Data Path Synthesis for BIST with Low Area Overhead

XiaoweiLi and PaulY.S.Cheung

Department of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract

This paper presents an dtempt towards design qudity
improvement by incorporating o self-testability features
during dada p#&h (high-levd) synthesis. This method is
based on the use of test resource sharing pcsbiliti es to
improve the self-testahility of the drcuit. This is achieved
by incorporating testahility oconstraints during register
assgnment. Experimental results are presented to
demonstrate the dfediveness of the proposed daa pah
synthesis for BIST approach.

1 Introduction

High-level synthesis can explore alarger design spacethan
lower-level synthesis. An inherently testable achitedure
may alrealy exist in the design space which can be derived
by high-level synthesis to produce ahighly testable drcuit
at low or even no area ad/or delay pendty [3]. Many
methods, whether BIST-oriented o ATPG-oriented,
operate by modifying the dlocaion process ® that the
synthesized circuit does not have some undesirable
structural property

The BIST-oriented approaches usualy asame the
presence of a pseudorandan pattern generator (PRPG)
for test vedor generation and a multi ple-input shift register
(MISR) for response compresson. The blocks which are
required to perform a test (i.e., PRPG and MISR) are
known as test resource. Since the BIST logic is combined
with the system logic, oppatunities exist for the synthesis
technique to generate hardware that can be shared by both
the system and test operation, resulting in improved
performance and reduced cost.

A major consideration in wsing BIST is the aea
overhead due to the modificaion of normal registers to be
test registers. How to reduce the BIST area overhead
without saaificing the quality of the test is an important
reseach problem. One of the difficulties in using BIST
techniques is the register self-adjacency problem. A self-

* This project is supported in part by tBeoucherFoundation Grant
#360/062/0994.

adjacent register cannot be mnfigured as both a PRPG and
a MISR simultaneously, unless it is implemented as a
concurrent BILBO (CBILBO) [9] which can
simultaneously perform both the PRPG and MISR
operations because it has two sets of bistables. A CBILBO
register is approximately 1.75 times the size of a BILBO
register [1] and induces more delay during rormal
operation mode.

To ded with the problem of register self-adjacency,
methods have been proposed either to avoid producing
such self-adjacent registers or to minimize the number of
self-adjacent registers during (high-level) synthesis process
[1,4,6,8]. Papadiristou et al. [6] first presented a ambined
register and ALU allocaion method that generates <lif-
testable designs that do not have avy self-loops. The
approacdh is based on constraining the dl ocaion to generate
a testable functiond block (TFB). Its drawbad is the
inability to map operations whose variables life spans
overlap to the same TFB, thus, the final design may use
more TFBs than necessary. Avra [1] proposed a register
allocation method that minimizes the number of self-
adjacet registers in the design. The aaumption in her
work is that every self-adjacent register neals to be
modified to be a CBILBO register, and thus the aea
overhea is high. Parulkar et al. [8] attempts to employ the
concept of I-path to reduce the aeaoverhead impaosed by
BILBO registers. Since the |-path does not ater the test
data transferred along it, only the registers at the head and
the tail of the I-path are mnsidered to convert to BILBO
registers.

In this paper, we explore test resource sharing and its
relationship with register self-adjacency and BIST area
overhead. Study shows that register self-adjacency does not
necessrily imply poa testability. One key asped of our
reseach is to use two testability constraints to guide
register assgnment processwhich will result in a minimal
areaBIST solution. Another key asped of our reseach is
to use agraph model (as a static analysistoal) to solve aea
overhead minimization problem in BIST modification. This
method was appli ed to several benchmarks resultingin high
self-testability (with low area overhead) than the original
design (without testability).

2 Test Resour ce Sharing and Register Self-
adjacency

Consider the scheduled data flow graph (DFG) shown in
figure 1. A minimum of 3 registers are required. There ae
108 dstinct assgnments of the variables to 3 registers [8].
With resped to register and functional unit areg these 108
assgnments are equivalent. Only a subset of these result in
more self-testable data paths (with lower BIST area
overhead) than the rest. One possble RTL implementation
is downin figure 2. AsaBIST solution, it can be seen that
R; and R, can be shared as PRPGs between adder (M,) and
multiplier (M), and R; can be shared as MISR for testing
the adder and the multiplier in turn.

a b 0

%D/ d e 1
C\G?/ ?{5/)
I

Figurel. A Scheduled DFG.

Definition 1. A register R; is sid to be adriver of a
module M if some outputs of R; are inputsto M. A register
R; is sid to be arecaver of M if some outputs of M are
inputs to R;. R; is sid to be adjacent to R; if there eists a
module M such that R; is a driver of M and R; is arecever
of M. If R; is both arecever and a driver of M, then it is
self-adjacent

Figure 2. Data Path from the DFG in Figure 1.

A direded graph which named register adjacency graph
(RAG) has been adopted to visudize register self-
adjacency. Each node in the RAG represents a module or a
register. A direded edge eists from register node R, to a
module node M if R; isadriver of My, and a direced edge
exists from M to nodeR; if R; is a receiver of M

Figure 3. Data Path from the DFG in Figure 1.

Take scheduled DFG in figure 1 for example, one
possble data path without regard for testability is down in
figure 3. It's corresponding RAG is gown in figure 4. A
minimal area BIST solution for this data path is R; as a
PRPG, and R, and R; as CBILBOs which is more astly
than the minimal areaBIST solution for the ealier design
(in figure 2). It can be seen that Ry, R, and Rs (in bath
figure 2 and figure 3) are self-adjacent registers, but their
BIST solutions are totally different. In this paper, we
broadly divide self-adjacent registers into two sorts:

(R
@@ D
®)

Figure4. RAG of the Data Path in Figure 3.

Definition 2: A self-adjacent register is referred to as a
typical self-adjacent, if and only if itstopdogicd structure
in RAG is a exact self-loop.

Definition 3: A self-adjacent register is referred to as a
nontypical self-adjacent, if its topdogicd structure in
RAG contains a self-loop.

Take RAG in figure 4 for example, R; is a typicd self-
adjacet register, while R; and R, are non-typicd self-
adjacent registers.

Based on the @ove definitions, a mndition for a
register to be a CBILBO is derived as follows:

A register needs to be modified as a CBILBO register if
and ony if it is a typical self-adjacent register. Any non
typical sef-adjacent register can be modified as PRRG,
MISR, BILBO, or CBILBO, depends on the results of test
resource sharing (discuss in next session).

3 Data Path Behavioral Synthesisfor BIST

Given a scheduled DFG. We assume module assgnment is
done without any testability consideration. Because
registers can be viewed as potential test resource only after
the module assgnment is fixed. Here, we consider BIST
area minimization in register assignment process.

The register assgnment problem can be modeled as
coloring the register conflict graph (RCG) [4]. Each node
in the RCG represents an edge from the DFG that crosses a
clock cycle boundary. A corflict edge between two nodes
in the RCG indicates that two variables associated with
those nodes cannot be stored in the same register. All nodes
with the same lor can be mapped to the same register in
the final implementation. A coloring of RCG corresponds
to a vaid register assgnment with ead color
corresponding to a register. Figure 5 shows the RCG for
the scheduled DFG in figure 1.

In order to avoid creding any self-adjacent register, a
testability conflict edge (dashed line) is added between two
nodes when one node represents a variable that is an input
to a function module axd the other node represents a
variable that is an output of the same function module.
Testahility conflict edges require that the inputs and the
outputs of a function module be adgned to dfferent
registers, and this guarantees that no self-adjacent register

will be synthesized.
@

Figure 5. RCG of the Scheduled DFG in Figure 1.

Given the RCG, severa algorithms exist that can almost
always color the graph with a minimum number of colorsin
polynomial time [5], where the number of colors is the
number of registers required in the data path design.
However, a k-colorable graph, where k is the dromatic
number of the graph, may have severa different k-
colorings, ead coloring representing a diff erent assgnment
of nodes to registers. These mlorings may represent data
path designs of different sizes due to different number of
multi plexers and interconneds. Therefore, techniques must
be employed to guide the graph coloring algorithm to the
lowest-cost implementation.

Definition 4: The sharing effediveness SE(v) of a
variable v is the sum of the number of modules for which v
is a driver and the number of modules for which v is a
receiver.

We @2ciate a sharing effediveness SE(v) with ead
variable v (node) in the RCG, as gown in figure 5. The
sharing effediveness SE(v) refleds the number of modules
for which the register v can ad as PRPG and the number of
modules for which it can ad as MISR. Using this measure,
the asdgnment process can be guided by choosing merges
that result in large increases in the sharing effediveness of
registers.

Consider the scheduled DFG shown in figure 4 and the
following module assgnment. Operations +; and +, are
assgned to module M; and operations *; and *, are
assgned to module M,. ({a,d,h}, {bef}, {cg}) is a
possible register assignment.

Figure 2 shows the data path corresponding to this
register assgnment and the given module assgnment. It
can be seen that R; and R, can be shared as PRPGs
between M; and M,, and R; can be shared as MISR for
testing M; and M, in turn. Since minimal areaoverheal is
our obedive, it is not necessry to test al the
combinational modules at that same time, i.e., in one test
session.

4 Data Path Structural Synthesisfor BIST

The aea overhead minimizaion problem (in the BIST
context) is to dedde which registers to modify and the
modes (PRPG, MISR, BILBO or CBILBO) to add, in such
away that every module in a given data path can be tested
with minimal area overhead. We dtempt to solve this
problem by trying to modify registers in the data path
which have the maximum sharing potential.

We define role of aregister asits possble use & PRPG
or MISR and denote these roles by the letters p and m,
respedively. A register instanceis a particular register in a
particular role. The two passble register instances of a
register R are denoted R;p, Rim. The modificaion cost Ciy
of aregister R, for arole x is defined as the anourt of area
overhead that would result from modifying R; so that it has
an additional modes represented by x, wherg»orm.

We asociate amodificaion cost C, with ead register.
For aregister of n bits, the mst of being implemented as a
PRPG (LFSR for instance) is roughly estimated as 2*(n-2)
times the st of a multiplexer. The st of the register
implemented as a MISR is rougHy estimated as n-2 times
the cost of anultiplexer.

=

72

Figure6. STG of the Data Path in Figure 3.

We ae now realy to model the information to be used
for BIST area overhead minimization, in the form of a
direaed graph which we cal the self-testing g-aph (STG).
Each node in the STG represents a register instance, eat
node R, is labeled by the corresponding modificaion cost
Cix. Direaed edges are from register instance R;, to module
and from the module to register instance R;,,. A module can
be self-testable if al of its driver R; are wnverted to R
and al of its recaver R; are mnverted to Rm. Rip and R,
are cdled a test solution (TS) of the module. Figure 6
shows the testing graph for the data path in figure 3.

Figure 7. An OptimalSubgraph of STG in Figure 6.
The aea overhead minimization problem is dedding
which register to modify and the modes (PRPG, or MISR)

to add, in such away that every module in the data path can
be tested with minimal areaoverhead. In other words, the
problem is to find a minimal cost proper subgraph covering
the set of all module’s TS. For example, in the testing gaph
of figure 6, we want to find a proper subgraph covering TSs
of both adder (M;) and multiplier (M,) with the minimal
modification cost.

Figure 7 shows such an optimal subgraph. R; is
modified as PRPG, while bath R, and R; needs to be
modified as both PRPG and MISR (simultaneoudly),
therefore, CBILBO is needed. The significance of an
optimal subgraph is that the registers that must be modified
for minimal area overhead are those whose instances
belong to the optimal subgraph. This graph optimization
problem can be formulated as an integer programming
problem and solved by existing efficient algorithm [5].

5 Experimental Study

Figue 8 depicts a schematic view of the proposed
(streamlined) data path BIST synthesis methodology.

Scheduled Testable RT
DFG RCG data level netlist
8. RCG _8_. RCG
generation coloring
Testable gate Sructural

level netlist netlist
Fault - - ;
) : BIST Logic
~ modification ~ synthesis

Figure 8. High-level BIST Synthesis Methodology.

The data path synthesis for BIST methoddogy, takes as
input a scheduled DFG of the system logic, generates an
areaoptimized self-testable data path logic with few self-
adjacent register. Two testability constraints are imposed
on the RCG, which guarantee to generate apotential self-
testable data path. Then, we gply a structural BIST
modificaion on the synthesized data path to get a BIST
solution with a minimal (extra) area overhead.

Table 1. Experimental Results on Academic Benchmarks.

DFG DiffEg AR_filter
Module Assignment| 1+, 4*, 1- 4+, 8*

Register 7 16

Multiplexer 26 48

CBILBO 1 0

BILBO 2 7

PRPG 2 3

MISR 2 1

We present our results on two well-known high-level
synthesis benchmarks (the 2" order differential equation
DiffEq [7] and the auto regresson filter element AR-Filter
[2]) intable 1. The @ove results are cmparable with those
published in literature.

6 Concluding Remarks

In this paper, we presented techniques to exploit test
resource sharing to minimize the aea overhead due to
BIST modification in both structura and behaviora
synthesis domains. Two testability constraints have been
adopted to guide register assgnment process which will
result in a minimal area BIST solution. A graph model is
propcsed to solve aeaoverhead minimizaion problem in
(structural) BIST modificaion. By using modificaion cost
aswciated with ead register, an areaoptimized self-
testable design can be generated. Experimental results on
acalemic benchmark examples demonstrate the aility of
the proposed approach to generate self-testable data path
with low area overhead.

As part of our ongoing work, the propcsed data path
synthesis for BIST methoddogy will be tested on more
academic benchmarks as well as real industrial one.

References

[1] L. J.Avra, “Allocation and Assignment in High-Level
Synthesis for Self-Testable Data Patlghc. of IEEE
Int'l TestConf 1991, pp.463-472

[2] R.Jain,A.C.Parker and\.Park, “Predicting System-Level
Area and Delay fdPipelined and Nomipelined Designs”,
IEEE Trans. on CADyol.11, No.8, 1992, pp.955-965

[3] Mike T.C.Lee, High-Level Test Synthesis of Digital VLSI
Crcuits Artech House Inc©1997

[4] X.Li and P.Y.S.Cheung, “High-Level Synthesis for At-
Speed Self-TestProc. ofInt'l Conf. on Computer-Aided
Design and Computer Graphid997, pp.466-470

[5] M.W.Padberg and\V.Rijal, Location, Scheduling, Design
and Integer ProgrammingKluwer Academic Publishers
©1996

[6] C.Papachristous.Chiu andH.Harmanani, “SYNTEST: a
method for high-levedYNthesis with selfFESTability”,
Proc. of IEEEInt'l Conf. on Computer Design1991,
pp.458-462

[7] P.G.Paulin and.P.Knight, “Force-Directed Scheduling for
the Behavioral Synthesis ASICs”, IEEE Trans. on CAD.
Vol.8, No.6, 1989, pp.661-679

[8] I.Parulkar,S.Gupta and/.A.Breuer, “Data Path Allocation
for Synthesizing RTL Designs with Low BIST Area
Overhead"Proc. of ACM/IEEE Design Automati@onf.,
1995, pp.395-401

[9] L.T.Wang and E.McCluskey, “ConcurrentBuilt-In
Logic Block Observer (CBILBO)",Proc. of IEEENtI
Symp. on Circuits and Systerti886, pp.1054-1057

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

