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Abstract

This paper presents LOTTERYBUS, a novel high-performance
communication architecture for system-on-chip (SoC) designs. The
LOTTERYBUS architecture was designed to address the following
limitations of current communication architectures: (i) lack of con-
trol over the allocation of communication bandwidth to different sys-
tem components or data flows (e.g., in static priority based shared
buses), leading to starvation of lower priority components in some
situations, and (ii) significant latencies resulting from variations in
the time-profile of the communication requests (e.g., in time division
multiplexed access (TDMA) based architectures), sometimes leading
to larger latencies for high-priority communications.

We present two variations of LOTTERYBUS: the first is a low
overhead architecture with statically configured parameters, while
the second variant is a more sophisticated architecture, in which val-
ues of the architectural parameters are allowed to vary dynamically.

Our experiments investigate the performance of the LOTTERY-
BUS architecture across a wide range of communication traffic char-
acteristics. In addition, we also analyze its performance in a 4x4
ATM switch sub-system design. The results demonstrate that the
LOTTERYBUS architecture is (i) capable of providing the designer
with fine grained control over the bandwidth allocated to each SoC
component or data flow, and (ii) well suited to provide high pri-
ority communication traffic with low latencies (we observed upto
85.4% reduction in communication latencies over conventional on-
chip communication architectures).

1 Introduction

The communication architecture plays a key role in SoC design
by enabling efficient integration of heterogeneous system compo-
nents (e.g., CPUs, DSPs, application specific cores, memories, cus-
tom logic,etc). In addition, the communication architecture also sig-
nificantly influences the system performance and power consumption
(i) directly, since the delay and power in global interconnect is known
to be an increasing bottleneck with shrinking feature sizes, and (ii)
through its significant indirect impact on the computation time and
power consumption in the system components [1, 2, 3].

In this work, we propose LOTTERYBUS—a novel high-
performance on-chip communication architecture for complex SoC
designs. The LOTTERYBUSarchitecture improves over the current
state-of-the-art communication architectures through innovations in
the communication protocol it employs, resulting in the following
key advantages: (i) it provides the designer with fine-grained control
over the fraction of communication bandwidth that each system com-
ponent or data flow receives, and (ii) it provides fast execution (low
latencies) for high priority communications.

Recognizing the importance of high-performance communication
as a key to successful system design, recent work has addressed sev-
eral issues pertaining to on-chip communication architectures. While
several embedded system design houses and semiconductor vendors
employ proprietary on-chip bus architectures [4, 5], recently, inde-
pendent companies and consortia have been established to develop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

and license system-level integration and communication architec-
tures [6, 7, 8]. Communication protocols commonly used in these
architectures include priority based arbitration [7], time division mul-
tiplexing [6], and token-ring mechanisms [9]. We later demonstrate
that some of the on-chip communication architectures mentioned
above are not capable of providing control over the allocation of com-
munication bandwidth to SoC components, while others cannot pro-
vide low latencies for high-priority communications. To our knowl-
edge, ours is the first approach for SoC communication architectures
that attempts to address these issues.

Another body of work is aimed at facilitating a plug-and-play de-
sign methodology for HW/SW SoC components and communication
architectures by promoting the use of a consistent communication in-
terface, so that predesigned components or cores can be easily inte-
grated with other system components [10, 11]. The adoption of such
standards will make it easier for system designers to exploit innova-
tions in SoC communication architectures (such as LOTTERYBUS),
without being concerned about low-level interfacing requirements.

It bears mentioning that the performance issues addressed in this
work have been studied in the networking literature, in the context of
shared media access control in local area networks [12], and traffic
scheduling algorithms for high-speed switches [13, 14, 15]. How-
ever, previous research in the above area cannot be directly applied
to system-on-chip design since (i) the protocols used are complex,
leading to communication latencies and hardware costs that are in-
feasible for on-chip communication, and (ii) considerations such as
dynamic scalability and fault tolerance apply in the design of dis-
tributed networks, leading to significantly different design decisions
(e.g., distributedvs. centralized arbitration). Finally, probabilistic
techniques have been used in scheduling multiple threads of compu-
tation in a multi-threaded operating system [16]. However, in that do-
main, while hardware implementation considerations are irrelevant,
the software architecture needs to ensure security and insulation be-
tween competing applications.
2 System-on-Chip Communication Architectures: Background

In this section, we introduce concepts and terminology associated
with on-chip communication architectures and describe some popu-
lar communication architectures used in commercial SoC designs.

The communication architecturetopologyconsists of a network
of shared and dedicated communication channels, to which various
SoC components are connected. These include (i)masters, com-
ponents that can initiate a communication transaction (e.g., CPUs,
DSPs, DMA controllersetc.), and (ii)slaves, components that merely
respond to transactions initiated by a master (e.g., on-chip memo-
ries). When the topology consists of multiple channels,bridgesare
employed to interconnect the necessary channels.

Since buses are often shared by several SoC masters, bus archi-
tectures require protocols to manage access to the bus, which are
implemented in (centralized or distributed)bus arbiters. Currently
used communication architecture protocols includeround-robinac-
cess,priority basedselection, andtime-division multiplexing. In ad-
dition to arbitration, thecommunication protocolhandles other com-
munication functions. For example, it may limit the maximum num-
ber of bus cycles for which a master can use the bus, by setting a
maximum burst transfer size. Another factor that affects the perfor-
mance of a communication channel is itsclock frequency, which (for
a given process technology) depends on the complexity of the inter-
face logic, the placement of the various components, and the routing
of the wires.
2.1 Static Priority Based Shared Bus

The static priority based shared system bus is one of the com-
monly used on-chip bus architectures (e.g., [7]). The bus (Figure 1)
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Figure 1: Static Priority based shared bus

is a set of address, data and control lines shared among a set of mas-
ters that contend among themselves for access to one or more slaves.
The bus arbiter periodically examines accumulated requests from the
master interfaces, and grants bus access to the master of highest pri-
ority among the requesting masters. The bus supports a burst mode
of data transfer, where the master negotiates with the arbiter to send
or receive multiple words of data over the bus without incurring the
overhead of handshaking for each word.

2.2 TDMA Based Shared Bus
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Figure 2: TDMA based shared bus

In the TDMA based architecture, components are provided ac-
cess to the shared bus in an interleaved manner, using a two level
arbitration protocol (e.g., [6]). The first level uses a timing wheel
where each slot is statically reserved for a unique master (Figure 2).
If the master associated with the current slot has an pending request,
a single word transfer is granted, and the wheel is rotated by one
slot. To alleviate the problem of wasted slots (inherent in TDMA
based approaches), a second level of arbitration identifies slots for
which the assigned master does not have a pending communication
request, and issues a grant to the next requesting master in a round-
robin fashion. For example, in Figure 2, the current slot is reserved
for M1, which has no pending request. As a result, the second level
arbitration pointerrr2 is incremented from its earlier position (M2)
to the next pending request (M4).

2.3 Other Communication Architectures

In addition to the above, there are several other on-chip commu-
nication architectures. Notable among them is a hierarchical bus ar-
chitecture [4], in which multiple buses are arranged in a hierarchy,
with bridges permitting cross-hierarchy communications. Another
common architecture is based on token rings; their high clock rate
makes them an attractive alternative for high-bandwidth applications
such as ATM switches [9]. Note, each of the architectures described
above, as well as the proposed LOTTERYBUS architecture, can be
implemented with additional features such as pre-emption, multi-
threaded transactions, and dynamic bus splitting. In addition, in or-
der to reduce arbitration overhead, the arbitration operations may be
pipelined with the data transfer cycles.

3 Limitations of Conventional Communication Architectures

In this section we illustrate through examples, the limitations of
the static priority based bus architecture and the two-level TDMA
based architecture presented earlier. We demonstrate the shortcom-
ings in their ability to provide (i) proportional allocation of commu-
nication bandwidth among various SoC components, and (ii) low la-
tency communications for high priority data transfers, and discuss
the reasons they occur. We go on to demonstrate the potential bene-
fits of the LOTTERYBUScommunication architecture, and show that
it is capable of effectively meeting both the above goals.

In the first example, we study the static priority based architecture
described in Section 2.1, focusing on the manner in which it allocates
the bus bandwidth to the various SoC components.
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Figure 3: Example system with shared bus and 4 masters
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Figure 4: Bandwidth sharing under static priority based architecture

Example 1: Consider the example system shown in Figure 3. The
system consists of a single bus with four masters, which contend
with each other for access to a shared memory. The bus masters
were assigned unique priority values from 4 to 1 (4 representing the
highest priority level). We simulated the system by modeling the
components as stochastic on-chip communication traffic generators
and the bus using the PTOLEMY [17] system modeling and simu-
lation environment as described in Section 5. The traffic generators
were configured such that the bus was always kept busy,i.e.,at least
one pending request exists at any time. We measured the fraction of
the bus bandwidth assigned to each component under the given pri-
ority assignment over a long simulation trace. The simulation was
repeated for every possible priority assignment.

The x-axis in Figure 4 depicts all the possible priority combina-
tions for the four masters that access the bus. For example, the as-
signment “4321” implies that componentC1 has the highest priority,
C2 the second highest, and so on. The y-axis denotes a percentage
of the total bus bandwidth. The four regions of the graph denote the
bandwidth fraction obtained by each SoC master across various pri-
orities. For example, componentC1 has increasing levels of priority
from left to right, and exhibits a step-wise increase in the fraction of
bus bandwidth it receives. From Figure 4, we observe that firstly, the
fraction of bandwidth a component receives is extremely sensitive to
the priority value it is assigned. For instance, the bandwidth received
by componentC1 ranges from 0.16% to 47.8%. Secondly, low prior-
ity components get a negligible fraction of the bus bandwidth as long
as higher priority components have pending requests. For example,
for priority combinations 1234 through 1432,C1 receives an average
of 0.4% of the bus bandwidth.

It is fair to conclude that the static priority based architecture does not
provide a means for controlling the fraction of communication band-
width assigned to a component. Under heavy communication traffic
scenarios, this leads to starvation for the low priority components.

In the next example, we consider the two-level TDMA based ar-
chitecture described in Section 2.2. TDMA-based architectures can
be used to provide bandwidth guarantees for each component, by ap-
propriately assigning slots in the timing wheel. For instance, if there
are two SoC masters, and bandwidth is to be allocated between them
in the ratio 1 : 2, this can be achieved by assigning1

3 of the total
number of slots in the wheel to the first master, and2

3 to the second
master. While this solves the problem of proportional bandwidth al-
location, it creates another potentially serious problem, as illustrated
by the next example.
Example 2: Figure 5 shows symbolic execution traces on a TDMA
based bus for two different request patterns. The system bus has
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Figure 5: Large latencies under a TDMA based architecture

three masters that contend for access. Slots in the timing wheel are
reserved in the manner shown in the first waveform of Figure 5, with
6 contiguous slots defining the size of a burst. The second and the
fourth traces show two different patterns of communication requests
generated by the components, each request marked with the asso-
ciated component. The third and fifth waveforms show the actual
assignment of masters to bus slots for the given reservations and re-
quest traces. From the example, we make the following observations.
(1) In request traceTrace1, the requests from each component arrive
periodically, and very well time-aligned with the slots reserved for it
in the timing wheel. Consequently the time spent by a component in
waiting for access to the bus is minimal, in this case only 1 slot.(2)
Under requestTrace2, we notice that the occurrence of communica-
tion requests and the reserved slots are not well synchronized. Even
though the request pattern is periodic (in fact, identical to request
Trace1except for a phase shift), the wait times have increased to 13
slots per communication transaction.

It is possible to optimize the TDMA architecture for request
Trace2by modifying the reservations such that they are time-aligned
to the request pattern ofTrace2. However, this new assignment will
provide poor performance if the request patterns exhibit any dynamic
variation. For instance, if they start following the pattern of request
Trace1, they will again suffer 13 wait slots (average) per transaction.

We conducted several experiments using the TDMA based archi-
tecture for the example system in Figure 3. We considered various
types of communication traffic, and measured the latencies of each
communication transaction over a long simulation trace. We ob-
tained several cases where high priority transactions suffered large
latencies. As an example, under one class of communication traffic,
the highest priority component had an average latency of 18.55 cy-
cles per word, which was more than twice as large as the per word
latency of the component with next lower priority (details of these
experiments are described in Section 5).
From the above example we conclude that the latency of a communi-
cation transaction in a TDMA based architecture is very sensitive to
the time-alignment of communication requests and the reservations
of slots in the timing wheel. Next, we consider the proposed LOT-
TERYBUScommunication architecture, and demonstrate its ability to
address the drawbacks mentioned in the previous two examples.
Example 3: As in Example 1, we consider again a system of four
components accessing a single shared bus. We repeated the experi-
ments described in Example 1, using the LOTTERYBUSarchitecture
instead of the static priority architecture. Here too, the relative im-
portance of the communications generated by a component is used
to (statically) assign it “lottery tickets”, which in turn determines its
communication latencies and allocated bandwidth fraction. The lot-
tery tickets were assigned in the ratio 1 : 2 : 3 : 4. Figure 6(a) depicts
the bandwidth distribution obtained by each component for 24 com-
binations of lottery tickets. From the figure, we observe that the frac-
tion of bandwidth obtained by a component is directly proportional
to its allocated tickets. For example, under the first 6 priority com-
binations, componentC1 has 1 lottery ticket and receives, on the av-
erage, 11% of the total bus bandwidth. Between combinations 2134
and 2431, it has 2 lottery tickets, and therefore receives, 20.8% of
the total bus bandwidth. The actual allocation of bandwidth closely
matches the ratio of lottery tickets, demonstrating the ability of the
LOTTERYBUSarchitecture to provide fine-grained control over band-
width allocation to SoC components.

In the next example, we illustrate the ability of the LOTTERYBUS
architecture to improve communication latency, and provide low la-
tency communications to high priority burst data transfers.

Example 4: The experiments described in Example 2 were repeated
using the LOTTERYBUSarchitecture for the example system of Fig-
ure 3. The lottery tickets were assigned in the same ratio as the time-
slots were in the TDMA-based architecture (i.e., componentC4 re-
ceives the highest number of lottery tickets, and so on). Figure 6(b)
compares the average communication latencies under the two com-
munication architectures, for an illustrative class of communication
traffic. The x-axis denotes different SoC components, while the y-
axis denotes the average number of bus cycles spent in transferring
a bus word including both waiting time and data transfer time. We
observe that the latency of the highest priority component is sub-
stantially lower under the LOTTERYBUSarchitecture (2.7 cycles per
word) than under the TDMA based architecture (18.55 cycles per
word), a 7X improvement.

Having established the motivation for our work, we next present the
details of the LOTTERYBUScommunication architecture.

4 The LOTTERYBUSCommunication Architecture

In this section, we first present an overview of the LOTTERYBUS
architecture. Next, we introduce its principle of operation, and then
consider two alternative embodiments, and present hardware imple-
mentations of each.

4.1 Overview

The LOTTERYBUSarchitecture consists of a randomized arbitra-
tion algorithm implemented in a centralized “lottery manager” for
each shared channel (bus) in the system-on-chip. The proposed ar-
chitecture does not presume any fixed topology of communication
channels. Hence, the SoC components may be interconnected by an
arbitrary network of shared channels or by a flat system-wide bus.

tickets1

tickets2

tickets3

tickets4

SoC
Comp1

Bus I/F
SoC

Comp2

Bus I/F
SoC

Comp3

Bus I/F
SoC

Comp4

Bus I/F

Lottery
Manager

Gnt1
Shared
system

bus
Gnt2 Gnt3 Gnt4

Figure 7: The LOTTERYBUScommunication architecture
The lottery manager accumulates requests for ownership of the

bus from one or more masters, each of which is (statically or dynam-
ically) assigned a number of “lottery tickets”, as shown in Figure 7.
The manager probabilistically chooses one of the contending mas-
ters to be the winner of the lottery, and grants access to the winner
for one or more bus cycles. We allow multiple word requests, in or-
der to avoid incurring control overhead for each word. However, to
prevent a master from monopolizing the bus (in case it has a large
amount of data to send), a maximum transfer size limits the num-
ber of bus cycles for which the granted master can utilize the bus
(similar to the static priority based architecture). Also, the architec-
ture pipelines lottery manager operations with actual data transfers,
to minimize idle bus cycles.

4.2 Principle of Operation

Let the set of bus masters beC1;C2; :::;Cn. Let the number of
tickets held by each master bet1;t2; :::;tn. At any bus cycle, let the
set of pending requests be represented by a set of boolean variables
ri ;(i = 1;2; :::n), whereri = 1 if componentCi has a pending request,
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andri = 0 otherwise. The master to be granted is chosen in a random-
ized way, with the probability of granting componentCi given by:

P(Ci) =
ri :ti

∑n
j=1 r j :t j

To implement this probabilistic arbitration mechanism, we use the
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notion of a lottery [16]. To make an arbitration decision, the lottery
manager examines the total number of tickets possessed by the con-
tending components, given by∑n

j=1 r j :t j . It then generates a random

number (or picks a winning “ticket”) from the range[0;∑n
j=1 r j :t j)

1

to determine which component to grant the bus to. If the number falls
in the range[0; r1:t1), the bus is granted to componentC1, if it falls
in the range[r1:t1; r1:t1+ r2:t2), it is granted to componentC2, and
so on. In general, if it lies in the range[∑i

k=1 rk:tk;∑i+1
k=1 rk:tk), it is

granted to componentCi+1. For example, in Figure 8, components
C1,C2,C3 andC4 are assigned 1, 2, 3 and 4 tickets respectively. How-
ever, at the instant shown, onlyC1, C3 andC4 have pending requests.
Hence the number of current tickets∑n

j=1 r j :t j = 1+3+4= 8. The
random number, generated uniformly in the range[0;8), is 5, which
lies betweenr1:t1+r2:t2+r3:t3 = 4, andr1:t1+r2:t2+r3:t3+r3:t4=
8. Therefore, the bus is granted to componentC4.

One of the main concerns while designing a communication ar-
chitecture is starvation,i.e., the problem of a low-priority component
not being able to obtain access to the bus for extended periods of
time. For the LOTTERYBUS architecture, the probability,p, that a
component witht tickets is able to access the bus withinn lottery
drawings is given by the expression 1� (1� t=T)n. The expression
indicates that the probability of obtaining access to the bus converges
rapidly to one, thereby ensuring that no component is starved.

Within the overall strategy outlined above, we propose two pos-
sible architectures. In the first, the number of tickets assigned to
a component is statically determined. In the second, the number of
tickets a component possesses varies dynamically, and is periodically
communicated by the component to the lottery manager.
4.3 Hardware Implementation: Statically Assigned Tickets

A hardware implementation of the lottery manager with statically
assigned tickets is presented in Figure 9. We next describe the various

1The set[a;b) includes all the integers betweena andb, inclusive ofa but notb.
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steps executed by the lottery manager.
Computation of ticket ranges: The range [0,∑n

j=1 r j :t j ) is the num-
ber of tickets held by a set of contending masters. This range varies
dynamically, depending on the subset of masters having simulta-
neously pending requests. However, in this architecture, since the
number of tickets owned by a component is fixed, it is possible to
precompute all potential ranges to avoid the extra cost of calculat-
ing the ranges at run time. For four masters, a 4 bit request map is
used to indicate which masters have pending requests. For example,
r1r2r3r4 = 1011 impliesC1, C3 andC4 have pending requests. For a
given request map, the range of tickets owned by each component is
determined statically, and stored in a look up table (Figure 9).
Efficient random number generation: The LOTTERYBUS archi-
tecture requires the generation of a random number, uniformly dis-
tributed in the range[0;T), whereT is the total number of tickets.
If T is a power of two, random numbers can be efficiently generated
using a linear feedback shift register. To take advantage of this, the
ticket holdings of individual masters are modified such that their sum
is a power of two. In doing this, care must be taken to ensure that the
ratios of tickets held by the components are not significantly altered.
For example, if the ticket holdings of three components are in the
ratio 1:2:4 (T=7), they would be scaled to 5:9:18 (T=32).
Comparison for grant generation: The random number is com-
pared in parallel against all four partial sums, as shown in Figure 9.
Each comparator outputs a ‘1’ if the random number is less than the
partial sum at the other input. Since for the same random number,
multiple comparators may output a ‘1’, it is necessary to use a stan-
dard priority selector circuit to ensure that at the end of a lottery,
exactly one grant line is asserted. For example, for the request map
1011, assuming no scaling, if the generated random number is 5, only
C4’s associated comparator will output a ‘1’. However, if the gener-
ated random number is ‘1’, then all the comparators will output a ‘1’,
but the winner isC1.

4.4 Hardware Implementation: Dynamically Assigned Tickets

We next present a hardware implementation for a dynamic LOT-
TERYBUS architecture. Here the steps in executing a lottery are the
same as those mentioned above, but the problem is considerably
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harder, since the assignment of lottery tickets to components is un-
known at design time.

In this architecture, the inputs to the lottery manager are a set of
request lines (r1r2r3r4) and the number of tickets currently possessed
by each corresponding master. Therefore, under this architecture, not
only can the range of current tickets vary dynamically, it can take on
any arbitrary value (unlike the static case, where it was confined to
remain among a predetermined set of values). Consequently, at each
lottery, for each componentCi , the partial sum∑i

j=1 r j :t j needs to be
calculated. ForC4, this yields the total range, or the sum of the num-
ber of tickets held by all pending requests. This is implemented using
a bitwise AND operation and a tree of adders, as shown in Figure 10.
The final result,T = r1:t1+ r2:t2+ r3:t3+ r4:t4 defines the range in
which the random number must lie. The random number is generated
in the range[0;T) using modulo arithmetic hardware. The rest of the
architecture consists of comparison and grant generation hardware,
and follows directly from the static lottery manager design.

5 Experimental Results

In this section, we present results of experiments that we car-
ried out to evaluate the performance of the LOTTERYBUS archi-
tecture. We performed experiments using the POLIS [18] and
PTOLEMY [17] system design environment. All system compo-
nents were specified in Esterel and C, from which PTOLEMY simu-
lation models were generated using POLIS. PTOLEMY was used for
schematic capture and HW/SW co-simulation.

5.1 Performance of theLOTTERYBUS Architecture Across the
Communication Traffic Space

We conducted several experiments to examine the performance
of the LOTTERYBUSarchitecture under widely varying characteris-
tics of on-chip communication traffic. To perform these experiments,
we made use of the system level test-bed for performance evaluation
that is shown in Figure 11. The test-bed consists of 8 components ex-
changing variable quantities of data and control messages during the
course of their execution. ComponentsM1 throughM4 are masters,
each of which is connected to a parameterized traffic generator, while
componentsS1 throughS4 are slaves. The parameters of each traffic
generator can be varied to control the characteristics of the commu-
nication traffic generated by the SoC component it is connected to.
Further details of the test-bed are provided in [19].

Figure 12(a) shows the results of experiments conducted to ex-
amine the ability of the LOTTERYBUSarchitecture to provide propor-
tional bandwidth allocation under different classes of communication
traffic. The x-axis depicts the nine different classes of communica-
tion traffic that were considered, the y-axis depicts the fraction of the
total bus bandwidth allocated to various components, as well as the
fraction of un-utilized bandwidth.

From Figure 12(a) we observe that for traffic classes where the
bus utilization is high, the bandwidth allocated closely follows the
assignment of lottery tickets. Tickets were assigned in the ratio
1 : 2 : 3 : 4, and for classes T4,T5,T7,T8,T9 the bandwidth allocated
is (on the average) in the ratio 1:15 : 2:09 : 2:96 : 3:83. However, in
cases where the bus is partly un-utilized, the allocation does not fol-
low the assignment of tickets (T3,T6), but is roughly the same for dif-

Comp M1 Comp M2 Comp M3

I/F I/F I/F I/F

Comp M4

Comp S1 Comp S2 Comp S3 Comp S4

I/F I/F I/F I/F

Traffic
generators

Communication
Architecture

Slave
InterfacesSlave

components

Master
components

Master
Interfaces

Figure 11: Test-bed for communication architecture performance
evaluation [19]

ferent components. This is because the sparse nature of communica-
tions in these classes results in immediate grants being issued to most
of the communication requests. We conclude that the LOTTERYBUS
architecture is capable of providing efficient and fine grained con-
trol over allocation of the bus bandwidth over a variety of on-chip
communication traffic classes, at varying levels of bus utilization.

Figures 12(b) and (c) compare the latency of the TDMA and
LOTTERYBUS architecture across 6 classes of traffic. The x-axis
in each figure denotes different classes of on-chip communication
traffic, while the y-axis denotes time-slots (Figure 12(b)) and lottery
tickets (Figure 12(c)) assigned to different components. The z-axis
measures the average per word communication latency. For example,
in Figure 12(b), a component assigned 4 time-slots, has an average
latency of 18.55 bus cycles per word under traffic class T6. Under
the LOTTERYBUSarchitecture, the same component with the same
traffic class has an average latency of 2:7 bus cycles per word2.

Clearly, the LOTTERYBUSarchitecture exhibits better latency be-
havior than the TDMA architecture for a wide range of traffic condi-
tions. In addition, the following points are worth noting. The com-
munication latency for high-priority components varies significantly
for the TDMA architecture (1.65 to 20.5 cycles/word). This is be-
cause under the TDMA scheme, the latency of a communication is
highly sensitive to the position of the timing wheel when the request
arrived. Moreover, under the TDMA-based architecture, components
with higher priorities could experience higher latencies than those
with lower priorities (e.g.,T5,T6). The LOTTERYBUSarchitecture
does not exhibit this phenomenon, ensuring low latencies for high
priority communications.

5.2 Hardware Complexity of theLOTTERYBUSArchitecture

In the LOTTERYBUS architecture, the physical interconnect for
the address, data, and control lines on the bus remain unchanged.
The improved communication protocol is implemented by modify-
ing the component’s bus interfaces, and the bus controller/arbiter.
In order to obtain an idea of issues involved in obtaining a practi-
cal realization, we implemented the LOTTERYBUS architecture for
the four-component system described in Section 3, and mapped it
to NEC’s 0.35µ cell based array technology [20]. The look-up ta-
ble was implemented using a register file, and the comparators and
the random number generator were pipelined to maximize perfor-
mance. The area of the LOTTERYBUS controller implementation
was found to be 10;518 cell grids, and the arbitration time was
found to be 3:2ns (i.e., arbitration can be performed in 1 cycle for
bus speeds upto 312:5MHz), making our implementation suitable for
high-performance applications.

5.3 Example System: Output-queued ATM switch

We used the LOTTERYBUSarchitecture in the design of the cell
forwarding unit of an output-queuedATMswitch (Figure 13). The
system consists of 4 output ports, each with a dedicated local memory
that stores queued cell addresses. Arriving cell payloads are written
to a dual-ported shared memory, while the starting address of each

2T6’s data has been scaled down by 10X to fit the graph.
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Figure 12: Performance under different communication traffic classes (a) Bandwidth allocation of LOTTERYBUS, (b) Communication latencies
under TDMA, and (c) Communication latencies under LOTTERYBUS

cell is written to an appropriate output queue. Each port polls its
queue to detect presence of a cell. If it is not empty, the port issues a
dequeue signal to its local memory, and requests access to the shared
system bus. Once it acquires the bus, it extracts the relevant cell from
the shared memory, and forwards it onto the output link.
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Figure 13: Cell forwarding in a 4 port ATM switch
The following quality-of-service requirements were imposed on

the traffic flowing through the switch: (i) traffic through port 4 needs
to pass through the switch with minimum latency, and (ii) ports 1, 2,
and 3 must share the bandwidth in the ratio 1:1:4. We implemented
three versions of the system, using (i) the static priority architecture,
(ii) the TDMA architecture, and (iii) the LOTTERYBUSarchitecture.
Lottery tickets, time-slots, and priorities were assigned uniformly in
the ratio 1:1:4:6, for ports 1,2,3,4, respectively.

Table 1: Performance of the ATM switch
Comm.

Arch.

Port 4
Latency
(cycles/
word)

Port 4
BW (%)

Port 3
BW (%)

Port 2
BW (%)

Port 1
BW (%)

Static
priority 1.39 9.69 45.72 44.58 0.01

TDMA 9.84 10.09 47.29 21.31 21.30

Lottery 1.4 9.67 59.03 17.00 14.30

The results of the experiments are shown in Table 1. The columns
denote performance metrics for each output port (bandwidth fraction
and latency for Port 4, and only bandwidth fraction for Ports 1,2,3).
The rows denote the performance under each alternative communi-
cation architecture. For example, Port 3 receives 59% of the total bus
bandwidth under the LOTTERYBUSarchitecture. From the table we
make the following observations. (1) Latency of high priority traffic
at Port 4 is minimum under the static priority based architecture (1.39
cycles per word), while it is 7 times larger under the two-level TDMA
based architecture (9.84 cycles per word). Under the LOTTERYBUS
architecture, the average latency (1.4 cycles per word), is comparable
to that under the static priority based architecture. (2) The bandwidth
apportioned to the various ports under the static priority based archi-
tecture does not respect the reservations. Port 1 receives only 0.01%
of the total bandwidth, being of the lowest priority. The same is true

for the TDMA architecture. In row 2 we observe that Port 3 receives
only 47% of the total bandwidth, while it had originally reserved
60%. This occurs because when Port 4 has no cells to send, its slots
are made available to the other ports in a round robin manner. How-
ever, we observe from row 3, that the bandwidth assignments in the
case of the LOTTERYBUSarchitecture closely match the reservations.

The results demonstrate that the LOTTERYBUSarchitecture offers
an attractive alternative to conventional communication architectures
by (a) providing low latencies for bursty traffic with real time latency
constraints, and (b) at the same time, providing effective bandwidth
guarantees for traffic generated by each system component.
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