tion has great impact on the performance of SOC designs. The
communication among cores poses several design issues that can
be classified as: (i) synchronization and (ii) performance optimiza-
tion problems. While latency insensitive synchronization between
cores can be resolved using relay stations and appropriate commu-
nication protocols, bus network design techniques have been pro-
posed only for single-application-multi-module SOCs [Dri00].
However, design tools for multi-application SOCs have tremen-
dous importance as the nature of many applications such as multi-
media collaboration, ubiquitous Web browsing, and mobile VPN
networks, encompass synchronous co-operation of a number of
applications. Furthermore, within the mass of computationally
demanding applications, data communication, compression, en-
cryption, and DSP, modules are commonly shared. Hence, trends
in the design of multi-purpose SOCs are bound to converge to-
wards using independent application-specific and programmable
blocks integrated using a highly programmable and flexible net-

work of buses that enables high levels of resource sharing.
We present a novel vertical design framework that targets

early-stage design of a crucial component of multi-purpose SOC,
namely the bus network. In particular, we focus on approximate
verification of the inter-module communication latencies and
floorplanning. The developed platform iterates between system
synthesis and floorplanning to build min-area floorplans with an
aim to satisfy the real-time constraints of specified applications.

2. RELATED WORK
Reference [Mad95] presents a discussion on the challenges of

designing single- and multi-processor application-specific pro-
grammable systems (ASPS). The trade-offs in building perform-
ance evaluation frameworks for ASPSs have been studied in
[Deg90]. Inter-core communication issues such as collusion mini-
mization for such SOCs have been elaborated in [Sur96]. A de-
tailed discussion of the related work regarding bus network design
and SOC technologies can be found in [Dri00].

3. GLOBAL OVERVIEW
A p p lic a tio n s
S p e c if ica tio n

F u n c tio n a l a n d
P h ys ica l

M o d u le L ib ra ry

L o n g
In te rc o n n e c t

M o d e ls

D e s ig n S p a ce A n a lyze r

P h ys ica l M o du le S e le c tio ns

N e tw o rk D e s ig n e r

F lo o rp la n n e r

In it ia l
S o lu tio n

Ite ra tive
Im p ro ve m e n t

P e rfo rm a n ce V erif ic a tion

U pd a te d A pp lica tio n
T im in g an d C orre la tion

S pe c ifica tion s

S ys te m Q o s A n d
P e rfo rm a n ce V e rific a tio n

C o re s a n d In te rc o n n ec tio n
N etw o rk F lo o rp la n

Figure 1 - Global Design Flow

The global framework shown in Figure 1 depicts the interac-
tion of the three main components: (i) Design Space Analyzer
(DSA), (ii) Network Designer, and (iii) the latency-guided Floor-
planner. Each application is specified using functional modules
from the module library with statistical information about timing
and communication patterns obtained using the Communication
Profiler. In addition to the functional (algorithmic) specifications,
the module library contains a set of Pareto-optimal physical im-
plementation instances of each functional module. The DSA se-
lects several sets of physical modules that meet the initial timing
and QoS requirements of all applications. The selected module set
is passed to the Network Designer that creates a suitable bus net-
work. The Floorplanner verifies the area requirement and the fea-
sibility of the interconnection network based on the provided long-
interconnect models. The Floorplanner outputs several statistics

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA
© 2001 ACM 1-58113-297-2/01/0006..$5.00.

about the most-constraint and least-constraining buses to the Net-
work Designer as part of an iterative improvement loop. After this
optimization process, the newly acquired application timing and
communication statistics are passed back to the DSA to improve
the module selection and repeat the optimization process. Using
this approach, a designer is able to create designs that satisfy esti-
mations of DSM effects in the lower levels quite efficiently. In
addition, the framework provides the necessary means to build
systems based on complex clusters of application built on top of
the same set of reusable modules.

4. LATENCY-DRIVEN DESIGN
The generic hardware model that we have adopted assumes

the following set of constraints: Cores have the property of being
hard, i.e. with constant layout; They are connected with buses of
limited length which is governed by the maximum bus transaction
clock cycle; The bus network is switched using a topology of bus
bridges where a bus bridge is a crossover of at most four buses;
The area of a bus bridge is approximated at 5% of an average core
size per bridge port; Bus arbitration is performed with static prior-
ity assignments; Bus latency is modeled using a second order
polynomial of the wire length; Data routing across the network is
assumed to be deadlock free.

The communication profiler summarizes the essential statis-
tics of communication patterns of the implemented application.
The input to the communication profiler is an instance of the
communication model of our target system. The communication
model has been adopted from [Dri00]. In our experiments, we have
used traffic patterns extracted and extrapolated from the Media-
Bench benchmarks suite [Lee97].
Definition 1: A functional module library M is a set of modules
{M1,M2,…,Mn}. Each functional module Mi∈ M has at least one
physical implementation (core) that is denoted using the notation
CiA, CiB, CiC, etc, with known layout and timing characteristics.
Definition 2: A set of applications Ai from a set A={A1,A2,…,Ak},
is modeled using a Functional Module Dependency Graph
(FMDGi) and a communication correlation table (CCTi).
Definition 3: A Functional Module Dependency Graph, FMDG is
a directed graph with vertex set V and g-weighted edge set E. Each
vertex v∈ V corresponds to a functional module in M. Each directed
edge e∈ E indicates the communication dependency among the
modules connected by e. The weight of each edge e∈ E is a Gaus-
sian random variable with mean µ and variance σ2 and is used to
stochastically model the wide range of typically bursty traffic pat-
terns an application may generate. The communication profiler
generates the Gaussian weights e(µ,σ2) by collecting run-time
information for each individual application.
Definition 4: For each FMDG with the g-weighted edge set E, we
define the CCT as an |E|x|E| real valued matrix. For any pair of
edges {ei,ej}∈ E, element (i,j) of the corresponding CCT represents
the temporal correlation of ei and ej, i.e. the percentage of time ei
and ej are simultaneously active.

4.1 Design Space Analyzer
We use dynamic programming to select several initial sets of

modules to satisfy the timing requirements of all applications sub-
ject to area constraints. Since at this stage no actual interconnec-
tion network exists, we use the function exec_time to estimate and
verify the timing (QoS) requirement for each application (FMDG).
Given an FMDG G and a set of physical module assignments S,

∑
∈∀

=
)(_

__)].,([),(_
GPathCriticalm

timerunworstSmmapSGtimeexec

where map(m, S) returns the selected physical implementation of a
module m. The worst_run_time attribute is obtained from the mod-
ule library. As shown above, exec_time(G,S) approximates the
total execution time for a given application, by adding the individ-
ual worst case module execution times along the critical path of the
corresponding FMDG. Thus, the DSA task can be stated as:
Problem: Physical Module Selection
Input: FMDG set; timing constraint set T.
Question: Is there a set of physical modules S with minimal area
in M such that ∀ fmdgi∈ FMDG, exec_time(fmdgi, S)≤Ti?

Figure 2 shows the pseudo-code for the key algorithms used
in DSA, namely the FMDG merge and the module selection algo-
rithms. In addition to the edges being combined, the parameters φ1
and φ2 are used in the Combine_Gaussian function to calculate a
weighted average of the edge weights of e1 and e2. If for instance,
the application represented by G1 has more total communication
requirements that G2 (φ1>φ2), then e1 is given a higher weight in the
averaging than e2 to satisfy the more constraining communication
requirements of G1. The main module selection algorithm begins
by combining pairs of FMDGs using the Combine process. The
algorithm then replaces the original set by the newly combined
cFMDG and repeats until all application FMDGs have been
grouped together into one cFMDG. Since the QoS optimality and
physical feasibility of cFMDG depends on the bus network and the
nature of the Combine function, the initial permutation of the
FMDGs is not relevant here. To select the set of modules that sat-
isfy the requirements of the cFMDG with respect to the area con-
straints, we calculate total_communication for each module mi in
the cFMDG by summing the Gaussian weights of all the commu-
nication edges connected to mi. We Select the physical instance of
mi from the module library M that can satisfy the computed statisti-
cal communication requirement using the smallest area.

Procedure Combine (G1(V1,E1),G2(V2,E2))
 φ1 = ∑e.weight ∀ e∈ E1 and φ2 = ∑e.weight ∀ e∈ E2
 Create new FMDG G(V,E)
 V=V1∪ V2
 For Each u∈ V
 For Each v∈ V
 e1= edge u→v in E1 and e2= edge u→v in E2
 If (e1≠∅ or e2≠∅)
 e=Create new g-weighted edge u→v in E
 e.weight=Combine_Gaussian(e1,e2,φ1,φ2)

Procedure Select_Physical_Module_Sets
 S=Ø, cFMDG=Ø
 While (|FMDG|>1)
 For i=1,3,…|FMDG|
 cFMDG = cFMDG ∪ Combine(FMDGi,FMDGi+1)
 FMDG=cFMDG
 For Each modules mi∈ cFMDG
 total_communication =∑e.weight ∀ e connected to mi
 s=Select(mi, total_communication)
 S=S∪ s

Figure 2 – Design Space Analyzer Algorithms
4.2 Network Designer

To formally state the task of the network designer, we first de-
fine the CCG and the hCCG:
Definition 5: A Communication Connectivity Graph (CCG) is a
undirected weighted graph with a set of nodes C representing cores
and a set of edges E modeling the communication between two
cores. The weight of an edge in a CCG represents the overlap that
the communication between Ci and Cj has with the communication
among all other cores.

Definition 6: A Hyperedge Communication-Connectivity Graph
(hCCG) is an undirected hypergraph where a Hypernode hN is a
collection of nodes in CCG and a Bus Hyperedge BhE is a hyper-
edge that connects at most M hNs. An hCCG formally defines a
bus network, an hN represents a bus segment, and a BhE represents
a bridge and its relation to adjacent buses [Dri00].
Problem: Balanced hCCG Partitioning.
Input: An hCCG; set of applications A; timing constraint set T.
Question: Is there a balanced partitioning of hCCG into a set of
hNs that results in a valid hCCG such that QoS for each applica-
tion is satisfied?

To address this problem, we use an iterative improvement al-
gorithm that relies on a constructed initial solution by: (i) assigning
cores to hNs, and (ii) connecting hNs into BhEs to form a valid
hCCG. The maximum bus length and the sum of core areas are
sufficient to evaluate βr, the total number of hNs, and θr the aver-
age number of cores per hN. Initially, we form an array Γr of
empty hNs of size βr. We sort Eij∈ aFMDG by weights µ(Eij) in
order to assign cores to elements of Γr. Starting from edges that
have the highest weight µ(Eij), we assign cores Ci and Cj to the
same element hNa∈ Γr. The next pair of nodes Cp and Cq (µ(Eij)≥
µ(Epq)) are assigned to hNb where hNa≠ hNb in case when p≠i≠q
and p≠j≠q. In cases where Cp∈ hNa, Cq is assigned to hNa except
when |hNa|>θr. In that situation we consider the next edge from
cFMDG with a lower weight. When all edges from cFMDG are
processed, Cq is assigned to the hNa with the smallest number of
elements in the array Γr. When the percentage of assigned cores
exceed the user specified parameter π, we shift our attention to Eij
where))((min)(

, pq
raFMDGqp

EwijE
∈

=µ . Corresponding cores Ci and Cj

are assigned to hNa and hNb, where hNa≠hNb, so that in the initial
bus network there will be one or more bridges on the data path
between these two cores. hNa and hNb are selected according to the
largest weights µ(Eik) and µ(Emj) where k≠j and m≠i, if such edges
exist in cFMDG and their cardinality is less than θr. Otherwise Ci
and Cj are placed into hNs with the smallest cardinality from Γr.
We continue to process edges in increasing weight order until all
edges from cFMDG are processed. If there are cores that are left
unassigned, they are placed in hNs with the smallest cardinality.

After assigning cores to elements of Γr, we form a βr×βr sym-
metric matrix F. Element fpq∈ F represents attractive forces
between hNp and hNq and is calculated using the formula

∑ ∑=
∈ ∈phNiC qhNjC

ijpq Ef . Parameter δr represents the longest path

(number of bridges) and is determined by the area constraint. Ele-
ments of F are distributed into categories [1…δr] where the strong-
est forces are placed in category 1 and the weakest forces are
placed in category δr. Starting from the strongest attractive force
fpq, we consider the following cases: (i) Both hNp and hNq are not
assigned to any BhE: form a new BhE and assign hNp and hNq to
this BhE; (ii) hNp is assigned to BhE while hNq is not: assign hNq to
a BhEj on distance from hNp proportional to category of fpq with
the largest sum of forces between hNs from BhEj and hNq; (iii) hNp
and hNq are both assigned to a different BhEs: if the shortest path
between hNp and hNq is larger than the category of fpq (including
the case of the path of length ∞) assign hNq to a BhEj on distance
from hNp proportional to category of fpq with the largest sum of
forces between hNs from BhEj and hNq. If hNq is already assigned
to two BhEs, repeat the search considering hNp. If hNp is also com-
mitted to two BhEs, go to next fpq. During this procedure we
maintain the validity of hCCG with a relaxation that allows the
hCCG to be unconnected until the final step.

Procedure Construct CCG
For Each r∈ S
 Construct initial_hCCG
 curPartition=initial_hCCG
 While (solutions unsatisfying)
 For Each Al∈ A
 Verify timing for the current hCCG
 List BhEs and hNs violating constraints
 a = random()
 Case (a<c1) curPartition.SwapNodes(random())
 Case ((a>c1) and (a<c2)) curPartition.MoveNode(random())
 Case (a>c2) curPartition.MoveBhE(pseudo-random())
 If (OFafter > OFbefore) accept move
 Else reject move
 Output the resulting hCCG to the floorplanning tool

Figure 3 – Network Designer Algorithm
4.2.1 Network Designer: Iterative improvement

The pseudo code of the iterative improvement algorithm used
in the Network Designer is presented in Figure 3. The first step of
the algorithm is to build the underlying CCG. The union of func-
tional modules of all applications represents the nodes of CCG.
The weight of the edge eij between modules Mi and Mj is calculated
as ∑

=
=

k

i

l
ijlij e

k
e

1'
1 α where l

ije is a sum of elements from the row

that corresponds to the edge between modules Mi and Mj from
CCTl. αl is an empirical smoothening parameter for each FMDG
and k’ is calculated as the sum of αl over all applications where
eij

<l>
 is non-zero.
A cause of congestion on a bus is an attempt by two or more

cores to deliver data at the same time. One core will get access to
the bus and the rest of those who attempt to access the bus have to
stall, possibly causing undesirable QoS degradation. We use the
objective function OF to formalize the trade-offs involved in the
generation of efficient bus networks guided by: (i) cores that com-
municate frequently should be placed on the same bus, (ii) cores
communicating through bridges should have data paths that are as
short as possible, and (iii) congestion of bus segments should be
minimized. Thus, OF can be stated as:

() () ()()∑ ∑∑
= −∈∈∀∈














Φ⋅⋅−=

CCG

i hNhCCGChNC
kjkjji

hNCC
ji

ikijikj

CCEwEwOF
1 ,

,,
,

, ,π

where π(Cj, Ck) represents the length of the routing path between
cores Cj and Ck (latency is modeled proportional to the number of
bridges between Cj and Ck) and Φj,k is defined as the sum of bus
segment workloads on π(Cj, Ck). A workload φ(hN) of a bus seg-
ment is defined as the percentage of time when a communication
exists on the bus segment, hN.

For each potential solution r from S the following algorithm is
applied. After building of initial hCCG, timing and QoS violations
are checked for every Al∈ A, by calculating workload of hNs for
every Al using the data from FMDGs and CCTs. For each violation
of constraints, likelihood of selection of one of the moves of hNi
and the corresponding BhE(s) increases. Alternation of hCCG is
done with two categories of moves. In the first case, we distinguish
two different move actions: (i) SwapNodes(Ci,hNi,Cj,hNj) node
swapping between hypernodes, and (ii) MoveNode(Ci,hNi,hNj)
node transfer from one hypernode hNi to another hNj. The second
category of moves, MoveBhE(), modifies hyperedges and conse-
quently the bus network structure. A valid hCCG must result in
every move or it is canceled.

Procedure Latency_Guided_Floorplanner
 T=T0; M=C∪ BhE; F=Initila_Floorplan(M)
 While (T>TFinal)
 While (cumulative improvement ≥ σ)
 a = random(LongestBus, ShortestBus)
 Case(a > Const) : F.Greedy_Move()
 Case(a ≤ Const) : F.Enabling_Move()
 Current_Area = Area(F)
 For Each hNi∈ hCCG
 If (LengthOfBounding_Box(hNi)> λmax)
 Add BBi to violated constraints list
 Current_Cost=Cost(Current_Area,BB)
 SA Decision: Accept or reject F
 If Current_Cost≥min(Cost(Π i ∈ Π(K))
 Add F to Π(K)
 Decrease temperature T
Figure 4 – Pseudo code for Latency Guided Floorplanner

4.3 Latency Guided Floorplanner
The main task of the Floorplanner is to estimate the area re-

quirements of the cores and check the implementation feasibility of
the interconnection network. Formally, we state the problem as:
Problem: Latency-Guided Floorplanner
Input: Cores C; Bridges BhE; an hCCG; Bus constraint λmax.
Question: Is there a floorplan F for the set of physical modules
C∪ BhE such that ∀ hNi∈ hCCG, Length(hNi) ≤ λmax ?

At each iteration of the simulated annealing process (Figure
4), we calculate the minimum area required by each instance using
the method presented in [Mur95]. During the search, the algorithm
keeps track of the K best solutions encountered (Π(K)). For each
solution Π i∈Π (K), we report the area and the violated bus con-
straints. In addition to the best solution instances found, we also
report the percentage of instances that each bus violates the bus
constraint. The standard simulated annealing process is augmented
with solution transformation actions called moves. We define two
types of moves: (i) greedy and (ii) enabling. The probability of
performing each depends on the lengths of the shortest and the
longest buses as shown in Figure 4. In the greedy move, we select
the longest bus and try to improve the placement of its modules.
We calculate the center-of-mass Cm of the bus by averaging the x
and y coordinates of each external connection of the bus. We then
calculate a force vector V for the module that has the longest Man-
hattan distance from Cm. V is used to update the sequence pair
strings such that the selected module is moved in the direction of V
in proportion to |V|. Similarly, in the enabling move, we select the
shortest bus and try to relax the placement of its modules. We cal-
culate the center-of-mass Cm and force vector V as described above
with the exception of selecting the module closest to Cm. We up-
date the sequence pair strings such that the selected module moves
in the opposite direction of V in proportion to |V|.

5. EXPERIMENTAL RESULTS
In this section we compare the performance of each applica-

tion on the design developed using the MMSOC optimization ap-
proach to the performance of each application on an individually
optimized design [Dri00]. The first column of the results in Table 1
lists the name of the application being considered. The next four
columns list the number of cores, gates, buses, and bridges in the
final design respectively. The next two columns list the number of
iterations and the total run-time of the optimization task. Columns
8-11 list the total communication throughput and the median bus
idle time ratio of each application for the single application system
and the multi-application system respectively. As the data in Table
1 shows, the gate count of the MMSOC design is 40% larger than
the worst case single application requirement. The bus count is
14.5% larger for the MMSOC design in comparison to the worst
case single application system. Overall, after only 4 iterations, the
MMSOC design can satisfy all the application requirements with
minimal area and bus interconnection overheads.

6. CONCLUSION
To address the challenges arising in multi-application SOC in-

tegration, we presented a vertical system-design methodology that
enables the design of SOC bus networks with floorplanning and
approximate timing verification in early design stages. The design
platform iterates system synthesis and floorplanning to build min-
area floorplans that satisfy statistical time constraints of applica-
tions. We demonstrated the effectiveness of the bus network design
approach using a multi-core designs selected from a multimedia
benchmark suite. The results indicate that with minimal area and
bus network overheads, a single SOC can be optimized to meet the
demands of multiple applications effectively.

REFERENCES
[Deg90] A. De Gloria, P. Faraboschi, “An evaluation system for applica-

tion specific architectures,” Microprogramming and Microarchitecture.
p.80-9. x+299 pp. 1990.

[Dri00] M. Drinic, D. Kirovski, S. Meguerdichian, M. Potkonjak, “Latency
Guided On-Chip Bus Network Design”. ICCAD’00, pp. 240, 2000.

[Lee97] C. Lee, M. Potkonjak, W.H. Mangione-Smith, “Mediabench: A
Tool For Evaluating And Synthesizing Multimedia And Communications
Systems,” Int. Symp. on Microarchitecture, pp.330-5, 1997.

[Mad95] V.K. Madisetti, “Rapid Prototyping Of Application-Specific Sig-
nal Processors: Current Practice, Challenges, And Roadmap,” Procs
ICPP Workshop on Challenges for Parallel Processing. p. 96-103. 1995.

[Mur95] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “Rectangle-
Packing-Based Module Placement”, ICCAD'95, pp 472-479, 1995.

[Sur96] D.R. Surma, E.H Sha, “Static Communication Scheduling For
Minimizing Collisions In Application Specific Parallel Systems,” Int.
Conf. on Application-Specific Systems, p. 240-9. 1996.

[Syl99] D. Sylvester, and K. Keutzer. Rethinking deep-submicron circuit
design. Computer, vol. 32, (no. 11), pp. 25-33, 1999.

Table 1 - Experimental Results: Single Application Optimization and Multi-Application Single SOC Design (Tp-Throughput)
Optimized Single Application Properties and Run-Time Statistics MMSOC

Synthesis loop Solution properties MMSOC Properties Application
Specification Cores Gates Buses Bridges Iterations Time Tp Bus Idle Tp Bus Idle
DSP +crypto 13 1M 4 2 3 15min 1.46 0.45 1.39 0.55

GPP + communication 30 1.8M 11 4 4 1h 1.57 0.71 1.47 0.70
GPP+DSP 75 4.2M 21 7 5 5h 2.03 0.43 1.95 0.52

Communication + speech 100 5.4M 31 12 5 11h 3.11 0.79 2.92 0.74
DSP + speech 125 7.5M 41 15 5 17h 2.17 0.40 2.00 0.56

GPP + peripherals + comm 150 9.6M 47 18 7 21h 2.42 0.43 2.12 0.49
GPP + crypto +peripherals 200 15M 62 23 9 35h 3.16 0.67 2.97 0.76
Single SOC Multi-App Sys 240 21M 71 26 4+1 23h

	Main
	DAC01
	Front Matter
	Table of Contents
	Session Index
	Author Index

