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Abstract

Because so many important problems arising in VLSI
design are NP-hard, VLSI algorithms must employ
randomization techniques or heuristics.  Thus the
process of analyzing a new algorithm or of comparing
two algorithms is at present an experimental one.
Consequently, progress in VLSI algorithm development
must be based on references to standard benchmarks.
Yet examination of literature on specific problems, such
as graph partitioning, shows that such standardization
is not yet a reality. Here we describe a system,
Circuitbase, which we are developing to address the
standardization problem. Circuitbase will combine the
extensive graph manipulation routines of Knuth's
Stanford Graphbase package with actual circuit
examples from the Benchmark Archives at CBL,
standard routines for generating random examples of
circuits, and standard methods for algorithm analysis.
We describe Circuitbase versions of example
behavioral, structural, and physical views of a VLSI
circuit and discuss how Circuitbase can support modern
VLSI design environments.

1. INTRODUCTION

For some time now progress in development of circuit
and system design tools has lagged behind rapidly
increasing circuit and system capabilities and
complexity. Currently it is estimated that achievable
hardware complexity is almost 100 times greater than it
was in 1980, while tool capabilities are only about 7
times as great as in 1980 [16]. As million-device chips
become commonplace, as feature sizes continue to
decrease, and as the demand for multitechnology chips
integrating digital, analog, optical, and mechanical
devices continues to grow, narrowing this design gap or
even keeping it constant will require more and more

sophisticated tools for all stages of the design-simulate-
test process.

In Figure 1 we have summarized the views and levels
of abstraction typically present in a VLSI development
environment [6] and the tasks which this environment
must support. We usually identify three domains--
behavioral (B), structural (8), and physical (P)--and
several levels of abstraction within each domain.
Producing a component or system amounts to traversing
a path through some subset of these levels and views to
complete all the necessary tasks--specification, design,
simulation, fabrication, and testing (and ongoing
maintenance). For example, a designer producing an
FPGA (field programmable gate array) prototype might
trace out a path beginning at B4, visiting B3 and B2,
and ending at BO. The actual physical specifications for
the part, which exist in the physical domain P, would be
automatically generated by tools in the design
environment as necessary. - If a custom design is later
desired for this component, then a new path which
includes another view at PO must be created by the
designer.

To deal with increasing circuit complexity, modern
VLSI  design environments emphasize rapid
prototyping, supported by high-level behavioral
descriptions of components, extensive simulation before
fabrication, and greater design reuse. Such strategies,
which have been developed mainly for digital circuits,
are now being extended to analog, mechanical, and
other domains. To be effective, design environments
which enable necessary path traversals must be
supported by highly sophisticated design automation
tools, based on better algorithmic strategies capable of
efficiently solving more and more computationally
intensive problems in ways which are transparent to the
circuit or system designer Builders of these tools must
therefore have available sufficient information about
algorithm performance to make intelligent choices
about which algorithms to implement in their systems.
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Figure 1: Example VLSI Views

It is well known that most of the significant problems
which must be solved in these environments are NP-
hard, that is, they cannot be solved by an algorithm
which finishes in a time which is polynomially related
to the input size. Thus development of a usable
algorithm amounts to experimentation, in which
techniques such as randomization or problem-specific
heuristics must be employed. In particular, the two
major questions which an algorithm developer must
answer, namely, (1) how well does my algorithm
perform, and (2) how good is my algorithm compared
to other known algorithms for this problem, can almost
always only be answered by reference to a set of
benchmarks.
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2. BENCHMARK SETS--NECESSARY
CHARACTERISTICS

To provide effective support for VLSI algorithm
development, a benchmark set must do the following:

--allow for an experiment to be repeated, with
the same outcomes, by independent researchers;

--contain a comprehensive set of benchmark
examples, all of which will be used to  evaluate a new
algorithm;

--provide a well-defined i.d. number for each
circuit or circuit primitive in the benchmark set so that
results obtained by different researchers can be
compared easily;

--provide standard "metrics" for the evaluation
of algorithm performance on the data, along with
easy-to-use routines for evaluating these metrics and for
generating reports;

--contain data which is relevant to the problem
at hand (e.g., data which relates to realizable circuits as
opposed to abstract graph representations only);

-~contain at a minimum the "best" and "worst"
cases of example data for all algorithms developed so
far;

--contain standardized routines, as easy to use
as random number generators, for random generation
of data, so that results based on random data can be
replicated by independent researchers;

--be expandable so that important new
examples can be included as they are found and so that
algorithms previously developed can be tested on these
new benchmarks;

--represent the data in some standard initial
format and provide conversion routines to other
standard formats (for graphs, for example, adjacency
list and adjacency matrix representations should be
provided or easy to generate);

--allow for useful subclasses of benchmarks
(for example, "sparse" circuits") to be extracted from
the total set;

--provide standard data manipulation routines
for reading, writing, etc., so that an algorithm developer
can concentrate on the algorithm under development
and so that "housekeeping" tasks are simple to do and
done in a standard manner;

--be easy to access and use.

The Circuitbase software is being developed to provide

benchmark sets which meet all these criteria and which
can support evaluation of algorithms for VLSI design
environments.



3. EXAMPLE--GRAPH PARTITIONING

Currently methods of VLSI algorithm analysis are
much more ad hoc, and thus it is often impossible to
compare specific results or to choose an algorithm for a
specific practical situation. As an example, we consider
the problem of graph partitioning [17] This is a
fundamental high-level “physical domain” problem on
which many researchers have worked. As a specific
example we can consider the situation where we have a
circuit (combinational or sequential) represented as a
graph G = (V,E) in which each vertex V is chosen from
a fundamental set of gates (for example, NOT, 2-input
AND, 2-input OR, 2-input XOR, D flipflop, JK flipflop,
input and output pads) and each edge E represents a
wire connecting the output of one gate with the input of
one or more other gates. For each gate, a set of
characteristics, such as area, function computed, and
minimum and maximum switch times, may be defined.
Edges may also have characterisitcs, such as length,
defined for them. A simple version of the partitioning
problem in this situation requires that we split the vertex
set V into two subsets of equal cardinality, V’ and V*’,
such that the sum of the edge weights over all edges
with one end in V' and one end in V’’ is minimized.
This is well-known to be an NP-hard problem [11}].
One common modification, in which we require the
total area of vertices in V’ to be about the same as the
total area of vertices in V', is also NP-hard. A
partitioning problem of this type must be solved, for
example, when FPGA design software splits a circuit
into modules to be implemented in different devices.

The current state of the problem of standardizing data
representations and algorithms in general is well
explicated in [1] in the case of the partitioning problem.
This description makes clear the need for a unified
approach such as we are proposing here. For the
partitioning problem alone, there are many possible
choices, not only for the data representation of the
input, and the benchmark circuits, but also for the exact
problem statement itself. Thus it is very difficult to
compare the results of two researchers, unless
comparisons are explicitly stated in the research reports,
and it is almost impossible for a system developer to be
confident of making an appropriate choice for a basic
algorithmic strategy to implement or an improvement
that would improve system performance. Clearly this
state of affairs can only hinder the development of the
powerful VLSI design tools needed now and even more
necessary in the near future.

4. CIRCUITBASE--REPRESENTING
CIRCUITS AS GRAPHS

To support the development of VLSI design systems
in general and the standardization of evaluation of VLSI
algorithms in particular, we have begun development of
a package which we call Circuitbase {12,13].
Circuitbase will enable more efficient system
development by providing a data environment which is
flexible, supports many different tasks, and can be used
in a general setting or customized for particular tools
and technologies. Circuitbase is designed to encourage
much more extensive benchmarking of algorithms than
is typically the case at the present time. Ongoing
extensions of the work described here will eventually
result in a comprehensive systems development tool
which can be included in a development environment
such as Ptolemy [15].

Circuitbase is built on top of the Stanford Graphbase
(SGB), designed by Knuth [10]. It will combine the
extensive graph manipulation routines of SGB with
real-life examples from the MCNC benchmark sets [3],
with the ability to generate random examples of circuits,
and with routines for statistical analysis of output and
report generation. In Circuitbase a particular circuit or
network of circuits is represented by a modified
adjacency list form of a graph. This allows all the
power contained in the original SGB package to be
applied to the problems we are attempting to solve.
Circuitbase has particular applicability to nonnumeric
problems such as partitioning, logic minimization,
reconfigurability, and general routing problems.
Circuitbase views will be most useful in the physical
and structural domains, rather than in the behavioral
domain.

The ideas behind Circuitbase are a unification of three
main trends in combinatorial computing in general and
in VLSI algorithm development in particular

--the development of powerful systems for
manipulating and studying graph-based problems,

--the collection of benchmark sets of actual
circuit data, and

--the progress in generating classes of random
graphs which important properties with graph
representations of actual circuits.

A comprehensive discussion of the current state of the
art in combinatorial algorithms in general can be found
at the Stony Brook Algorithm Repository [18], where a
large collection of problems and algorithms for solving
these problems is available. Many algorithm
implementations are part of general graph manipulation
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packages, several of which are also described. Many of
these packages have been developed to support the
theoretical study of graphs and/or the visualization of
graphs.  For current VLSI problems, the graphs
involved tend to be too large for visualization to be very
effective. Also the graph generation routines attached
to most of these packages do not support the generation
of graphs with the specific real-life characteristics,
which circuit-related graphs tend to possess [8]. From
among the many packages available, we have chosen
the Stanford Graphbase (SGB) as the basis for
Circuitbase. SGB is compact (the source code for the
SGB kemel, including extensive documentation, takes
up only about 75 Mb) and comprehensive, and is rated
highly by the developers of the Stony Brook Algorithm
Repository.  More important, it was developed
originally to deal with ‘“real-world" problems
(specifically to manipulate data sets arising in compiler
development and operations research [10]) . Thus its
original purpose is in line with the project we are
describing here. Finally, the original SGB already
contains a module gb_gates which supports a structural
view of circuits.

The most comprehensive collections of actual circuit
data are probably those archived at [3]. These archives
contain benchmark sets collected over the years from
various sources and targeting many specific VLSI-
related problems, including technology mapping,
partitioning, timing, routing, logic synthesis, simulation,
and testing. Each benchmark category has its own data
format or formats. These sets are an invaluable
resource, but the wide variety of sets and formats
available means that two researchers choosing
benchmarks for evaluating an algorithm for a specific
problem may not choose the same benchmark sets or
the same format for a given set. Thus they may not
actually be using the same test data. Another source of
benchmarks is [14]. Other sources of actual circuits,
primarily industrial, have also been employed (as, for
example, in [5]), but they have not been used
consistently by a wide range of authors.

A promising relatively recent development has been
the generation of "circuit-like" random graphs
[4,7,8,9]. Consistent use of random graphs generated
according to one of these schemes is a valuable addition
to the use of actual circuit data. Care must be taken,
however, to ensure that circuit interpretations are
uniform from one algorithm analysis to another and that
parameters for generating the graphs are clearly given if
these circuits are used to determine the performance of
a particular algorithm or algorithms.

5. SGB--A BRIEF DESCRIPTION

The complete SGB package is in the public domain.
SGB is written in the language CWEB, which is a mix
of C and TEX. This language is an example of what
Knuth calls "literate programming", since the actual
program files are self-documenting. The source files
which make up SGB should not be modified.
Circuitbase uses the built-in SGB “change file"
mechanism which allows local customization without
changes to the master files. The SGB files can be
compiled to C or used to produce TEX documents by
using the programs CTANGLE and CWEAVE, which
are included in the SGB package. Currently most of our
modifications and additions to SGB, which make up
Circuitbase, are written in standard ANSI C and have
been run on SUN workstations and on PC's. Some of
our extensions are written in C++. As the Circuitbase
user interface is developed further, more extensions will
be in C++ rather than in C.

The kernel of SGB consists of four modules:

--gb_graph defines standard vertex, arc, and
graph data structures and includes routines for storage
allocation. The basic graph data structure is a linked list
adjacency representation of the graph adjacency list;

--gb_io performs input and output;

--gb flip is a portable random number
generator;

--gb_sort performs sorts on 32-bit keys,

SGB also includes a mechanism for comparison of
algorithms called "mem-counting.”  This reports
running time of an algorithm in terms of references to
memory and thus provides a machine-independent
measure of efficiency.

SGB elements contain user-modifiable "utility fields",
each of which can hold a pointer to a vertex, a pointer to
an arc, a pointer to a graph, a string, or an integer. This
allows graphs, vertices, and arcs to be customized to
represent problem-specific data. The size of an SGB
graph is limited only by the resource constraints of the
system on which SGB is running,

The basic data structure in SGB is a graph, G, defined
as a C structure. A graph G consists of vertices and
arcs, each of which is also a structure. The vertices of a
graph are stored in an array, with the arcs coincident
with a given vertex stored in a linked list (adjacency list
representation). The basic SGB graph is directed, but
undirected edges can also be represented.

For our purposes, the most interesting special purpose
module in SGB is gb_gates, which contains logic gates
(OR, AND, NOT, XOR, and a latch) as primitive
vertices and from which various circuits can be
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constructed and functionally simulated using a built-in
function gate_eval. The module gb_gates comes with
built-in routines prod (m,n), for constructing a parallel
multiplication circuit with m-bit multiplicand and n-bit
multiplier, and risc(r), for constructing a reduced
instruction set computer with r registers. The gb_gates
module essentially provides an S1 (structural, level 1)
view of VLSI components and supports the creation of
higher level structural views, including “prod” and
“risc”.

6. CIRCUITBASE EXTENSIONS TO SGB

Circuitbase, which contains SGB and our extensions
to it, currently supports a physical view, a structural
view, and a behavioral view of a digital circuit.

6.1. PHYSICAL VIEW

The physical view which we support is based on the
Partitioning93 benchmark from CBL [3].  This
benchmark consists of a library of 28 distinct
combinational gates, with associated physical
information. and a collection of 31 circuits which have
been built by defining nodes consisting of one of the 28
gates and connections, or edges, between the nodes.
The circuits range in size from 10-20 nodes up to about
100,000 nodes. Most of the circuits are “sparse”, i.e.,
the number of edges in each circuit is no more than two
or three times the number of nodes in the circuit. Since
the specifications of the 28 combinational gates include
physical information, the circuits can be viewed as
abstract graphs or as partial physical instantiations of
the actual circuits (where gate area, gate functionality,
gate delays, and connectivity are defined, but placement
of each node is undefined, e.g.).

In our Circuitbase representation, cell functionality is
stored in an array of truth tables, one for each primitive
gate, while physical information is stored in a separate,
corresponding, array. Thus it is easy to replace specific
physical information about the set of primitive gates
with another set of values. In fact, we can define as
many different (physical) versions of a cell set as we
desire. We can also ignore the physical information
and view the circuits as abstract “lookup tables”
(LUT’s) if we wish to concentrate only on the abstract
graph theoretic properties of the circuits we are
studying.

Currently we are using this physical view to develop a
protocol for design and analysis of partitioning
algorithms. We have identified four classes of

partitioning algorithms which are common in the
literature--Kernighan-Lin type strategies, simulated
annealing, genetic algorithms, and straightforward
greedy methods [11,17). We have chosen one
representative of each of these classes of partitioning
algorithms for extensive study. Using the Circuitbase
representations of the Partitioning93 benchmark
circuits, we are concentrating not on developing better
algorithms but on developing comprehensive and robust
methods for comparing these four basic algorithms and
modifications of these four algorithms. With the
support of SGB and the routines we have added, an
algorithm designer can easily parameters the different
inputs to a partitioning algorithm and determine how
changes in these parameters will affect algorithm
performance. We are considering two versions of the
partitioning problem. In the simplest, each circuit is
treated as a graph with unweighted nodes and edges and
our objective is simply to partition the vertex set V into
two halves, V' and V”’, with a minimal number of
edges between V’ and V', In the second version we
are also attempting to balance the total area of the
vertices in V’ with the total area of the vertices in V",
For each version of the problem we are interested in
studying, we define a cost function on the Circuitbase
graphs. The cost function can be very general, taking
into account, for example, vertex area, edge length,
number of edges between the partitions, or any other
measure deemed reasonable. By relying on the SGB
housekeeping routines which have been incorporated
into Circuitbase, the algorithm developer can spend less
time on messy graph manipulation and more time
experimenting with various cost functions and choices
for the algorithm parameters.

6.2. DEFINING STRUCTURAL AND
BEHAVIORAL VIEWS

We have also implemented structural and behavioral
views in Circuitbase.

The structural view is based on the LGSynth9l
benchmark set [3], for which extensive documentation
is available Since the primitive gates in this benchmark
set include latches, our Circuitbase implementation of
these gates must include data fields which store both
"previous" state and "current" state. Logic gates in this
benchmark set which have exact counterparts in the
partitioning benchmark mentioned above can be linked.

The behavioral view which we have implemented
initially is based on the basic SGB module, gb_gates
and the associated risc generator module risc(r). We
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have translated this risc architecture description into
AHDL, a high level description language supported by
the Altera toolset [2]. Thus we can take a behavioral
AHDL description of a component and map it either to
a corresponding structural or physical view, based on its
gate-level  implementation. The  Complex
Programmable Logic Devices (CPLD’s) parts supported
by the Altera tools are structurally and physically very
different from the primitive gates included in the
partitioning and logic synthesis sets described above.
They represent yet another circuit view which must be
accommodated in a comprehensive design system. Our
work so far has begun the process of defining reliable
pathways between these views.

A much lower level behavioral description of a circuit
is the SPICE simulation view. Currently this is the level
at which designers of analog circuits, optical
interconnect, and MEMS (microelectromechanical
systems) are most likely to be working. We have begun
the work of including a SPICE-level view in our
system. Currently we are evaluating the necessity for
generalizing our circuit representation to include
hypergraphs to support this level, since we want to be
able to include subcircuits efficiently in our SPICE
descriptions.

7. CONCLUSIONS

Circuitbase, the system we have described here,
extends the concept of a well-supported tool for
combinatorial computing to the field of VLSI circuit
and system design. Circuitbase currently includes
several examples of benchmark data from actual
technologies and circuits, as well as the primitive gates
and routines from the gb_gates module of SGB. At
present we are implementing several extensions. These
include:

--addition of randomly generated circuit
graphs. This may involve developing new techniques
or providing routines to convert data available from
other sources (e.g., [4,7,8,9]) into Circuitbase format;

--addition of a view which includes SPICE
information. As noted above, this may eventually lead
to generalizing the basic Circuitbase structure to include
hypergraphs. A standardized lower-level behavioral
view could become extremely important for
maintenance and for circuits which include nondigital
components;

--further development of object-oriented
concepts to support system modularity; inclusion of
object-oriented concepts could improve standardization
of algorithm comparisons.
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Future work planned also includes exploring the
addition of Knuth's "literate programming" concept to
our system, development of new VLSI algorithms,
particularly for partitioning, and comparison of these
with existing algorithms.
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