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Abstract

This paper proposes a storage structure for graph-
oriented databases called the flattened separable di-
rectory method. In this method, a data representing
graph, which is a unit of representing graph, is primar-
ily represented with an array of edge or node types. As
every node or edge can be accessed without navigation,
the values of nodes and/or edges can be quickly eval-
uated. Ezperimental evaluations support this charac-
teristics, and clarify that the performance of inserting
data is high, and less storage overhead is needed in the
case of the graphs consisting of many node and edge

types.

1 Introduction

In the VLSI design process, a lot of diagrams are
used[1]. These diagrams are block diagrams, logic
ones, and so on. A diagram is composed of a lot of
elements connected with each other. For example, a
block diagram of a CPU may include the elements for
a memory, an ALU, a bus, latches, and so on. There
are a lot of connections between the elements, e.g.,
the connection between a memory and a bus. There-
fore, a diagram has very complex structure. Repre-
senting and handling complex structure of a diagram
are the most important functionalities required in the
VLSI design applications. Semantic, object-oriented,
and graph-oriented data models have been proposed
for these functionalities. Semantic data models have
introduced wide varieties of relationships among enti-
ties in order to represent rich semantics of data in the
applications[2]. Two kinds of relationships, i.e., IS-A
and IS-PART-OF relationships, have been introduced
in object-oriented data models[3, 4]. As relationships
can be drawn with directed edges, data may be rep-
resented with a directed graph. Graph-oriented data
models[5-13] have been proposed in order to capture
data directly as a graph. Most of these models are
based on directed labeled graphs. That is, a database
consists of nodes and directed edges between them.
Each node or edge has a label, which may include
a type name and a data value. Accessing a descen-
dant entity/object means navigating a graph under
the data models described above.
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Several storage structures and models have been
proposed for these data models. Linked list
methods[14, 15], directory methods[16, 17], and stor-
age models for complex objects[18, 19, 3] have been
proposed. In these storage models, searching an ele-
ment must be based on navigation. An element except
for the directly accessible ones can not be accessed un-
til another one having the pointer to it is accessed. Al-
most all of the nodes and the edges on the path from
the root to the node having the required data value
must be visited in spite that they are not significant
in evaluating a retrieval condition. This will cause
the worst retrieval performance. Indexing nodes may
not solve this problem because the access paths can
not be identified in the design applications. Indexing
nodes may result in the worst performance of inser-
tion of data in these applications. It is required that a
retrieval condition is evaluated without accessing the
unnecessary elements for the purpose of high retrieval
performance.

In this paper, a storage structure for graph-oriented
databases is proposed. In the data model assumed in
this paper, a data representing graph (DRG), which
is a directed labeled graph, is a unit in representing
data. A collection of DRGs can be captured into a
data graph. A data graph is also a directed labeled
graph, but it has DRGs as its components. The pro-
posed storage structure represents each DRG in a data
graph with an array of edge or node types. Each edge
or node is pointed from the entry of the array. Every
node or edge can be accessed via that entry without
navigation. This may cause the values of nodes and/or
edges to be quickly evaluated, and may result in the
high performance in evaluating a retrieval condition.
The characteristics of the proposed storage structure
is experimentally evaluated.

This paper is organized as follows: In Section 2, af-
ter the data model assumed is described, conventional
storage structures for graph-based databases are sur-
veyed. Section 3 proposes the storage structure for
graph-oriented databases. It is called the flattened
separable directory method. In Section 4, the proposed
method is evaluated. Lastly, Section 5 concludes this

paper.



2 Data model and survey

2.1 Data model

The data model assumed in this paper is based on
the directed labeled graphs. A data representing graph
(DRG) is a fundamental unit in representing an ob-
ject. A set of DRGs is represented as a data graph.

Definition 1 A data representing graph is a septuple
(VLE, Ly, Le, ¢y, $e, @), where V is a set of nodes, E is
a set of edges, L, is a set of labels of nodes, L, is that
of edges, ¢, : V = L, ¢ : E— Lo, ¢:V xV — E.
Alabell € L, UL, is a triplet (dp, N, d), where d;p
is an identifier, N is a name, and d is a data and is a
tuple of a data type and a value.
A data graph is a set of data representing
raphs. It is also represented with a septuple
?V, E,L, L, ¢y, ¢c, ¢). However, it is the graph com-

posed of one or more data representing graphs. 0

Example 1 An organization of computer elements
shown in Fig. 1is a directed graph. The computer el-
ements are nodes of the graph. The direction of data
flow between two elements is an arrow of the graph.
An example of a DRG of this organization is shown
in Fig. 2. In this figure, for example, “Memory:m1”
represents that the element (node or edge) name is
“Memory” and the data is “m1.” The edges in Fig.
2 have similar labels. For example, “MB:mb1” rep-
resents that the edge name is “MB” and the data is
“mbl.” Although the edges of the original diagram in
Fig. 1 have no labels, the labels can be put to edges
like in Fig. 2 in order that an edge has the informa-
tion, e.g. the bit length.
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Figure 1. An organization of computer el-
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Figure 2. An example of a data represent-
ing graph.

Example 2 An example of a data graph is shown in
Fig. 3. A data graph is surrounded by a bold line.
Its name is “CPU.” A data graph can gather DRGs.
A DRG is surrounded by a dashed line in order to
be able to be distinguished one another. There are
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two DRGs in the data graph. These are alternative
organizations of computer elements in this example.
The upper DRG is the one shown in Fig. 2. The
lower one is another DRG having two Buses.

Figure 3. An example of a data graph.

2.2 Survey on the storage structure

Several storage structures and models have been
proposed for data models having graph structure.
Linked lists have been used for the databases based on
semantic data models[14, 15]. A node has the point-
ers to the next nodes as well as its data value in this
method. A required value can be obtained through
navigation. Nodes can be visited one by one through
the next pointers. As a node has data values which
may often be large volume, the number of disk accesses
tends to be large.

Directories have also been used for the same kind
of databases[16, 17]. A directory represents only the
structure of a graph. Each node of a directory has
the pointer to its data value as well as the pointers
to the next nodes. As a node in a directory does not
have any data value, the number of nodes which can
be stored in a page is larger than that in the linked
list methods. The larger number of the nodes can be
obtained with one disc access than in the linked list
method. Therefore, the number of disc accesses in the
directory method tends to be less than in the linked
list method.

Several storage models including the normalized
storage model[3f and the decomposed one[18] have
been proposed for complex objects in the context of
object-oriented databases[19]. These models except
for the direct storage model decompose a complex ob-
ject into smaller chunks of data. Decomposition levels
vary according to the storage models. For example,
the decomposed storage model decomposes a complex
object into a set of tuples of an object identifier (OID),
and a data value or an OID of a child object. The nor-
malized storage model decomposes a camplex object
into a set of n-tuples of atomic values and/or object
identifiers of child objects. On the other hand, the
direct storage model does not decompose a complex
object. The decomposed storage model can easily be
extended for edges to have labels. However, this stor-



age model is not good for navigation in order to eval-
uate the retrieval condition.

As we have seen, searching an element must be
based on navigation through the storage models de-
scribed here. After one element is evaluated, the next
element directly connected to it is then accessed and
evaluated. In the case that almost all nodes of a graph
can not be directly accessed, and the distance of a
(gjraph is long, the evaluation cost of a retrieval con-

ition may become very high, where a distance of a
graph is the largest number of the numbers of the
edges, each of which is the smallest one of those of one
or more paths from a node to another one in a graph.
For example, consider the tree, only whose root can
directly be accessed. In evaluating a retrieval condi-
tion, a leaf node, which is far from the root, may have
to be visited. All of the nodes and edges on the path
from the root to that node must be visited in spite
that they are not significant in evaluating a retrieval
condition. Indexing nodes may not solve this problem
because the access paths can not be identified in the
design applications. Indexing nodes may result in the
worse performance of insertion of data. For example,
if a lot of indexes relate to the value of a node type,
these indexes have to be updated when a node of this
type is inserted, modified, or deleted. Therefore, it is
required that a retrieval condition is evaluated without
accessing the unnecessary elements for the purpose of
high retrieval performance.

3 Flattened

method

The flattened separable directory method (FSDM)
uses an array of node or edge types of a DRG. This
array is called a primary array (PA). The data format
of a PA is shown in Fig. 4. A PAis an array with a
number of array entries. An array entry is for a node
or edge type. An array entry is represented with a
tuple of a number k, which represents a2 number of
instances, and a pointer p. If k is equal to zero, p
points to no instances. If k is equal to one, p points
directly to an instance. If k is more than one, p points
to the root of a B* tree, which manages more than
one instance.

separable directory

primary array
[ n l kind_entry-1 |

] kind_entry-n l

kind_entry Kk =0 : no elements

n k = 1 : Pointer points 1o an element

k > 1 : Pointer points to a root of B+ tree
Figure 4. Data format of primary array.

There are two kinds of PA: edge PAs and node PAs,
Every array entry of an edge PA is for edge types,
while that of a node PA is for node types. Figure 5
shows an example of an edge PA. This figure repre-
sents the data structure of the DRG in Fig. 2.

The primary array represents the whole structure of
a DRG rather than the parts of it. As the whole struc-
ture is represented with a single data structure, the
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Figure 5. An example of the proposed
storage structure.

proposed storage structure belongs to the directory
method. However, a graph structure is represented
with a flattened format. That is, an array of edge
or node types is used in representing a graph struc-
ture. This is the distinguished difference between the
ordinary directory method[16, 17] and the proposed
one. This enables every node or edge to be able to be
accessed directly rather than navigationally.

Nodes and edges do not have to be stored in contin-
uous area in FSDM. These can be stored as separate
data chunks. Therefore, a large continuous space is
not required to store a whole of a DRG. In this sense
FSDM resembles the decomposed storage model[18j
and the methods representing nodes as relations. If
primary arrays were not adopted, and nodes and edges
were separately stored into files, then FSDM becomes
the decomposed storage model. In this case, search-
ing a node must be based on navigation. Performance
of evaluating retrieval conditions becomes drastically
worse according to the position of the node evalu-
ated (See Section 4). It is the primary array that
prevent the performance of evaluating retrieval condi-
tions from being worse. Because of the primary array,
it is possible that every node or edge in a DRG can
directly be accessed.

4 Evaluation

4.1 Evaluation method

FSDM is evaluated on the performance and the
storage overhead by comparing with the linked list
method (LLM), the directory method (DIM), and
the decomposed storage model (DSM), which are ex-
tended in order that an edge can have a label.

In FSDM, edge PAs are used. In LLM, variable
length arrays are used in representing the element
types and the elements (See Fig. 6 (ga.)) In DIM,
nodes are stored in a former part, and edges in a lat-
ter part of a directory. A node or edge is accessed by
using an offset in a directory. The value of a node or
edge is accessed through a pointer (See Fig. 6 (b)). In
DSM, an edge is represented with a triplet of pointers
to the initial node, to the terminal node, and to its



value. These triplets are managed by using B tree.
These for an edge type are stored in the file separated
from the one storing values.

@)

node
T T O A B o e

entry
{m Jpointer_to_sdge-t |- | poirter_to_sdge-m |
edge
[ sage . | vawe | pointer_to_terminal_node |
®)
lm\gm Ilnoda nods_entry ] edge-antry l
le—lnode ) -
< length
node_entry
[ node_int. | pointer_to_vaiue [ oftset_to_edge |
odge_entry
[edge . T polrter_1o_vaiue Joftset_to_terminal_node |

Figure 6. Data formats of the linked list
method (a) and the directory method (b).

Several assumptions are taken as follows. A node
(edge) type has only one node (edge) in order not to
be influenced by a set of elements. A starting node
is decided in advance. There is no isolated nodes. A
graph is a line in order to make the evaluation simple.
An element is addressed through an OID. An OID
is transformed to a tuple (page#, slot#) by using a
transformation table, which is on memory. Buffers are
replaced with LRU scheme.

Performance is measured on the Ultimal worksta-
tion (Axil, Solaris 2.5.1, 256MB memory). The page
and the buffer sizes are 4K bytes. The number of
buffers is 100 for excluding the effect of buffering
pages.

4.2 Experimental results

Retrieval and insertion performance is experimen-
tally evaluated. Performance in evaluating a retrieval
condition and that in returning data to a user are eval-
uated as the retrieval performance. The storage over-
head is also evaluated.

4.2.1 Performance of evaluating retrieval con-
dition
First, the effect of the retrieval condition is evaluated.
A retrieval condition is assumed to be the conjunction
of predicates, and only the predicates for equality test
are used. An example of a retrieval condition is the
form “Ng =1 AND ... AND N, = 1,” where N; de-
notes the ith node. In this evaluation, the number of
predicates in a retrieval condition and the position of
the farthest node are varied, where the farthest node
means the node that is the farthest from the directly
accessed node. The position of the farthest node cor-
responds to the distance between the directly accessed
node and that node. The retrieval condition used in
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this evaluation fails at the farthest node. For example,
if N; is an ith node, and every node has a value 1, a re-
trieval condition is the form “Ng =1 AND N, =1 ...
Ng =1 AND Ny = 0.” Every DRG has eleven nodes
and ten edges. The number of DRGs is 100. Figure 7
shows the experimental result. The values in this fig-
ure are those averaged of 100 times of experiments. In
FSDM, the time in evaluating a retrieval condition is
independent of the farthest node position. It depends
only on the number of predicates in a retrieval condi-
tion. On the other hand, it depends on the farthest
node position in the other methods, i.e., DSM, LLM,
and DIM, because navigation is inevitable to evaluate
a retrieval condition in these methods.

16 T -r T T
flattened separuble direcory method
directory method +
14 + tstmethod &
decomposed storage method x
12r
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§ X
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02| - - I G
‘ ¥ - - n":;
- - =+ 3 ne
0 . L N R .
0 2 4 ] 8 10 12
farthest node position

Figure 7. Effect of the farthest node posi-
tion and the number of predicates on the
performance of retrieval condition evalua-
tion. n : the number of predicates.

Next experiment evaluates the effect of the number
of node and edge types. The number is varied from 21
to 99. A retrieval condition consists of only one pred-
icate. The number of DRGs is also 100. The result
is shown in Fig. 8. The time in evaluating a retrieval
condition increases according to the number of node
and edge types in all of the methods. The charac-
teristic lines have the same incline for each method.

The effect of the number of DRGs is then evaluated.
The number of DRGs is varied from 100 to 10000.
Every DRG has eleven nodes and ten edges. A re-
trieval condition has only one predicate on the node
whose position is 11 (fixed). Figure 9 shows this result.
The evaluation time is independent of the number of

DRGs.

4.2.2 Performance of returning DRGs

Next, performance in returning a DRG is evaluated.
The number of node and edge types is varied. No re-
trieval conditions are specified. The number of DRGs
is 100. The result of this experiment is shown in Fig.
10. The time in returning a DRG depends on the
number of elements in a DRG.
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Figure 8. Effect of the number of node and
edge types on the performance of retrieval
condition evaluation. m : the number of
node and edge types.
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Figure 9. Effect of the number of instances
on the performance of retrieval condition
evaluation.

4.2.3 Performance of insertion

Next, the performance in inserting data is evaluated.
The number of node and edge types is varied. The
number of DRGs is 100. Figure 11 shows this re-
sult. FSDM has better insertion performance than
the other methods.

4.2.4 Storage overhead

Lastly, the storage overhead is evaluated. The number
of node and edge types is varied. The overheads per
one element are calculated. This result is shown in
Fig. 12. In the case that a DRG has a large number of
elements, FSDM and DSM need less storage overhead
than the other methods. FSDM and DIM decreases
the storage overhead according to the number of node
and edge types. This is because there exists the data
structure per a DRG: a PA for FSDM and a directory
for DIM. The overhead per an element where a DRG
has a large number of elements is less than that where
it has a small number of elements.

4.3 Consideration
The performance in evaluating a retrieval condition
is independent of the farthest position of the node ap-
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Figure 10. Effect of the number of node
and edge types on the performance of re-
turning data.
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Figure 11. Effect of the number of node

and edge types on the performance of in-

serting data.

pearing in a retrieval condition in FSDM. It depends
only on the number of predicates in a retrieval condi-
tion. This makes it possible to estimate the time of a
retrieval condition evaluation. This is the good char-
acteristics for the retrieval condition evaluation. The
performance in returning and inserting data of FSDM
is the best among the methods experimented.

DSM has good performance in evaluating a retrieval
condition consisting the predicates on the node di-
rectly accessible because the evaluating targets are
the decomposed values, and they may be stored in
the small number of pages. However, The farther the
position of the node evaluated is, the worse the eval-
uation performance becomes drastically. This result
agrees with the characteristics of DSM[19].

In the VLSI design applications, a diagram may
have a lot of nodes and edges. This is mainly cat-
egorized into two cases. First is that a diagram has
many graphs, each of which has a few nodes and edges.
Second is that a diagram has one or several graphs,
each of which has many nodes and edges. In the first
case, indexing graphs will be required in order to pro-
cess queries efficiently. This kind of index may be
created by using the values of nodes and/or edges.
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Figure 12. Effect of the number of node
and edge types on the storage overhead.

When evaluating a retrieval condition on the elements
in a DRG is not needed like in this case, the proposed
storage structure may not contribute the performance.
The second case is further categorized into two sub-
categories. The first is that a graph has many types
of nodes and edges, and each type has a few instances.
For this case, the proposed storage structure is effec-
tive as shown through the experiments. The second
is that a graph has a few types of nodes and edges,
whereas there are many instances of nodes and edges.
A tree is an example of this case. Although a tree
may have only one type for nodes, and only one for
edges, it may have many nodes and edges. The contri-
bution of the proposed storage structure to this case
is not clear. We have a plan to make it clear through
a benchmark|20].

5 Concluding remarks

This paper proposed the storage structure for
graph-oriented databases called the flattened separa-
ble directory method. In this method, a data repre-
senting graph, which is a unit of representing graph,
is primarily represented with an array of edge or node
types. As every node or edge can be accessed with-
out navigation, evaluating the values of nodes and/or
edges can be fast. Furthermore, the inserting perfor-
mance is high. These characteristics are revealed by
the experiments. The storage overhead is less than in
the other methods evaluated when a data representing
graph consists of many node and edge types.

The graph structure evaluated is a line. The exper-
iment for more complex structures through a bench-
mark, e.g., the 007 benchmark[20], is a subject for
a future research. Although the primary array may
be less in size than the directory, the primary array
must be in a continuous space. Relaxing this restric-
tion is another subject for a future research. In this
paper, the data model assumed is based on a sim-
ple directed labeled graph. A study on the storage
structure for the databases based on the data models
introducing the concepts of hypergraphs and recursive
graphs|11, 12, 13] is another future work.
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