
Task Scheduling with RT Constraints

M. Di Natale
Dip. Ing. dell’Informazione

Università degli Studi di Pisa
Pisa, Italy

marco@sssup.it

A. Sangiovanni-Vincentelli
Department of EECS

Univ. of California at Berkeley
Berkeley, CA

alberto@eecs.berkeley.edu

F. Balarin
Cadence Berkeley Labs.

Addisson St. Berkeley, CA
felice@cadence.com

ABSTRACT
This paper addresses the problem of schedu ling reactive real-
time tran saction s(task groups) implementing a network of
extend ed Finite State Machines comm unicating asynchronous-
ly. Task instances are activated in response to internal and/or
external ev ents.The objective is avoiding the loss of events
exchanged by the tasks. This sc heduling problem has many
similarities with the conventional formulation of real-tim e
problems and yet it di�ers enough to justify a rethinking of
the assu mptions an d techniques used to solve the problem.
Our iterative solution targets �xed p riority systems and of-
fers a priority assignment scheme together with a suÆciently
tight worst-case analysis.

1. INTRODUCTION
Th ispaper add ressesa schedulin g problem of great impor-
tance in real-time embedded systems, the scheduling of reac-
tive (or event-based) systems where all tasks are executed on
a single processor. T raditional real-time research has devel-
oped models for schedulability analysis togeth erwit h tools
and methodologies for the formal speci�cation of real-tim e
constrain ts,the design and the production of code. While
many di�erent de�nitions have been proposed for the sche-
duling problem, only a few ha ve been ad opted to analyze
the code produ cedby comm ercialCASE tools such as the
Objectime toolset ([7]). In other cases, such as the one p-
resen ted here, the problem reveals a number of issues that
are still new to the real-time research community and do not
perfectly match an y of the existing scheduling algorithms.

The importance of this problem arises from the study of em-
bedded systems and from the availability of a number of tools
for the automatic p rodu ction of embedded code starting from
a async hronously communicating �nite-state machine (Co-
design Finite State Machines) description . In this model,
tasks represent �n ite-state objects that are executed asyn-
chronously in response to external or in ternal events and com-
m unicate through the produ ction and consumption of events.
Furthermore, they do not ha ve explicit deadlines (at least
not in the traditional form). Rate constraints (a minimum
inter-arrival time) app ly to external events. The sched ulin g
problem consists of making sure that no critical event (inter-
nal or external) is ever d ropped by the system, that is, every
critical ev ent is always consumed before another event of the
same kind is produced again. The optimal solution to this
scheduling problem can be found in exponential time [4]. In
this paper, we are interested in some worst-case (pessimistic)
analysis that can be run quickly and still overcome some of
the p roblems found in earlier solutions.

2. THE CO-DESIGN FINITE STATE MACHINE
(CFSM) MODEL

We assume the system is modeled as a netw ork of comm u-
nicating CFSMs (Codesign Finite State Machines). Each
CFSM is an extended FSM, supporting data handling and
asynchronous comm unication.In particular, a CFSM has a
�nite state machine part, a data computation part, a locally
synchronous behavior and a globally asynchronous behavior.

CFSM comm unicate through signals. Each signal can be a
control signal, a data sign al or both and can be associated
with a Boolean control variable or an enumerated or integer
sub-range v ariable.The event represents the presence of the
signal and may be produced by a sender CFSM. Setting the
event bu�er to 1 sends an event. It m ay be detected and con-
sumed by a receiv ing CFSM. Setting the bu�er to 0 consumes
the event.

A set of values for the inputs of a CFSM is termed an input
assignment. The input assignment is consum ed as a result
of the execution of the CFSM. During operation, the sched-
uler schedules CFSMs whenever they have input ev ents and
according to the appropriate priorities. During its execution ,
a CFSM reads its inputs, performs a computation , possibly
changes state and writes its outputs. For a formal de�nition
of CFSM and their behavior please refer to [4].

3. THE PROBLEM
In a terminology more familiar to real-time schedulin g re-
searchers, eac h CFSM corresponds to a task and the network
of CFSMs corresponds to a set of transactions, a transaction
being a set of related tasks. Each task in a tran saction can
be activated by external or in ternal events. T ask sprodu ce
events at the completion of their execution and consume all
the incoming events that are active at the time they start run-
ning. There exists a minimum inter-arrival time between tw o
occurrences of the same external ev ent.Each internal event
is sent on a single position bu�er. If an event is overwritten
by a new one, it is said to be \dropped".

Formally, the system is a set of transactions TR1; TR2; : : : TRm.
Each transaction TRk is a graph TRk = (Tk; Ek) where
Tk = f�ikg is the set of nodes representing the tasks. Each
task is identi�ed by its index, �i being the task of index i.
When necessary, the task index will be follow ed by the index
of transaction it belongs to (�ik is the i � th task belonging
to transaction TRk).
Some tasks, called external tasks, represen t the en vironment
and need not be scheduled. These tasks belong to a sub-
set U 2 T of all tasks. Ek = fek(i;j)g is the set of events.
Events can be external or internal: external ev ents are pro-
duced by external tasks. Event e(i;j) is prod uced by task �i
and activates task �j . Once more, the transaction index can
appear together with the event indices, ek(i;j) meaning the

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

event belongs to transaction TRk. Each internal task has
an associated worst-case computation time ci. By de�nition
ci = 0 for all external tasks. External events have associated
a minimum inter-arrival time Pi. All events are critical, i.e.,
they should never be dropped.

Although this is not a requirement, we assume a �xed-priority-
scheduling scheme with preemption. Therefore each task and
event will have an associated priority. By pi we mean the
priority of task �i and by pij the priority of event eij . An
event is made safe by a priority assignment if the priority
assignment itself is suÆcient to make sure the event will n-
ever be dropped. An event is guaranteed if, given a priority
assignment and considering the timing attributes of tasks,
the timing analysis can guarantee that the event could never
possibly be dropped.

4. STATE OF THE ART
While conventional real-time research focuses on problems
where the scheduling algorithm is obtained by reasoning on
the timing constraints and the bu�er requirements are only
considered (not very often) at a later stage, the research car-
ried out in [2], where this problem was discussed �rst, had a
di�erent perspective: priorities were assigned trying to pre-
vent the loss of internal events. Only in a second time the
possible loss of external events (the ones carrying the timing
constraints) was considered. Priorities were assigned on the
basis of the task relationships and not on timing constraints.

There is an advantage and a possible disadvantage to this
technique. The advantage is that internal events need not be
guaranteed, therefore only external events need be analyzed.
The disadvantage is the execution of multiple instances of the
same task in response to a single external event. This addi-
tional load can prove extremely undesirable when multiple
transactions are active in the system.

P = 201

2P = 10

1a

c 2

e 3

d 4

b 5

(2) (2) (2)

(1) (1)

c 3 d 2

a 4 b 3
P = 201

2P = 10

(2)

(1) (1)

(2) (2)

1e

ev1 ev2

1 2 3 4 5 6 7 9 10 141312 16

a b c d e

a c d e a b d e c d e

ev1ev2

1 2 3 4 5 6 9 1312

c d e a b d e c d e

c a c

11 158

event dropped

Figure 1: Completion times with di�erent priority
assignments

The e�ect of multiple activations is very clear if we consider
the example taken from [2] and shown in �gure 1 which is a
simpli�ed version of a shock absorber controller. Tasks are
shown as circles and identi�ed by letters. The numbers inside
the circles are the priorities. The numbers between paren-
thesis are the worst case execution times. If priorities are
assigned as proposed in [2] (top graph, the priorities prevent
the loss of internal events), the scheduling sequence is 15 time
units long, including three instances of task d. If priorities are
assigned as shown in the lower half (tasks producing events
always have priorities higher than tasks consuming them),
the schedule length reduces to only 8 time units and each
task is executed just once. On the other hand, if the arrival
pattern were the one on the lower right half, the second prior-

ity assignment would not be feasible (event e(c;d) is dropped).
A more recent work ([3]) from the same author removes most
limitations of the previous one. The author proposes a new
priority assignment scheme that avoids most of the undesir-
able (multiple) task executions. The algorithm produces an
optimal solution, although only in a selected subspace of all
possible priority assignments. Of course there is no guaran-
tee that a better solution does not exist outside the selected
subspace. On the other hand, this limitation could be an ac-
ceptable compromise in order to obtain a simpler (although
pessimistic) procedure for predicting the schedulability of all
events.

Solving the scheduling problem requires the assignment of
priorities to tasks and/or events and a fast and not too pes-
simistic analysis procedure. The priority assignment must
satisfy two contrasting requirement.

� Priorities should minimize the e�ect of multiple execu-
tions of the same task for one single event (to let tasks
consume at once all the events that could possibly trig-
ger their execution.)

� The priority assignment should minimize the possible
loss of internal events making safe all events that could
not be guaranteed otherwise. [2]

5. PRIORITY ASSIGNMENT AND ANALYSIS
We need the following additional de�nitions before presenting
a priority assignment rule.

Definition 1. The level of a path in the transaction graph
is the lowest priority of all tasks encountered in the path.

Definition 2. n paths are j � level disjoint if their level
is lower than or equal to j and each contains at least a task
with a priority lower than or equal to j which is not shared
with the others.

Then, we de�ne the set of elementary transactions. For each
external task �i belonging to transaction TRk we build a new
transaction TRki containing the graph of tasks and events
originating from �i. In practice, the new transaction can be
built adding all tasks and events encountered in a search of
the graph starting from �i 2 U . At this point we have a set of
elementary transactions activated by a single event, each with
its speci�ed rate. Tasks and events can appear in more than
one elementary transaction. From now on, by transaction we
mean a regular transaction, having possibly more than one
external task. When elementary transactions will be used, it
will be explicitly stated.

We �rst give a very simple priority assignment rule that min-
imizes the multiple activation of internal tasks. This rule is
borrowed from a number of papers ([5] probably the �rst) al-
though here it serves a completely di�erent purpose. Assign
the lowest priority level (1) to all tasks that do not generate
events. For all other tasks �i set their priority pi to

pi = 1 +maxfpj je(i;j) 2 Eg:

If priorities are assigned according to this rule (we call it
ow
descendent) each task is activated only once for each external
event. The proof (trivial) will be skipped.

Theorem 1. An event e(i;j) is safe if (1) all paths contain-
ing it and going from an external event to task �j have level
lower than pj and (2) there exists at most one path contain-
ing e(i;j) from any internal task to �j with a level higher than
or equal to pj .

Please note, as pointed out in [2] for an event e(i;j) to be safe,
it suÆces that pj > pi, (in contrast with the previous priority
assignment rule).

Theorem 2. If event e(i;j) belongs to more than one ele-
mentary transaction, condition (1) of Theorem 1 is not only
suÆcient but necessary for the event to be guaranteed.

Definition 3. (from [3]) A task �i is a merge point if it
has more than one external predecessor, while some of its
immediate predecessors has exactly one.

We can generalize this de�nition as follows:
Definition 4. A task �i is a merge point for task �j if there

is more than one path from �j to �i while there is exactly one
from some of �i's immediate predecessors to �j .

Theorem 3. In case task �i is a merge point for some task
�l, necessary condition for event e(k;j) (where k = i or task
�k can be reached from �i) to be guaranteed is either all paths
from �l to �i have a priority higher than pi (not considering
�i itself) or pj is greater than the priority level of all paths
from �l to �k having a priority lower than or equal to pi.

(k,l)
e

ττ i j

e
(n,m)

e (i,j)

p -level pathj

Figure 2: Necessary and suÆcient condition for guar-
anteeing events with multiple external predecessors

The subspace � of all possible priority assignments searched
in [3] for an optimal solution is de�ned as follows (Proposition
1):

for every (�i; �j) 2 T � T :

- pi > pj if e(i;j) 2 E and �i is not a merge point,
- pi < pj if �i is a merge point, i 6= j;
and �i is a predecessor of �j (�i 2 pred(�j).)

It is possible to show that any priority assignment P 2 �
satis�es the conditions of Theorem 2 and 3.

Although the set of priority assignments � satis�es all the
necessary requirements, it could be too restrictive in some
cases. For example, �gure 3 shows a very special case where
by assigning priorities according to proposition 1 (left side)
the merge points (tasks �5 to �10) have a priority lower than
task �11. As a consequence (see the lower side of the �gure
and the following Theorem 4) tasks �11 to �13 are executed
six times for each activation of the external tasks. On the
contrary, if priorities are assigned as shown in the right side
tasks �11 to �13 are executed only once for each activation of
an external node.

τ1

τ5 τ7τ6
τ8 τ9 τ10

τ1

τ5 τ7τ6
τ8 τ9 τ10

τ3 τ4

τ12

τ11

τ13

τ1

τ3 τ10 τ9τ11 τ12 τ13

10 9 8

τ11 τ12 τ13

10 9 8

τ8 τ11 τ12 τ13

10 9 86 5 4 3

......

τ1

τ3

τ2

τ4
τ3

τ11

τ12

τ13

9

external nodes

merge points

10

0 1

2

7 86543

τ2

10

9 8

0 1 2 3 4 5

76

external nodes

merge points

0 8 47 6 5 3

τ τ7τ8 τ6 τ5
τ10 9

2 9 10

τ11 τ12 τ13

Figure 3: An optimal solution found outside the pri-
ority assignments of proposition 1

Theorem 4. The number of times task �j can be possibly
activated by the execution of (internal or external) task �i is
given by � + nd where � is 1 if there exists a path of level
higher than pj from �i to �j, 0 otherwise and nd is given by
nd = �i;j1 + �i;j2 + : : : + �i;jn where �j1; �j2; : : : �jn are the
tasks with a priority lower than or equal to pj encountered
�rst when traversing backwards the paths between �i and �j
and �i;jk is the number of times task �jk is executed because
of the activation of task �i.

It remains to �nd an algorithm to decide if an event (internal
or external) can be guaranteed on the basis of tasks' priorities
and the rates of external events. Assume we have a priority
assignment that does not prevent events from being guaran-
teed (See Theorems 2 and 3). Some of the internal events
will be safe as a result of the priority assignment. In order
to guarantee all the other (internal and external) events we
use a standard (pessimistic) timing analysis (similar to the
one proposed in e.g., [2] and [8]). We de�ne Æ(i) as the addi-
tional load caused by the execution of task �i and Æ(i; k) the
fraction of Æ(i) when we limit the execution to those tasks
having a priority greater than or equal to k. The �rst neces-
sary condition for guaranteeing internal and external events
is the following:

Lemma 1. Any event e(i;j) that is not safe is dropped if task
�j starts executing more than Pk time units after the arrival
of the external task �k that triggered the transaction.

In fact, being e(i;j) not safe, it belongs to a path with a level
higher than pj originating from some external task �k. Pk
time units after the arrival of the event that activated the
transaction, another external event arrives and triggers the
execution of all tasks in the path, including �i.

Let us focus on the elementary transaction TRkq triggered
by the external task �kq . We need to analyze all the events
that can be guaranteed and are not safe. By Theorems 3
and 4, these events cannot belong to more than one elemen-
tary transaction. Objective of the analysis is calculating the
worst-case time interval � occurring between the arrival of
the external event triggering the transaction and the acti-
vation of task �kj . If the external event arrives in t=0, this
interval corresponds to a pj -level busy period, starting in t=0.
The pj-level busy period contains instances of tasks belong-
ing to transaction TRk as well as tasks belonging to other
transactions.

The contribution of (elementary) transaction TRk can be
computed as follows. At time t = 0 some internal task hav-
ing a priority lower than pj can terminate its execution and
enable tasks at priority pj or higher. In the worst case such
event can cause the execution of the following load

maxfÆ(k; pj)jk 2 TRk; pk < pjg:

In the time interval � the external event triggering transac-
tion Tk arrives and causes an additional workload at priority
pj . Since we are evaluating the pj-level busy period delaying
the execution of �j we should not consider the contribution
of �j and those tasks activated solely by it.

�
�

Pk

�
Æ

0

(q; j)j�q 2 Uk:

External (elementary) transactions contribute to the busy
period with an additional load

maxfÆ(k; pj)jk 2 TRl; l 6= k; pk < pjg+�
�

Pr

�
Æ(r; pj)j�r 2 U ; �r 2 TRl:

where Æ(r; j) is the load at priority j or higher generated by
the arrival of the external event �r in transaction TRl. The
pj � level load generated by all transaction can be computed
adding up all the contributions from external events. Since
only one task having a priority lower than pj can be active
at t = 0, the �nal (recursive) formula is

� = maxfÆ(k; j)jpk < jg+P
TRl

l
�

Pr;d

m
Æ(r; pj) j �r 2 U ; �r 2 TRl: (1)

If � < Pk we can be sure that the �rst event instance in
a pj level busy period starting at t = 0 will not be dropped.
Unfortunately the test gives no guarantees on the following
instances. A suÆcient test that allows to guarantee all
event instances can be easily obtained from the previous one
by making sure that any pj level busy period starting at t = 0
(including task �j and those activated by it) terminates before
the next instance of the external event that triggers e(i;j).

In order to perform timing analysis, we need to determine
the amount of computation at any priority level (or high-
er) generated by the execution of any task or external event.
Such analysis resembles the one in [2], although a few di�er-
ences are worth pointing out. The algorithm is derived from
Theorem 4, which states how many times a task is activated
because of the completion of another task.

We use a matrix A to keep track of the number of times each
task activates the others. Each term of the matrix A is a
binary term Ai;j = (a; d) where a is the number of times (0
or 1) task �j is executed as a result of all possible (j + 1) (or
higher) level paths from �i and d is the number of times �j
is executed as a result of all disjoint j (or lower) level paths
from �i.

We de�ne the following sum operator between two terms of
the matrix A:

if Ai;j = (a; b) and Ak;l = (c; d) then Ai;j +Ak;l = (e; f)
where

e =

�
1 if a = 1 or c = 1
0 elsewhere

f = b+ d

We also de�ne the following unary operator DP on the terms
of A:

if Ai;j = (a; b) then DP (Ai;j) = (0; a+ b):

The procedure to compute matrix A is the following. Start
with

A(i; j) =

�
(1; 0) if i = j;
A(i; j) = (0; 0) elsewhere:

Visit all tasks in topological order. When visiting task �i do
a backwards traversal of the graph stopping when a task with
a priority lower than or equal to pi is encountered.
When task �j is encountered during the traversal set A(i; j)
to

A(i; j) =

�
(1; 0) +A(i; j) if pj > pi;
8lA(i; l) = A(i; l) +DP (Aj;l) if pj � pi:

This procedure allows to compute not only the load inferred
by the execution of �i but also the load Æ(i; k) for any priority
level k. It suÆces to consider only those links that originate
or lead to a task having priority higher than or equal to k
when doing the backwards traversal of the graph. Note that
the j-th column of A shows the tasks activated by �j with their
multiplicity. If we multiply the i-th row of A by ci, the worst-
case computation time of �i, then the sum of all elements in
the j-th column of A shows the worst-case execution time of
all tasks activated in response to the execution of �j .

Figure 5 shows one possible matrix computed for the sam-
ple graph shown in [2] when priorities are assigned as shown
inside the circles. The elements are weighted by the compu-
tation times. From now on, the matrix A will be represented
with its rows weighted by the computation times. In assigning
priorities to tasks, our �rst objective will be to �nd a set of
tasks that, if their priority is lowered, will make safe all the
events that cannot be guaranteed because of Theorem 2 and
Theorem 3. Let Eng be this event set. Since there can be
many of these task sets we must use some metrics in order to
choose one of them. First, let us see how these task sets can
be found by working on our sample graph. If priorities are
set as in the bottom half of �gure 1, the internal events that
cannot be guaranteed are e(2;4) (because of Theorem 3) and
e(4;3) (because of Theorem 3 and Theorem 4). To guarantee
events e(2;4); e(4;3) it is necessary that the level of all paths
containing them and going from the external tasks �6 and �7

to the consumer tasks �4 and �3 is lower than, respectively,
p4 and p3 (Theorem 1).
This means we need to take an event on each of these paths
and change the priority of the task producing it to, respec-
tively, p4 � 1 or p3 � 1. In the general case, if we consider
a set of internal events that cannot be guaranteed and the
graph consisting of all the paths from the external tasks to
the tasks consuming them (with a level higher than or equal
to the priority of the consumer tasks), we need to �nd a cut
separating the external tasks from the others (4).

cut 2

external events

cut 1

non-guaranteed events

Figure 4: Paths from the external tasks to the inter-
nal events that are not guaranteed

The tasks generating the events on the cut are the ones that
need to be modi�ed. The schedulability of the events in Eng

(the tasks consuming the events) depends on these tasks. Now
we have all the tools for constructing two iterative methods
that try to assign priorities to task in order to guarantee all
internal and external events. The purpose of the algorithms
is to strike a balance between a policy where all priorities are
assigned according to the
ow-descendent rule (minimizing
the number of activations) and a policy where priorities are
assigned in order to make safe all internal events [2].

6. PRIORITY ASSIGNMENT WITH RESTRICT-
ED PRIORITY LEVELS

First, we propose an iterative algorithm that moves from a
priority assignment of the �rst kind towards a priority as-
signment of the second kind, making safe (by modifying pri-
orities) at each step those tasks that cannot be guaranteed
on the basis of their timing attributes. The algorithm begins
by assigning priorities according to the
ow-descendent rule,
then enters a cycle. At each iteration the following steps are
performed: considering the transactions one at a time, for
each transaction

a) �nd the events that cannot be guaranteed on the basis of
Theorem 3 and Theorem 4 or because of current task
priorities (analysing the worst case start time of the
consumer tasks). This set is empty in the �rst iteration.

b) �nd a set of tasks and change their priorities in order to
make safe all the events that could not be guaranteed in
the previous step. The set should be chosen in order to
ease the schedulability of external events (or reducing
the load generated by their arrival).

c) assign a new priority to all other tasks according to the

ow-descendent rule.

d) Repeat the analysis; exit if all events can be guaranteed
(success) or an external event cannot be guaranteed
(failure).

We know how to perform step a, c and d for each itera-
tion. Step b, which is crucial for the good functioning of the
algorithm, has been described in the previous section. Its
objective is to �nd a set of tasks generating the events on
a suitable cut. Since there are many possible cuts we need
some way to choose one of them.

One possibility is to perform the changes for every possible
cut and pick the one that results in the lowest margin left for
guaranteeing the external events. When it is impossible to
perform an exhaustive search (because of the large number of
possible cuts) an heuristic should be chosen. For example, it
could be possible to select the cut spanning the lowest number
of events (which is an instance of a bipartite graph matching
problem.) In our example, if we choose the cut (2; 4)(1; 5)
the priorities that are chaged are p2 = minfp3 � 1; p4 � 1g
and p1 = minfp3� 1; p4� 1g. If we consider these additional
constraints and we assign the other priorities according to
the
ow descendent rule, we get the priority assignment and
the activation matrix of �gure 5.

P = 201

2P = 10

P = 201

2P = 10

2 0

0 1

0 4

0 2

0 20 2

02

0 1

0 4

0 2

0 2

10

2 0 2 0

01

02

10

0 2

1 0

1 5 3

42

2

3

4

7

6

7 1 5 3

42

1

2

3

3

4

6

2 0

2

3

5

7

1

4

6

01

1

1

1 0

6 11

Figure 5: Evaluation of the cut

Since there is no task with a priority lower than 2, external
events e(7;1) and e(6;2) will have a waiting time of 19 and 15
time units respectively (by evaluating formula 1). If the cut
(2; 4)(5; 4)(5; 3) was chosen, the external event e(7;1) could
not be guaranteed (waiting time > 20.)

It is easy to show how the procedure outlined in the algorithm
is guaranteed to terminate after a �nite number of steps.
Although the algorithm can be implemented as described, it
performs quite well after a single iteration (see Section 9).
In this case, one of its advantages is the need for a limited
number of priority levels and, therefore, a simpler run-time
support mechanism. A second algorithm will prove to be
much better (optimal when all cuts are considered) in case a
wider range of priorities can be used.

7. PRIORITY ASSIGNMENT WITH WIDER PRI-
ORITY RANGE

The other algorithm we present in this paper is a straight-
forward extension of the one presented in [3]. The �rst step
consists in �nding the events Eng that cannot be guaranteed
(Theorems 2 and 3) and making them safe by �nding a suit-
able cut in the event graph and lowering the priority of the
tasks generating events on the cut.

If T c = f�c1 ; �
c

2 ; : : : ; �
c

ng is the set of tasks generating the
events on the cut, then each task �ci must have a priority lower
than the priority of those tasks f�ci1 ; �ci2 ; : : : ; �cin g consuming
the events in Eng generated because of its execution. We say
tasks f�ci1 ; � ci2 ; : : : ; � cin g depend on task �ci .

Given a cut, we are interested in all priority assignments that
satisfy the following proposition:

For every (�i; �j) 2 T � T :

- pi > pj if e(i;j) 2 E and task �j does not depend on �i
- pi < pj if �j depends on �i i 6= j; �i 2 pred(�j).

An adaptation of Audsley's algorithm can be used to choose

an assignment consisting of a (unique) priority level for all
tasks. This assignment is optimal with respect to the given
cut [1]. First, we build a graph G containing an arc from task
�i to task �j if �i must have a lower priority than �j . Then, we
assign priorities sequentially, starting from the lowest. The
algorithm works iteratively: on each step only those tasks
that have no incoming links are eligible for scheduling. We
select one of those tasks and tentatively assign it the lowest
available priority level. If all events received by the selected
task are found to be schedulable (by using the procedure
described in Section 7), the task is assigned its priority and
removed from G together with its outgoing arcs. If it is not
found schedulable another eligible task is tried. If all tasks
can be successfully assigned a priority the set is found to be
schedulable.

The algorithm is identical to the one in [3], except that it can
be tried on many di�erent cuts instead of just one, removing
some limitations. The most important problem with this
solution is probably the need for a (possibly) large number
of di�erent priority levels, since each task must be assigned
a unique priority.

8. EXPERIMENTAL RESULTS
We implemented the two algorithms shown in the paper and
we tried them on a number of task sets with the following pa-
rameters (All uniform distributions except for the rate that
is �xed.)

parameter values

min-max num. of tasks per transaction 8 to 20

min-max num. of external tasks per trans. 1 to 2

min-max num. of events per task 1 to 4

min-max num. of events per external task 1 to 2

rate of external events 400 units

minimum utilization of processor 0.1 to 1.0

The minimum utilization has been computed as the ratio of
the sum of the computation times of all tasks divided by the
period of activation of the external tasks. Since tasks can
be activated by more than one external task and more than
once in response to an external event (Theorem 4) the actual
utilization is mostly an underestimate of the actual one.

On our test computer (a 350MHz Pentium II class PC) the
number of tasks was practically limited to be less than 30 if
an exhaustive search on all possible cuts had to be performed.
Beyond that number a limitation on the number of cuts to
be evaluated is necessary. The outcome of the experiments
was the percentage of schedulable transactions and the av-
erage minimum laxity on the schedulable sets. For 12 total
tasks, 2 external tasks per transaction, and 1 to 2 events per
task (internal or external) the results (on 10000 sample sets)
are represented in �gure 6. Figure 6 shows a performance
comparison between the two algorithms. The behavior of the
two algorithms is almost identical. For 10 total tasks, 2 ex-
ternal tasks per transaction, 1 event per external task and
1 to 3 events per internal task the results obtained with the
two algorithms are represented in �gure 7.

9. CONCLUSIONS
In this paper, we presented an iterative solution to the sche-
duling problem in reactive real-time systems represented by
a network of asynchronously communicating FSMs. We de-
veloped a priority assignment scheme and a tight worst-case
analysis. All results are rigorously derived. Experimental
results are o�ered to exemplify the procedure and its quality.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’Unique priorities’
’Limited priorities’

Figure 6: Schedulable ratio vs. utilization. 12 tasks
per transaction, comparison of the two algorithms

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

’Unique priorities’
’Limited priorities’

Figure 7: Schedulable ratio vs. utilization. 10 tasks
per transaction, 1 to 3 links per task, 1 link per ex-
ternal task. Comparison of the two algorithms

10. REFERENCES
[1] N. Audsley et al. \Applying new Scheduling Theory to

Static Priority Pre-emptive Scheduling", Software
Engineering Journal, pp. 284-292, Sept. 1993.

[2] Balarin F. and Sangiovanni-Vincentelli A. \Schedule
Validation for Embedded Reactive Real-Time
Systems," DAC Conference, Anaheim (CA) 1997.

[3] Balarin F. \Priority Assignment for Embedded
Reactive Real-Time Systems," LCTES Workshop 1998,
June 17-19 Montreal 1998.

[4] Balarin F., H. Hsieh, A. Jurecska, L. Lavagno and
Sangiovanni-Vincentelli A. \Formal Veri�cation of
Embedded Systems based on SCFM networks,"
Proceedings of the 33rd ACM/IEEE DAC Conference,
June 1996.

[5] Blazewitcz J., \Scheduling Dependent Tasks with
Di�erent Arrival Times to Meet Deadlines" in Modeling
and Performace Evaluation of Computer Systems,
Amsterdam, 1976.

[6] Gerber R., Saksena M. and Hong H. \Guaranteeing
End-to-End Timing Constraints by Calibrating
Intermediate Processes", Proc. of the The IEEE
Real-Time Systems Symposium, Puerto Rico, Dec.
1994.

[7] Saksena M. et al. \Schedulability Analysis for
Automated Implementation of Real-Time
Object-Oriented Models" Proc. of the The IEEE
Real-Time Systems Symposium, Madrid, Dec. 1998.

[8] Tindell, K. \Adding Time-O�sets to Schedulability
Analysis", Technical Report YCS 221, Dept. of Comp.
Science, univ. of York, Jan 1994.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

