
Data Path Synthesis for BIST with Low Area Overhead *

Xiaowei Li and Paul Y.S.Cheung

Department of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract

This paper presents an attempt towards design quality
improvement by incorporating of self-testabilit y features
during dada path (high-level) synthesis. This method is
based on the use of test resource sharing possibiliti es to
improve the self-testabilit y of the circuit. This is achieved
by incorporating testabilit y constraints during register
assignment. Experimental results are presented to
demonstrate the effectiveness of the proposed data path
synthesis for BIST approach.

1 Introduction

High-level synthesis can explore a larger design space than
lower-level synthesis. An inherently testable architecture
may already exist in the design space, which can be derived
by high-level synthesis to produce a highly testable circuit
at low or even no area and/or delay penalty [3]. Many
methods, whether BIST-oriented or ATPG-oriented,
operate by modifying the allocation process so that the
synthesized circuit does not have some undesirable
structural property.
 The BIST-oriented approaches usually assume the
presence of a pseudo-random pattern generator (PRPG)
for test vector generation and a multiple-input shift register
(MISR) for response compression. The blocks which are
required to perform a test (i.e., PRPG and MISR) are
known as test resource. Since the BIST logic is combined
with the system logic, opportunities exist for the synthesis
technique to generate hardware that can be shared by both
the system and test operation, resulting in improved
performance and reduced cost.
 A major consideration in using BIST is the area
overhead due to the modification of normal registers to be
test registers. How to reduce the BIST area overhead
without sacrificing the quality of the test is an important
research problem. One of the diff iculties in using BIST
techniques is the register self-adjacency problem. A self-

* This project is supported in part by the Croucher Foundation Grant
#360/062/0994.

adjacent register cannot be configured as both a PRPG and
a MISR simultaneously, unless it is implemented as a
concurrent BILBO (CBILBO) [9] which can
simultaneously perform both the PRPG and MISR
operations because it has two sets of bistables. A CBILBO
register is approximately 1.75 times the size of a BILBO
register [1] and induces more delay during normal
operation mode.
 To deal with the problem of register self-adjacency,
methods have been proposed either to avoid producing
such self-adjacent registers or to minimize the number of
self-adjacent registers during (high-level) synthesis process
[1,4,6,8]. Papachristou et al. [6] first presented a combined
register and ALU allocation method that generates self-
testable designs that do not have any self-loops. The
approach is based on constraining the allocation to generate
a testable functional block (TFB). Its drawback is the
inabilit y to map operations whose variables li fe spans
overlap to the same TFB, thus, the final design may use
more TFBs than necessary. Avra [1] proposed a register
allocation method that minimizes the number of self-
adjacent registers in the design. The assumption in her
work is that every self-adjacent register needs to be
modified to be a CBILBO register, and thus the area
overhead is high. Parulkar et al. [8] attempts to employ the
concept of I-path to reduce the area overhead imposed by
BILBO registers. Since the I-path does not alter the test
data transferred along it, only the registers at the head and
the tail of the I-path are considered to convert to BILBO
registers.
 In this paper, we explore test resource sharing and its
relationship with register self-adjacency and BIST area
overhead. Study shows that register self-adjacency does not
necessarily imply poor testabilit y. One key aspect of our
research is to use two testabilit y constraints to guide
register assignment process which will result in a minimal
area BIST solution. Another key aspect of our research is
to use a graph model (as a static analysis tool) to solve area
overhead minimization problem in BIST modification. This
method was applied to several benchmarks resulting in high
self-testabilit y (with low area overhead) than the original
design (without testability).

2 Test Resource Sharing and Register Self-
 adjacency

Consider the scheduled data flow graph (DFG) shown in
figure 1. A minimum of 3 registers are required. There are
108 distinct assignments of the variables to 3 registers [8].
With respect to register and functional unit area, these 108
assignments are equivalent. Only a subset of these result in
more self-testable data paths (with lower BIST area
overhead) than the rest. One possible RTL implementation
is shown in figure 2. As a BIST solution, it can be seen that
R1 and R2 can be shared as PRPGs between adder (M1) and
multiplier (M2), and R3 can be shared as MISR for testing
the adder and the multiplier in turn.

+1

+2

* 2

* 1

a b

d

c

e

f g

h

0

1

2

3

4

Figure 1. A Scheduled DFG.

 Definition 1: A register Ri is said to be a driver of a
module M if some outputs of Ri are inputs to M. A register
Rj is said to be a receiver of M if some outputs of M are
inputs to Rj. Ri is said to be adjacent to Rj if there exists a
module M such that Ri is a driver of M and Rj is a receiver
of M. If Ri is both a receiver and a driver of M, then it is
self-adjacent.

 M 1 M 2

a/d b/e

R1 R2

R3

h

Figure 2. Data Path from the DFG in Figure 1.

 A directed graph which named register adjacency graph
(RAG) has been adopted to visualize register self-
adjacency. Each node in the RAG represents a module or a
register. A directed edge exists from register node Ri to a
module node Mk if Ri is a driver of Mk, and a directed edge
exists from Mk to node Rj if Rj is a receiver of Mk.

 M 1 M 2

a e

R1 R2 R3

b/d

Figure 3. Data Path from the DFG in Figure 1.

 Take scheduled DFG in figure 1 for example, one
possible data path without regard for testabilit y is shown in
figure 3. It’s corresponding RAG is shown in figure 4. A
minimal area BIST solution for this data path is R1 as a
PRPG, and R2 and R3 as CBILBOs which is more costly
than the minimal area BIST solution for the earlier design
(in figure 2). It can be seen that R1, R2 and R3 (in both
figure 2 and figure 3) are self-adjacent registers, but their
BIST solutions are totally different. In this paper, we
broadly divide self-adjacent registers into two sorts:

M1 M2

R1

R2

R3

Figure 4. RAG of the Data Path in Figure 3.

 Definition 2: A self-adjacent register is referred to as a
typical self-adjacent, if and only if its topological structure
in RAG is a exact self-loop.
 Definition 3: A self-adjacent register is referred to as a
non-typical self-adjacent, if its topological structure in
RAG contains a self-loop.
 Take RAG in figure 4 for example, R3 is a typical self-
adjacent register, while R1 and R2 are non-typical self-
adjacent registers.
 Based on the above definitions, a condition for a
register to be a CBILBO is derived as follows:
 A register needs to be modified as a CBILBO register if
and only if it is a typical self-adjacent register. Any non-
typical self-adjacent register can be modified as PRPG,
MISR, BILBO, or CBILBO, depends on the results of test
resource sharing (discuss in next session).

3 Data Path Behavioral Synthesis for BIST

Given a scheduled DFG. We assume module assignment is
done without any testabilit y consideration. Because
registers can be viewed as potential test resource only after
the module assignment is fixed. Here, we consider BIST
area minimization in register assignment process.
 The register assignment problem can be modeled as
coloring the register conflict graph (RCG) [4]. Each node
in the RCG represents an edge from the DFG that crosses a
clock cycle boundary. A conflict edge between two nodes
in the RCG indicates that two variables associated with
those nodes cannot be stored in the same register. All nodes
with the same color can be mapped to the same register in
the final implementation. A coloring of RCG corresponds
to a valid register assignment with each color
corresponding to a register. Figure 5 shows the RCG for
the scheduled DFG in figure 1.

 In order to avoid creating any self-adjacent register, a
testabilit y conflict edge (dashed line) is added between two
nodes when one node represents a variable that is an input
to a function module and the other node represents a
variable that is an output of the same function module.
Testabilit y conflict edges require that the inputs and the
outputs of a function module be assigned to different
registers, and this guarantees that no self-adjacent register
will be synthesized.

h1

e1

g2

d2

b1

c2

f 2

a1

Figure 5. RCG of the Scheduled DFG in Figure 1.

 Given the RCG, several algorithms exist that can almost
always color the graph with a minimum number of colors in
polynomial time [5], where the number of colors is the
number of registers required in the data path design.
However, a k-colorable graph, where k is the chromatic
number of the graph, may have several different k-
colorings, each coloring representing a different assignment
of nodes to registers. These colorings may represent data
path designs of different sizes due to different number of
multiplexers and interconnects. Therefore, techniques must
be employed to guide the graph coloring algorithm to the
lowest-cost implementation.
 Definition 4: The sharing effectiveness SE(v) of a
variable v is the sum of the number of modules for which v
is a driver and the number of modules for which v is a
receiver.
 We associate a sharing effectiveness SE(v) with each
variable v (node) in the RCG, as shown in figure 5. The
sharing effectiveness SE(v) reflects the number of modules
for which the register v can act as PRPG and the number of
modules for which it can act as MISR. Using this measure,
the assignment process can be guided by choosing merges
that result in large increases in the sharing effectiveness of
registers.
 Consider the scheduled DFG shown in figure 4 and the
following module assignment. Operations +1 and +2 are
assigned to module M1 and operations *1 and *2 are
assigned to module M2. ({ a,d,h} , { b,e,f} , { c,g}) is a
possible register assignment.
 Figure 2 shows the data path corresponding to this
register assignment and the given module assignment. It
can be seen that R1 and R2 can be shared as PRPGs
between M1 and M2, and R3 can be shared as MISR for
testing M1 and M2 in turn. Since minimal area overhead is
our objective, it is not necessary to test all the
combinational modules at that same time, i.e., in one test
session.

4 Data Path Structural Synthesis for BIST

The area overhead minimization problem (in the BIST
context) is to decide which registers to modify and the
modes (PRPG, MISR, BILBO or CBILBO) to add, in such
a way that every module in a given data path can be tested
with minimal area overhead. We attempt to solve this
problem by trying to modify registers in the data path
which have the maximum sharing potential.
 We define role of a register as its possible use as PRPG
or MISR and denote these roles by the letters p and m,
respectively. A register instance is a particular register in a
particular role. The two possible register instances of a
register Ri are denoted Rip, Rim. The modification cost Cix

of a register Ri for a role x is defined as the amount of area
overhead that would result from modifying Ri so that it has
an additional modes represented by x, where x = p or m.
 We associate a modification cost Cix with each register.
For a register of n bits, the cost of being implemented as a
PRPG (LFSR for instance) is roughly estimated as 2*(n-2)
times the cost of a multiplexer. The cost of the register
implemented as a MISR is roughly estimated as n-2 times
the cost of a multiplexer.

M 1 M 2

R 1p

R 2p

R 3p

R 1m

R 2m

R 3m

1 0

 8

 8

 6

1 2

10

Figure 6. STG of the Data Path in Figure 3.

 We are now ready to model the information to be used
for BIST area overhead minimization, in the form of a
directed graph which we call the self-testing graph (STG).
Each node in the STG represents a register instance, each
node Rix is labeled by the corresponding modification cost
Cix. Directed edges are from register instance Rip to module
and from the module to register instance Rim. A module can
be self-testable if all of its driver Ri are converted to Rip

and all of its receiver Rj are converted to Rjm. Rip and Rjm

are called a test solution (TS) of the module. Figure 6
shows the testing graph for the data path in figure 3.

M 1 M 2

R1p

R2p

R3p

R2m

R3m

Figure 7. An Optimal Subgraph of STG in Figure 6.
 The area overhead minimization problem is deciding
which register to modify and the modes (PRPG, or MISR)

to add, in such a way that every module in the data path can
be tested with minimal area overhead. In other words, the
problem is to find a minimal cost proper subgraph covering
the set of all module’s TS. For example, in the testing graph
of figure 6, we want to find a proper subgraph covering TSs
of both adder (M1) and multiplier (M2) with the minimal
modification cost.
 Figure 7 shows such an optimal subgraph. R1 is
modified as PRPG, while both R2 and R3 needs to be
modified as both PRPG and MISR (simultaneously),
therefore, CBILBO is needed. The significance of an
optimal subgraph is that the registers that must be modified
for minimal area overhead are those whose instances
belong to the optimal subgraph. This graph optimization
problem can be formulated as an integer programming
problem and solved by existing efficient algorithm [5].

5 Experimental Study

Figure 8 depicts a schematic view of the proposed
(streamlined) data path BIST synthesis methodology.

BIST
modification

BIST
modification

Testable RT
level netlist

Logic
synthesis

Logic
synthesis

Structural
netlist

Scheduled
DFG

RCG
coloring

RCG
coloring

RCG
generation

RCG
generation

Testable gate
level netlist

Fault
simulation

RCG data

Figure 8. High-level BIST Synthesis Methodology.

 The data path synthesis for BIST methodology, takes as
input a scheduled DFG of the system logic, generates an
area-optimized self-testable data path logic with few self-
adjacent register. Two testabilit y constraints are imposed
on the RCG, which guarantee to generate a potential self-
testable data path. Then, we apply a structural BIST
modification on the synthesized data path to get a BIST
solution with a minimal (extra) area overhead.

Table 1. Experimental Results on Academic Benchmarks.

DFG DiffEq AR_filter
Module Assignment 1+, 4*, 1- 4+, 8*

Register 7 16
Multiplexer 26 48
CBILBO 1 0
BILBO 2 7
PRPG 2 8
MISR 2 1

We present our results on two well -known high-level
synthesis benchmarks (the 2nd order differential equation
DiffEq [7] and the auto regression filter element AR-Filter
[2]) in table 1. The above results are comparable with those
published in literature.

6 Concluding Remarks

In this paper, we presented techniques to exploit test
resource sharing to minimize the area overhead due to
BIST modification in both structural and behavioral
synthesis domains. Two testabilit y constraints have been
adopted to guide register assignment process which will
result in a minimal area BIST solution. A graph model is
proposed to solve area overhead minimization problem in
(structural) BIST modification. By using modification cost
associated with each register, an area-optimized self-
testable design can be generated. Experimental results on
academic benchmark examples demonstrate the abilit y of
the proposed approach to generate self-testable data path
with low area overhead.
 As part of our ongoing work, the proposed data path
synthesis for BIST methodology will be tested on more
academic benchmarks as well as real industrial one.

References

[1] L. J. Avra, “Allocation and Assignment in High-Level
 Synthesis for Self-Testable Data Paths”, Proc. of IEEE
 Int’l Test Conf, 1991, pp.463-472
[2] R.Jain, A.C.Parker and N.Park, “Predicting System-Level
 Area and Delay for Pipelined and Non-pipelined Designs”,
 IEEE Trans. on CAD, Vol.11, No.8, 1992, pp.955-965
[3] Mike T.C.Lee, High-Level Test Synthesis of Digital VLSI
 Crcuits, Artech House Inc.,

�
1997

[4] X.Li and P.Y.S.Cheung, “High-Level Synthesis for At-
 Speed Self-Test”, Proc. of Int’l Conf. on Computer-Aided
 Design and Computer Graphics, 1997, pp.466-470
[5] M.W.Padberg and M.Rijal, Location, Scheduling, Design
 and Integer Programming, Kluwer Academic Publishers,

�
1996

[6] C.Papachristou, S.Chiu and H.Harmanani, “SYNTEST: a
 method for high-level SYNthesis with self-TESTability”,
 Proc. of IEEE Int’l Conf. on Computer Design, 1991,
 pp.458-462
[7] P.G.Paulin and J.P.Knight, “Force-Directed Scheduling for
 the Behavioral Synthesis of ASICs”, IEEE Trans. on CAD.
 Vol.8, No.6, 1989, pp.661-679
[8] I.Parulkar, S.Gupta and M.A.Breuer, “Data Path Allocation
 for Synthesizing RTL Designs with Low BIST Area
 Overhead”, Proc. of ACM/IEEE Design Automation Conf.,
 1995, pp.395-401
[9] L.T.Wang and E.J. McCluskey, “Concurrent Built-In
 Logic Block Observer (CBILBO)”, Proc. of IEEE Int’l
 Symp. on Circuits and Systems, 1986, pp.1054-1057

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

