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Abstract
This paper presents several low-latency mixed-timing FIFO de-

signs that interface systems on a chip working at different speeds.
The connected systems can be either synchronous or asynchronous.
The design are then adapted to work between systems with very
long interconnection delays, by migrating a single-clock solution
by Carloni et al. (for “latency-insensitive” protocols) to mixed-
timing domains. The new designs can be made arbitrarily robust
with regard to metastability and interface operating speeds. Initial
simulations for both latency and throughput are promising.

1. Introduction
Future VLSI systems will likely be systems-on-a-chip involving

many clock domains. A challenging problem is to robustly inter-
face these domains. There have been few adequate solutions, es-
pecially ones providing reliable low-latency communication. The
contribution of this paper is the design of low-latency, high-through-
put FIFO’s which robustly accommodate mixed-timing systems.

There are two fundamental challenges in designing systems-on-
a-chip: systems operating under different timing assumptions, and
long delays in communicating between systems. This paper ad-
dresses both of these issues. First, twobasic mixed-timing FIFO’s
are introduced which address the first design challenge, for both
sync-sync and async-sync interfaces. For the second design chal-
lenge, “latency-insensitive protocols” were proposed by Carloni et
al. [2]; however, their solution was limited to a single clock do-
main. In this paper, their solution is generalized to mixed-timing
systems: two newmixed-timing relay stationsare introduced (sync-
sync, async-sync), which built on our basic designs.

A particular contribution of this paper are the new relay sta-
tions for mixed async/sync interfaces; no previous solution has
been proposed which simultaneously solves the above two design
challenges: handling mixed asynchronous/synchronous interfaces
and accommodating long interconnect delays.

An important theme of our approach is to partition the FIFO’s
into reusable components. A set of interfaces, both synchronous
and asynchronous, is defined; these interfaces can then be glued
together to obtain FIFO’s which meet the desired timing assump-
tions on both the sender’s and receiver’s end. Thus, the design of
a mixed-timing FIFO is reduced to combining a few predesigned
components.

Our new FIFO’s are especially suitable for high-bandwidth com-
munication: assuming appropriate buffer capacity is used, in steady-
state operation the designs haveno synchronization overhead—
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each read and write operation can be completed in one cycle. At
the same time, the designs are also optimized for low latency, and
thus are suitable for infrequent communication.

The paper is organized as follows. In Section 2, a top-level view
of the two basic FIFO designs is presented, similarities and dif-
ferences are highlighted, and the critical issues of synchronization
and deadlock are raised. In Section 3, the basic mixed-clock FIFO
is presented in detail, and simple solutions to both synchronization
and deadlock problems are proposed. Reusing some of its com-
ponents, in Section 4 an asynchronous-synchronous FIFO is intro-
duced. In Section 5, each of the two basic designs is then trans-
formed into a mixed-timing relay-station. Finally, the results for
throughput and latency in each design are shown in Section 6, and
conclusions are presented in Section 7.
Related Work. A number of papers propose FIFO’s and compo-
nents to handle timing discrepancies between subsystems. Some
designs are limited to handling single-clock systems. These ap-
proaches have been proposed to handle clock skew [10, 11], drift
and jitter [10], and very long interconnect penalties [2].

Several designs have also been proposed to handle mixed-timing
domains. One category of approaches attempts to synchronize data
items and/or control signals with the receiver, without interfering
with its clock ([12, 13]). In particular, Seizovic [13] robustly in-
terfacesasynchronouswith synchronous environments through a
“synchronization FIFO”. However, the latency of his design is pro-
portional with the number of FIFO stages, whose implementation
includes expensive synchronizers. Furthermore, the design requires
the sender to produce data items at a constant rate.

Another solution to robust interfacing of mixed-clock systems is
to temporarily pause ([3, 16]) or stretch ([1]) the receiver’s clock.
In contrast to our approach, such designs require asynchronous
“wrapper logic” around the receiver and also suffer from penalties
in restarting the receiver’s clock.

A few recent FIFO’s are closer to our work: mixed-clock and
async-async FIFO’s from academia, and a mixed-clock FIFO from
Intel. A recent mixed-clock FIFO [5] has some similarities in over-
all architecture to our new design, but has fundamental differences
in protocol and implementation. In addition, it has significantly
worse latency (three passes through the global signal synchroniz-
ers to read data just inserted into an empty FIFO). It also requires
the use of a special deadlock detector, which enables the injection
of “dummy” data items to restart the FIFO. This design was also
modified into a preliminary version of a mixed-clock “relay sta-
tion”, but no relay station FIFO’s have previously been proposed
for mixed asynchronous/synchronous interfaces. A related asyn-
chronous FIFO design in [4] is re-used in this paper for part of the
implementation of the asynchronous interfaces.

Finally, a highly-optimized patented (unpublished) mixed-clock
FIFO has been developed at Intel [9]. It has a number of similar-
ities to our basic mixed-clock FIFO in overall operation, but has
significantly greater area overhead in implementing the synchro-
nization: while our design has only one synchronizer on each of
the two global detectors (full and empty), the Intel design has two
synchronizersper cell.

2. Overview of the New FIFO’s
The mixed-timing FIFO’s can be best understood by looking first

at the underlying common themes across the designs. This section
presents an overview of the basic FIFO interfaces, the underlying



architectures and special features, of the two FIFO’s. Later sections
present details of the actual FIFO implementations, as well as a
detailed solution to the synchronization problem.
FIFO Interfaces. Each FIFO has two interfaces: a put interface
(for the sender) and a get interface (for the receiver). Each inter-
face, in turn, can be either synchronous or asynchronous (Fig. 1).
For space reasons, this paper presents only the sync-sync and async-
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Figure 1: Mixed-clock and async-sync FIFO interfaces
sync FIFO’s. An async-async FIFO has been presented in [4]. A
sync-async FIFO has also been designed, and will be described in
a forthcoming technical report.

There are two types of synchronous interfaces: a put interface
and a get interface. The synchronous interface 1(a) is controlled
by CLKput. There are two inputs:reqput which controls requests,
anddataput which is the bus for data items. Thefull output is only
asserted when the FIFO is full, otherwise it is deasserted. The get
interface 1(b) is controlled byCLKget and a single control input
reqget. Data is placed ondataget output bus, andemptyis asserted
only when the FIFO is empty. For most of this paper,validget is
always asserted during a get operation.

Since the asynchronous interfaces are not synchronized to a clock
signal, they are somewhat different. The asynchronous put inter-
face 1(a), much like the synchronous put interface, has two inputs:
putreq which controls requests, andputdata, the bus for data items.
However, this interface does not have afull output; instead, the in-
terface simply withholdsputack until the operation is completed.
Basic Architecture. Fig. 2 gives a simple overview of the two
basic FIFO architectures. Similar architectures can be defined for

G
et

data_get
req_get

valid_get

CLK_get

empty

req_put

full

CLK_put
data_put

Cell Cell Cell Cell

Empty Detector

Full Detector

en_put

en_get

Put
Controller

Sy
nc

hr
on

ou
s

Sy
nc

hr
on

ou
s

C
on

tr
ol

le
r
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(b) Asynchronous-Synchronous FIFO
Figure 2: Two architectures for mixed-timing FIFO’s

async-async ([4]) and sync-async FIFO’s.
There are a number of similarities. Each FIFO is constructed as

a circular array of identical cells, communicating with the two ex-
ternal interfaces (put and get) on common data buses. The control
logic for each operation is distributed among the cells, and allows
concurrency between the two interfaces. An important feature of
all the circular FIFO’s architectures is that data is immobile: once
enqueued, it is not moved and is simply dequeued in place.

Two tokens control the input and output behavior of the FIFO:
a put token is used to enqueue data items, and aget token is used
to dequeue data items. The cell with the put token is the tail of the
queue, while the cell with the get token is its head. Once a cell has
used a token for a data operation the token is passed to the next cell.
In normal operation, the get token is never ahead of the put token;
however, in some special cases, the get token may briefly overtake
the put one.

There are several advantages that are common to the proposed
architectures. Since data is not passed between the cells from in-
put to output, the FIFO’s have a potential for low latency: as soon

as a data item is enqueued, it is also available for dequeuing (see
Section 6). Secondly, the FIFO’s offer the potential for low power:
data items are immobile while in the FIFO. Finally, these architec-
tures are highly scalable; the capacity of the FIFO and the width of
the data item can be changed with very few design modifications.
Empty/Full Detectors and External Controllers. The synchro-
nous interfaces have two additional types of components:detec-
tors, which compute the current state of the FIFO, andexternal
controllers, which conditionally pass requests for data operations
to the cell array. The full and empty detectors observe the state of
all cells and compute the global state of the FIFO: full or empty.
The output of the full detector is passed to the put interface, while
that of the empty detector is passed to the get interface. The put and
get controllers filter data operation requests to the FIFO. Thus, the
put controller usually passes put requests, but disables them when
the FIFO is full. The get controller normally forwards the get re-
quests, but blocks them when the FIFO is empty.

The asynchronous interfaces do not need such external detectors
and controllers. A data operation on a synchronous interface com-
pletes within a clock cycle; therefore, the environment does not
need an explicit acknowledge. However, if the FIFO becomes full
(empty), the environment may need to be stopped from commu-
nicating on the put (get) interface. The role of the detectors and
controllers is to (a) detect the exception cases, and (b) stall the re-
spective interface until it is safe to perform the data operation. In
contrast, the asynchronous interfaces do need such explicit FIFO
state signals. When the FIFO becomes full (empty), the put (get)
acknowledgment can be withheld indefinitely until it is safe to per-
form the data operation.
FIFO Protocols. Now that the various interfaces have been dis-
cussed, the behavior of each can be be best understood through
some simple simulations (Fig. 3).

The synchronous protocols are somewhat more complex than the
asynchronous ones, and will be discussed first. The synchronous
put interfacestarts a put operation, shown in Fig. 3(a), when it
receives a request onputreq and a data item onputdata, immediately
after the positive edge ofCLKput. The data item is enqueued at
the start of the next clock cycle. If the FIFO becomes full, then
full is asserted before the next clock cycle, and the put interface is
prevented from any further operation.

A synchronousget operation(Fig. 3c) is enabled by a request on
reqget, asserted immediately after the positive edge ofCLKget. By
the end of the clock cycle, a data item is placed ongetdata together
with its validity bit (validget). If the FIFO becomes empty that clock
cycle,emptyis also asserted, and the get interface is stalled until the
FIFO becomes non-empty. Following a get request,validget and
emptycan indicate three outcomes: (a) data item dequeued, more
data items available (validget=1, empty=0); (b) data item dequeued,
FIFO has become empty (validget=1, empty= 1); (c) FIFO empty,
no data item dequeued (validget=0, empty=1).

The asynchronous interfaces use 4-phase communication with
single-rail bundled data ([8], [15]). Bundled data is a common
scheme where a worst-case matched control signal (e.g.putreq)
indicates when data is valid (putdata). The sender starts a put op-
eration (Fig. 3c) by placing a data item onputdata and requesting
the FIFO to enqueue it onputreq. The enqueuing completion is in-
dicated by assertingputack. The two control wires are then reset to
the idle state, firstputreq and thenputack.

3. Mixed-Clock FIFO
The section now presents in more detail the first of our two ba-

sic mixed-timing FIFO’s: the mixed-clock (sync-sync) FIFO. The
design is not only useful in itself but also provides a basis for un-
derstanding all the remaining FIFO designs. Components from this
design are also reused in the other FIFO’s. Furthermore, the so-
lution to the synchronization problem is also introduced for this
FIFO; the same solution will be applied to all later designs.

The sync-sync FIFO interfaces are shown in Fig. 1a. The FIFO
protocol on the put and get interfaces has been described in Fig. 3c,
and the architecture of the FIFO was described in Section 2. For
the rest of the subsection, the implementation of the basic cell, the
empty/full detectors and the external controllers are presented.
3.1 Cell Implementation

A block diagram of an individual cell is shown in Fig. 4. Each
cell has 4 interfaces: on the synchronous put interface, the cell re-
ceives data ondataput and it is enabled onenput to perform a put
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operation;reqput indicates data validity (it is always 1 in this de-
sign). The cell communicates with thefull detectoron ei , which
is asserted high when the cell is empty. On the get interface, the
cell outputs data ondataget, together with its validity bitvalid (al-
ways 1 in this design); the interface is enabled onenget. The cell
communicates with theempty detectoron fi , which is asserted high
when the cell is full. Each cell receives tokens onptokin (put token)
andgtokin (get token) from the right cell and passes the tokens on
ptokout andgtokout to the left cell.

A detailed implementation of a cell is shown in Fig. 5. The cell’s
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behavior is illustrated by tracing aput operationand then aget
operation. Initially, the cell starts in an empty state (ei=1 andfi=0)
and without any tokens. The cell waits to receive the put token
from the right cell on the positive edge ofCLKput, and waits for the
sender to place a valid data item on thedataput bus. A valid data
item is indicated to all cells byenput=1, which is the output of the
put controller.

When there is valid data, the cell performs three actions: (a) it
enables registerREG to latch the data item and also the data va-
lidity bit (which is reqput), (b) it indicates that the cell has a valid
data item (asynchronously setsfi=1), and (c) it enables the upper
left ETDFF (enput=1) to pass the put token to the left cell. On the
positive edge of the next clock cycle, the data item and validity bit
are finally latched and the put token is passed to the left cell.

The behavior for dequeuing data is quite similar. The cell waits
to receive the get token (gtokin=1) and waits for the receiver to
request a data item (enget=1, the output of theget controller). When
both conditions hold, the cell performs three actions: it (a) enables
the broadcasting of the data item on thedataget tristate bus and
the broadcasting ofvi (the latchedreqput) on thevalid tristate bus,
(b) indicates that the cell is empty (asynchronously setsei=1), and
(c) enables the lower left ETDFF to pass the get token. At the
beginning of the next clock cycle, the get token is then passed to
the left cell.

3.2 Synchronization Issues
A key challenge of designing a mixed-clock FIFO is that of syn-

chronization. Such a FIFO has a highly-concurrent operation: the
two interfaces may change and read the state of the FIFO concur-
rently under two different clocks. Therefore,synchronizersmust
be added to the two global control signals (full andempty). Un-
fortunately, the added delays through the synchronizers may cause
overflow/underflow in the FIFO. A simple solution is to modify the
definitions offull andempty, to anticipate imminent full and empty

states. However, the complete solution needs to avoid deadlock,
which may occur when using the modifiedemptydefinition.
Synchronization of Control Signals. Global control signals have
to be re-synchronized to the interfaces’ clocks. The problem is
that the state of the FIFO (full/empty) is manipulated by the two
interfaces, while it is read by only one of them (full by the put
interface,emptyby the get interface). A simple and robust solution
is to use synchronizing latches. The current designs use only a
pair of synchronizing latches; however, for arbitrary robustness, the
designer might use more than two. The synchronizers are added to
the output of the full and empty detectors, and are controlled by
CLKput andCLKget, respectively.
Modification of Full and Empty Detectors. The added latencies
through the synchronizers may cause the FIFO to overflow or un-
derflow. For example, when the FIFO becomes empty, the receiver
interface is stalled two clock cycles later; so in the next clock cy-
cle the receiver might request and read an empty cell. A similar
problem arises when the FIFO becomes full.

The solution to the over/underflow problem is to change the def-
initions of full andempty. The FIFO is now considered “full” when
there are either 0 or 1 empty cells left, and it is considered “empty”
when there are either 0 or 1 cells filled. Thus, when there are fewer
that 2 data items, the FIFO is declared full; the receiver may then
remove the last data item and issue a new unanswered request, be-
fore stalling two clock cycles later. (A similar behavior applies for
the full case.) The new definitions do not change the protocol with
the two systems. The only effect is that sometimes the two systems
see ann-place FIFO as an-1 place one.

The new implementations of full and empty detectors, presented
in Fig. 6a-b, correspond precisely to the above new definitions: the
FIFO is full when there are no twoconsecutivecells empty, and the
FIFO is empty when there are no twoconsecutivecells full.
Deadlock Avoidance. Unfortunately, the early detection of empty,
in some cases, may cause the FIFO to deadlock. Using the new
empty definition (0 or 1 data items), it is possible that the FIFO still
contains one data item, but the requesting receiver is still stalled.

The solution is to use abi-modalempty detector. The detector, in
addition to computing the “new empty” definition (ne), also com-
putes the “true empty” one (oe, see Fig. 6c): the FIFO is empty
when there are zero full cells left. The two empty signals are
then synchronized with the receiver clock and combined through
an AND gate (Fig.7) to form the globalemptysignal.

The intuition behind the bi-modal detector is as follows. If there
have not been any recent gets—for at least one clock cycle—oe
dominates. This is especially important when there is only one
data item in the FIFO: the get interface needs to receive it, sooe
is used to indicate the FIFO’s state (not empty). However, when
the get interface has just removed a data item,ne mustbe used to
indicate the state, in order to prevent the FIFO underflow, which
the synchronization delays foroemight cause.

The two empty definitions produce the same result in all but one
case: when there isexactlyone data item in the FIFO. Suppose
that the get interface has just removed the next-to-last data item in
the FIFO. If in the current clock cycle there is another get request,
the request is satisfied andnewill stall the get interface in the next
clock cycle (it will assert “FIFO empty”). However, if there isno
get request, thenoe will dominate in the next clock cycle (it will
assert “FIFO not empty”), allowing a subsequent get request to be
satisfied. Whenever the last data item is dequeued,neagain imme-
diately dominates and stalls the get interface on time. At this point,
no further gets will be satisfied, sooeagain will be used to indicate
the FIFO’s state.

The “true empty” detector (Fig. 6c) and the get controller (Fig. 7b)
implement exactly the above behavior. The OR gate in theoesyn-
chronizer is very important: controlled byenget, it sets theoe to
a neutral state (“FIFO empty”) one clock cycle after a get opera-
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tion takes place. In this case, the “new empty” definition can take
precedence in the get controller.
3.3 Put and Get Controllers

Finally, the implementation of the put controller is shown in
Fig. 7(a). The controller enables and disables the put operation
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full en_put valid_get
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Figure 7: The control for the mixed-clock FIFO
and the movement of the put token in the FIFO: these operations
are only enabled when there is a valid data item ondataput (reqput
asserted) and the FIFO is not full.

The get controller enables and disables the get operation and the
movement of the get token in the FIFO: they are only enabled when
there is a request from the receiver and at least one of the empty de-
tectors (neandoe) indicates the FIFO is not empty. The simple im-
plementation in Fig. 7(b) corresponds exactly to these conditions.
4. Async-Sync FIFO

This section now introduces the async-sync FIFO. The design
has an asynchronous put interface and a synchronous get interface
(see Fig. 1b). The architecture (Fig. 2b) reuses components from
the mixed-clock design (Section 3). In particular, the external get
controller and empty detector are unchanged; the only components
that change are portions of the FIFO cells.

Since the emphasis of this paper is on design reuse, it is use-
ful to consider the reuse of parts of existing cells. Each cell can
be divided into 3 distinct parts: aput part that deals with the put
operation, aget part that deals with the get operation, and adata
validity controller (DV). The register is split into two parts, one be-
longing to the put part (the write port), and the other to the get part
(the read port). The put and get parts can be designed to interact
with a synchronous or asynchronous interface. Then these parts
can be glued together with a data validity controller to obtain a cell
implementation.

The basic cell in the new async-sync FIFO is designed as fol-
lows. The synchronous get part in the mixed-clock cell will be
reused as the synchronous half in the mixed async-sync design. The
asynchronous put part of [4] will be used for the asynchronous part
of the current async-sync cells.

One of the three components is small, but very important: the
DV controller, which indicates when the cell is full and when it is
empty. In the mixed-clock design, DV was very simple (an SR
latch). However, since the mixed async-sync design allows for
more concurrency between the writes and reads to the same cell,
a new design of DV is required with a more subtle protocol, as will
be seen shortly.
Async-Sync Cell Interfaces. The cell communicates on 4 inter-
faces (Fig. 8): on the put interface to the sender, on the get interface
to receiver, on the right one to obtain tokens from the previous cell,
and on the left one to pass the tokens to the next cell.

The four interfaces communicate as follows. On the put inter-
face, the cell receives data onputdata and request for a put opera-
tion onputreq; the cell outputsputack i , the data operation acknowl-
edgment. The get interface is synchronized byCLKget. There is
one inputenget, which enables a get operation, and two outputs: a
getdata bus for data items andfi , indicating the state of the cell. On
the right interface, the cell receives the put token onwe1and the
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get token ongtokin. The tokens are passed to the left interface: put
token onweand the get token ongtokout.
Async-Sync Cell Implementation. The cell’s implementation con-
sists of the asynchronous part and the synchronous part, plus the
new data validity controller, as shown in Fig. 9.
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Figure 9: Async-sync cell implementation
The synchronous part of the cell is identical to the one in the

mixed-clock design.
The asynchronous part of the cell is decomposed into several

blocks. ObtainPutToken (OPT)obtains the respective token from
the right interface. It is implemented as a Burst-Mode asynchronous
machine (see [7, 4] for details) (Fig. 10a). If the cell does not have
the token,OPTobserves the right cell and waits for the put token
(a pulse onwe1: we1+, thenwe1-). At this point, the put token
is in the current cell, which enables it for a put operation. When
the put operation finishes, the token is sent to the next cell and the
cycle resumes. The put operation is controlled by an asymmetric
C-element.1

The cell’s detailed behavior can be understood by simulating a
put operation. Initially, the cell starts in an empty state (ei=1 and
fi=0) and without any tokens. After a two transitions onwe1, the
put token is in the cell (ptok=1). When the environment requests a
put operation (putreq=1), we is asserted. This event causes several
operations in parallel: the state of the cell is changed to full by
DVas, registerREG is enabled to latch data, and the cell starts to
send the put token to the left cell and to resetOPT(ptok=0). When
putreq is deasserted,weis then deasserted. This event completes the
passing of the put token to the left cell. The cell is now prepared
to start another put operation once the data inREG is dequeued.
The synchronous get operation is identical to the mixed-clock FIFO
cell’s get operation.

The new data validity controllerDVas indicates when the cell
contains a data item; it thus controls the put and get operations. It
accepts as inputswe (which signals that a put operation is taking
place) andre (which signals that a get operation is taking place).
Its outputs areei (indicating the cell is empty, allowing the next
get operation), andfi (indicating the cell is full—used by the empty
detector).

The protocol forDVas is shown as a Petri-Net in Fig.10b ([6]).
Once a put operation begins,DVas setsei to zero (thus declaring the
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Figure 10: The async-sync data validity protocol
1A C-element has its output at 1 when all its inputs are one; the output becomes 0
when all its inputs become zero. In an asymmetric C-element, some of the inputs
(marked with ’+’) participate only in setting the output of the element to one; their
values are irrelevant for the other output transition.



cell not empty), andfi to one (thus enabling a get operation). After
a get operation begins (re+), the cell is declared “not full” (fi=0)
asynchronously, in the middle of theCLKget clock cycle. When the
get operation finishes (on the next positive edge ofCLKget), DVas
sets the cell to “empty” (ei=1) and the behavior can resume. This
asymmetric behavior prevents data corruption by a put operation
while a get operation is still taking place.

5. FIFO as a Relay Station
There are two important challenges in designing a chip consist-

ing of several subsystems: the subsystems operate under different
timing assumptions (multiple clock speeds, asynchronous vs. syn-
chronous), and there are long communication delays on wires be-
tween subsystems. The FIFO designs presented in the previous
sections handle various timing assumptions. In this section, these
designs are modified to solve the second problem. In particular, the
FIFO’ss are transformed intorelay stations, originally introduced
for use only in single-clock systems [2]. In contrast, the proposed
new relay stations handle mixed-timing systems.

The section first discusses the concepts and implementation of
relay stations. Then, two new mixed-timing relay stations are in-
troduced: sync-sync (mixed-clock) and async-sync.
5.1 Relay-Stations Overview

Relay stations were introduced to alleviate the connection delay
penalties between two subsystems operating under the same clock
(Fig. 11(a)). After placement, the systems may be connected by
very long wires, on which a signal takes several clock cycles to
travel. The solution is to break the long wires into segments corre-
sponding to clock cycles, and then insert a chain of relay stations
which act like a FIFO sending packets from one subsystem to an-
other.

The implementation of a relay station is given in Fig. 11(b).
Normally, the packets from the left relay station are passed to the
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Figure 11: Relay stations
right relay station. The right relay station also has the possibility to
put counter-pressure on the data flow by stopping the relay stations
to the left. Each relay station has two registers: one is used in nor-
mal operation and one used to store an extra packet when stopped.

A relay station works as follows. In normal operation, at the
beginning of every clock cycle, the data packet received onpack-
etIn from the left relay station is copied to MR (main register) and
then forwarded onpacketOutto the right relay station. A packet
consists of a data item and a valid bit which indicates the valid-
ity of the data in the packet. If the receiver system wants to stop
receiving data, it raisesstopIn. On the next clock edge, the relay
station raisesstopOutand latches the next packet to the auxiliary
register. When the relay station is un-stalled, it will first send the
packet from the main register to the right, and then the one from
the auxiliary register.
5.2 Mixed-Clock Relay Station

The new mixed-clock FIFO of Section 3 can now be modified
into a special form ofmixed-clock relay station (MCRS). Its inter-
face is shown in Fig. 12. The new MCRS simply replaces one of the
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Figure 12: The interface of the relay station FIFO
relay stations, and interfaces between the remaining left and right
relay chains (each chain being operated under a different clock).

In contrast to the basic mixed-clock design, the new MCRSal-
wayspasses valid data items from left to right: there are no active
requests on either interface. Instead, the get and put interfaces can
only actively stop, or interrupt, the continuous flow of data items.
The get interface reads a data item from the FIFO on every clock
cycle; its only possibility to stop the flow is to assertstopIn. Simi-
larly, the FIFO always enqueues data items from the put interface.
Enqueued data may now be either valid or invalid. Thus, unlike
previous designs,reqput is usedsolelyto indicate data validity, be-
ing treated as part ofpacketInand not as a control signal. When
it becomes full, the MCRS simply stops the put interface: thefull
signal is used asstopOutto the left interface.

The new relay station can be easily derived from the mixed-clock
FIFO by changing only the put and get controllers (Fig. 13). In
the mixed-clock FIFO, the put controller enables the enqueuing of

en_get

valid_getempty
stopIn

valid

en_putfull

(a) Put Controller (b) Get Controller

stopIn
empty

Figure 13: The control for the relay station FIFO
valid data items usingreqput signals, while in the relay-station de-
sign it simply allows valid data items to pass through. In addition,
the new put controller continuously enqueues data items unless the
FIFO becomes full. Thus, the put controller is simply an inverter
(see Fig. 13(a)). In a similar fashion, the new get controller enables
continuous dequeuing of data items, unlike the mixed-clock FIFO
where dequeuing was done on demand. Dequeuing can only be in-
terrupted if the FIFO becomes empty or the get interface signals it
can no longer accept data items by assertingstopIn.
5.3 Async-Sync Relay Station

Finally, a novel variant is presented: relay stations which handle
mixed async-sync interfaces. This design is the first to be proposed
which simultaneously solve both critical design challenges: mixed
async/sync interfaces and long inter-connect delays.
Basic Architecture. Communication with relay stations between
asynchronous and synchronous domains is shown in Fig. 14: the
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asynchronous domain sends data packets (possibly through a chain
of asynchronous relay stations (ARS), to be discussed below) to
the async-sync relay station (ASRS). The packets are then trans-
fered to the synchronous domain, and sent through the chain of
synchronous relay stations (SRS) to the receiver.
Asynchronous Relay Stations: Implementation. In principle,
no relay stationsneed to be inserted in the asynchronous com-
munication channels (Fig. 14): the async-sync relay station can
communicate directly with the asynchronous domain. However,
in practice, the designer needs to address both (a) correctness and
(b) performance issues in their designs, so inserting ARS’s may be
desirable.

There are two common asynchronous communication styles: dual-
rail and single-rail bundled data [8]. The dual-rail style encodes
both the value and validity of each data bit on a pair of wires; there-
fore, communication between systems is robust with respect to ar-
bitrary wire delays, so that no relay stations are needed. However,
to meet performance goals, insertion of ARS’s may be desirable to
increase the throughput. The second communication style (single-
rail bundled data) has timing assumptions between the single-rail
data itself and the worst-case bundling control wire (called a “bund-
ling constraint”). In this case, a chain of ARS’s may be desirable
(as in Carloni) to limit the wire lengths between stages to short
hops. Also, as in the dual-rail case, inserting ARS’s can increase
the throughput on the interfaces.

A chain of asynchronous relay stations can be directly imple-
mented by using a standard asynchronous FIFO called amicropipe-
line ([15],[14]). Unlike the synchronous data packets, the asyn-
chronous ones do not need a validity bit: the presence of valid data



Throughput Latency
8-bit data items 16-bit data items 8-bit data items

Version 4-place 8-place 16-place 4-place 8-place 16-place 4-place 8-place 16-place
put get put get put get put get put get put get Min Max Min Max Min Max

Mixed-Clock 565 549 544 523 505 484 505 492 488 471 460 439 5.43 6.34 5.79 6.64 6.14 7.17
Async-Sync 421 549 379 523 357 484 386 492 351 471 332 439 5.53 6.45 6.13 7.17 6.47 7.51
Mixed-Clock RS 580 539 550 517 509 475 521 478 498 459 467 430 5.48 6.41 6.05 7.02 6.23 7.28
Async-Sync RS 421 539 379 517 357 475 386 478 351 459 332 430 5.61 6.35 6.18 7.13 6.57 7.62

Table 1: Simulation results
packets is signaled on the control wires and an ARS can wait indef-
initely between receiving data packets. Therefore, a micropipeline
implements the desired ARS behavior.
Async-Sync Relay Stations: Implementation. Finally, the async-
sync relay station (ASRS) can be derived by modifying the async-
sync FIFO (Section 4). The new interfaces are shown in Fig. 15.
Note that the asynchronous interface is identical and supports the
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Figure 15: Interfaces for the async-sync relay stations
same communication protocol as the asynchronous interface in the
FIFO’s counterpart. This holds because these interfaces exactly
match the micropipeline interfaces. There is no need for an ex-
plicit validity bit since data is enqueued only when requested. The
synchronous interface supports the same communication protocol
with the respective synchronous interface as in the mixed-clock re-
lay stations, including a data validity bit.

At the architectural level, the ASRS reuses unmodified most of
the components of the async-sync FIFO. In fact, the only changes
in the ASRS design are in theget controller(see below).

The async-sync relay station operates as follows. At its asyn-
chronous interface, the relay station only enqueues data items when
they are presented. However, on the synchronous interface, the
ASRS must output a data item on every clock cycle (either valid,
or invalid when it is empty), unless it is stopped by the right relay
station. Thus, the right interface receives valid data packets except
when the ASRS is empty.

The implementation for the ASRS get controller is shown in
Fig. 16. The get controller enables an explicit get operation (enget=1)

stopIn
empty en_get

valid_get

Figure 16: The new ASRS get controller
when it is not stopped from the right (stopIn=0) and when the relay
station is not empty (empty=0) (as in a MCRS). The validity signal,
validget, is invalid if either the relay station is stopped or it is empty.

6. Results
To validate the new FIFO’s, each was simulated using both com-

mercial and academia tools. The circuits were designed using both
library and custom components and simulated using Cadence HSpice
in 0.6� HP CMOS technology, at 3.3V and 300K. Burst-Mode
controllers were synthesized using Minimalist[7] and the Petri-Net
controller was synthesized using Petrify[6]. Since all simulations
are pre-layout, special care was taken in modeling the control and
data global buses. Appropriate buffering was inserted into the con-
trol busesputreq/enput andgetreq/enget. In addition,putack was gen-
erated through a tree of OR-gates that merges individual acknowl-
edgments into a single global one. For thegetdata tri-state buses,
wiring and environmental delays were modeled by inserting capac-
itive loads.

Two metrics have been simulated for each design:latencyand
throughput. Latency is the delay from the input of data on the
put interface to its appearance at the output on the get interface
in an empty FIFO. Throughput is defined as the reverse of the cy-
cle time for a put or get operation. The throughput and latency have
been computed for different FIFO capacities (4/8/16 cells) and data
widths (8/16 bits).

The results for maximum throughput are given in Table 1. For
synchronous interfaces, the throughput is expressed as the max-
imum clock frequency with which that interface can be clocked.

Since the asynchronous interfaces do not have a clock, the through-
put is given in MegaOps/s (the number of data operations the inter-
face can perform in a second). The throughput results are consistent
with the FIFO designs. The synchronous get interfaces are slower
than the synchronous put interface because of the complexity of
empty detector. The asynchronous put interfaces are slower than
their synchronous counterparts because of the increased complex-
ity of the asynchronous put protocol.

Latencies through empty FIFO’s are shown only for designs with
8-bit data items (Table 1). The experimental setup for latency is as
follows: in an empty FIFO, the get interface requests a data item.
After the FIFO is stable, the put interface places a data item. The
latency is computed as the elapsed time between the moment when
the put data bus has valid data to the moment when the get interface
retrieves the data item and can use it. Latency for a FIFO with a
synchronous receiver is not uniquely defined. Latency varies with
the exact moment when data items are safely enqueued in a cell. If
the data item is enqueued by the put interface immediately after the
positive edge ofCLKget, then latency is increased (columnMax in
the table). If the data item is enqueued right before the empty de-
tector starts computation, then latency is decreased (columnMin).

Throughput and latency results are quite good for a bus-based
design. As expected, both throughput and latency decrease as the
FIFO capacity and the datapath width increase. Throughput tends
to be higher for synchronous interfaces than for asynchronous ones.
7. Conclusions

This paper presents several low-latency mixed-timing FIFO de-
signs that interface systems on a chip working at different speeds.
The connected systems can be either synchronous or asynchronous.
The design are then adapted to work between systems with very
long interconnection delays, by migrating a single-clock solution
by Carloni et. al. (for “latency-insensitive” protocols) to mixed-
timing domains. The new designs can be made arbitrarily robust
with regard to metastability. Initial simulations for both latency and
throughput are promising. Taken together, the four FIFO designs
presented in this paper (two basic designs, and two mixed-timing
relay stations) provide a powerful and effective set of solutions for
the challenges of future systems-on-a-chip.
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