Sharing Electronic Design Data Via Semantic Spaces

Karen C. Davis'
Database Systems Laboratory
University of Cincinnati
Cincinnati, OH 45221-0030
karen.davis@uc.edu

Abstract

Electronic Design Automation (EDA) tools, such as
layout generators and simulators, have generally fo-
cused on algorithms and techniques for hardware de-
stign. Data management aspects have not been empha-
stzed, but the volume of data, heterogeneity of data
formats, and the evolution/proliferation of tools have
made data modeling and data inierchange increasingly
mmportant research issues. The data sharing problem
stems from the fact that related EDA tools are often
used in various sequences to manipulate and annotate
a single design. In a typical design environment, tools
use file-based data storage, with limited data modeling
capabilities, and primitive or non-ezistent query facil-
ities. In order to support current tools, we wish to
preserve the semantics of existing hardware descrip-
tion languages in rigorous data models; we propose
to capture each existing language tn a semantic space
model. We view data interchange as a query against
one semantic space that produces objects, i.e., query
answers, tn another semantic space. We define an
integrating meta-model, the meta-space, and also de-
fine general query operators for transforming objecis
between semantic spaces. These query operators de-
fine both the intension and ertension of a query re-
sult; the transformed data is described in the lype
system of the meta-space, thus providing explicit se-
mantics for the shared data. Qur modeling approach
supports advanced and evolving applications, such as
hardware/software codesign, through the ability to re-
trieve data resident in indiwidual semantic spaces, as
well as to share data in semantic spaces from different
EDA sources.

1 Introduction

An Electronic Design Automation (EDA) environ-
ment can be characterized as a collection of tools that
produce and consume data representing hardware de-
signs. For example, a behavioral specification of a de-
sign can be used as input to a simulator that in turn
produces data about how the design performs under
certain conditions. Simulation data can then be back-
annotated into the design specification as further de-
tail about the design. Backannotation is typically ac-
complished by an EDA tool that augments a hardware

*Research partially supported by NSF Grant IRI-9210200.
t Author for correspondence. Phone: 513-556-2214. Fax:
513-556-7326.

0-8186-8409-7/98 $10.00 © 1998 IEEE

Satish Venkatesan
Intel Corporation
RN4-38, 2200 Mission Clg. Blvd.
Santa Clara, CA 95052
satish@scdt.intel.com

*

Lois M.L. Delcambre
Computer Science and Eng.
Oregon Graduate Institute
Portland, OR 97291-1000

Imd@cse.ogi.edu

design with additional information. The tool’s input
usually consists of several files with different formats.
The main drawbacks of this approach are that

e the semantics of data integration (e.g., annotation
of a design with timing data) is embedded in the
tool, and

* each language/format is file-based and thus its as-
sociated tools lack query processing capabilities.

A goal of EDA frameworks is to allow tool inter-
operability [1]. At the core of such a system is a
repository (or repositories) of design information. De-
signs are commounly specified in a hardware description
language such as VHDL [2]. VHDL has widespread
use! in primarily file-based environments. In addition,
other related languages such as SDF [6] for timing
data are also used in data files. Even though various
object-oriented database systems have been proposed
for EDA [10, 3, 5, 20], in practice the vast majority
of design data resides in files, not databases. Existing
CAD database research does not consider hardware
description languages, and does not focus on specify-
ing integration semantics between related EDA mod-
eling languages/formats. Researchers have begun to
examine the ways in which a design specification lan-
guage influences data management [19]. In this paper,
we explore one of the options, modeling data spec-
ified using standard EDA hardware description lan-
guages in a database system. We focus on sharing data
objects between different EDA languages/formats us-
ing our database model. We represent objects whose
source can be various hardware description languages
in our database model. The main contribution of this
research is the transformation of objects represented in
one language to another through the use of query op-
erators with formally-defined semantics. This means
that a designer can easily work with a wide variety of

1The VHDL International organization has over 3000 tech-
nical members and over 20 corporate members; industry an-
alysts estimate that VHDL holds 53.8% of the market share
for hardware design languages, and is expected to have a com-
pound annual growth rate of 28% (http://www.e2w3.com/vi).
It is estimated that 30% of US Electrical Engineering depart-
ments teach VHDL in their undergraduate curriculum; an ex-
tensive education program for VHDL is planned under the
ARPA RASSP Education and Facilitation Efforts program
(http://rassp.scra.org).

tools without worrying about data transformation and
be sure that the semantics of the objects are correctly
preserved.

In our work, each hardware description language
employed in an EDA environment corresponds to a
semantic space. Our approach to modeling EDA data
captures and preserves different (but related) seman-
tic spaces and allows sharing of objects between spaces
in a formally defined way. Users of a particular lan-
guage/format can then retrieve objects from a seman-
tic space using a query language; tools leveraged to use
the database can issue queries to find objects of inter-
est rather than having to include file parsing/searching
algorithms in addition to their EDA algorithms.

Our model and query language have been real-
ized in an implementation of a database system called
Odyssey [15]. File-based tools can also use Odyssey
since a parser and composer are included in the sys-
tem architecture to input and output formatted files,
respectively. Odyssey has been integrated with sev-
eral state-of-the-art EDA tools for hardware/software
codesign and cosynthesis [11, 15, 4, 17]. Odyssey pro-
cesses queries issued by a tool that partitions system
specifications into hardware and software specifica-
tions, and another that uses case-based reasoning for
component reuse.

In this paper, we define a meta-space for repre-
senting the semantics of inter-related modeling lan-
guages. The meta-space allows for user-defined types
and instantiation of the types (collections) with re-
spect to the semantics of individual semantic spaces.
The dashed lines indicate that objects can be migrated
between spaces via queries or other transformations.
Qur query language 1s defined over the meta-space; it
allows retrieval of objects defined within a semantic
space and from different spaces.

Section 2 describes an EDA application where data
sharing semantics are currently embedded in tools.
Tools are responsible for parsing VHDL and SDF files
and combining the data into annotated VHDL files. As
an alternative to current practices, we migrate data
between semantic spaces, VHDL and SDF, using for-
mal, tool-independent transformations. The semantic
spaces and the meta-space are introduced in Section 3.
Our query algebra and examples are described in Sec-
tion 4. Contributions of this paper and directions for
future work are discussed in Section 5.

2 Data Sharing Example: VHDL and

SDF

A typical Application Specific Integrated Circuit
(ASIC) design process [18] is illustrated in Figure 1.
Tools are shown in ovals and the input/output is la-
beled on the directed arcs. The initial input is a reg-
ister transfer level (RTL) VHDL design, and the even-
tual output is a VHDL circuit model backannotated
with SDF delay information. The process occurs via
transformations carried out by the tools. A synthe-
sis tool transforms the RTL design into a VHDL cir-
cuit model file, a netlhist file, and a layout description.
These three files serve as input to an ASIC delay cal-
culator tool. The calculator tool produces a Standard

433

Delay Format (SDF) file. The VHDL circuit model
and SDF files are input to a simulation tool that simu-
lates the activity of the design on input data and pro-
duces simulation results. The simulation tool has sev-
eral functions, including (1) parsing SDF and VHDL,
(2) elaborating VHDL (e.g., expanding parameterized
components into instances of those components), and
(3) backannotating the VHDL design with delay infor-
mation. Note that the tool must perform data inte-
gration activities in order to fulfill its primary function
of simulation. Any tool that reads and combines data
from multiple distinetly formatted sources has embed-
ded data integration semantics.

RTL Design (VHDL)

synthesis tool

circuit mode! (VHDL) netlist

y escription
ASIC Delay Calculator >

timing and delay info (SDF)

" backannotated circuit

Simulation Tool)

* model (VHDL)

simulation results

Figure 1: Typical ASIC Synthesis Design Process

We propose to move some of the data integration
semantics into the data modeling realm, thus reliev-
ing tools of reinventing this functionality in appli-
cation code. We accomplish this by formally defin-
ing the semantic space for each relevant EDA for-
mat/specification language, and defining transforma-
tions between spaces. The query language described
in Section 4 defines general transformations. Cus-
tomized transformations can also be defined over the
model. Using the model discussed in the next sec-
tion, we would integrate VHDL and SDF via a query,
resulting in an object in the VADL? semantic space.
In related research, another transformation produces
VHDL with embedded annotations from VHDL* [13].

Figure 2 depicts integrating instances in the VHDL
and SDF semantic spaces via a query. The VHDL se-
mantic space depicts an instance (Full Adder) of a
VHDL Architecture; the full adder contains two in-
stances (hal, and ha2) of half adder components. The
SDF semantic space depicts instances containing delay
data (computed by a delay calculator tool) for the full
adder object in the VHDL space. It contains delay in-
formation for design regions (component instances in
the VHDL space). These instances from the VHDL and

SDF spaces are integrated via a query to generate an
Annotated Architecture type and its instances in the
VHDL?* space. While the picture depicts data integra-
tion between instances, the query language facilitates
integration at the collection level. Intensional and ex-
tensional semantics of query operators are described
in Section 4, along with the query that produces the
Annotated Architecture type.

Figure 2: Combining Collection Instances from Differ-
ent Semantic Spaces

3 Model

In this section, an overview of the meaning and or-
ganization of semantic spaces is given. Intuitively, a
semantic space consists of a set of types and direct
subtype relationships. OMT [7] notation is used in-
formally here to describe the types and relationships
between types in a semantic space. Types are shown
with rectangular boxes; an instance of a collection is
shown with a rounded-edge rectangular box. Collec-
tions are either implicit (all instances of a type) or are
explicitly formed via a query expression. Types may
have multiple extents since a subset of a collection may
have the same type as the collection.

o ‘
ENTITY implemenied b o pRCHITECTURE
has_ports ?
has_components
')
COMPONENT
INSTANCE

Figure 3: Excerpt of Types in the VHDL Semantic
Space

In Figure 3, an excerpt from our VHDL semantic
space is given. The full model (over 70 entities) is
described elsewhere [14]. For purposes of the example
here, consider the primary types of VHDL to be Entity,
Architecture, Componentinstance, and Port. Three re-
lationships are shown, (i) an Entity is implemented_by
one or more instances of an Architecture, (ii) an En-
tity is related to an its input/output ports by the one-
to-many relationship has.port, and (iii) an Architec-
ture may consist of zero or more connected compo-

434

nents. These types describe VHDL design units that
can be instantiated to form valid designs. The excerpt
identifies a semantic space that expresses meaningful
VHDL objects and their relationships. Instances of
this model constitute input and/or output for VHDL-
based tools.

The model satisifies our requirement of maintain-
ing existing EDA functionality because it captures the
core abstractions of design interface { Entity and Port)
and hierarchical design implementation (Architecture
and Componentinstance). VHDL can be input and
output from the database, and tools that use it need
not be aware that their data is coming from or going
into a database. Two questions arise:

o how can advanced tools that need query capabil-
ities utilize the database, and

e how can non-VHDL EDA data be incorporated
into the database?

Note that meeting these requirements should not in-
terfere with the use of VHDL data by existing appli-
cations.

The challenge here is to capture all of the re-
lated models (e.g., VHDL and other similar languages)
in one meta-space so that semantically meaningful
queries over different semantic spaces can be ex-
pressed. Our approach is to define the meta-space as
well as the individual semantic spaces in our schema
and use a query language that defines the intension
and extension of queries over collections. In this
way, data sharing can be accomplished between dif-
ferent formats. Each query answer will include a
type from a semantic space as the intension and a set
of instances as the extension. Transformations that
add attributes to VHDL designs create objects in the
VHDL*semantic space; this data can be transformed
to annotated VHDL designs, thus making new data
usable by VHDL-based tools [13]. We also support
transformations that hide VHDL attributes in order to
support use of the data by tools that are not VHADL-
specific. Designs that are missing intrinsic VHDL at-
tributes belong to the semantic space VHDL™. Cur-
rently, the semantics of similar transformations are ei-
ther embedded in tools or are non-existent.

The meta-space for organizing and relating seman-
tic spaces is given in Figure 4. The purpose of the
meta-space is to describe features of the entities in the
semantic spaces and provide a uniform basis for query
language semantics. All semantic spaces have an in-
tensional and extensional component. The primary
entities are Intension and Ertension. Intension mod-
els the type hierarchies of semantic spaces; Ezrtension
models the collections of objects that are resident in
the database. An Ertension instance may be described
by a query ezpression and may be a superset/subset of
other collections. Intension is further divided into SDF
Space and VHDL Space, the two hardware description
formats defined for our prototype. The actual inten-
sion for SDF Space appears in Figure 5 and is discussed
below. All of the types in SDF are instances of SDF
Space.

A very small but representative portion of the
VHDL Space [16, 14] is shown in Figure 3. Character-
istics of the intensional component of VHDL Space are
further elaborated in Figure 4. The types in the inten-
sion for VHDL Space can be further described as Anno-
tatable and Non-Annotatable. Intuitively, annotations
are external characteristics of a design that result from
analyzing its structural or behavioral specifications,
usually via a tool. In general, non-primitive types are
annotatable. All of the entities shown in Figure 3
are instances of Annotatable. Non-Annotatable types,
such as VHDL Built-in Type and VHDL User-defined
Type, can be used to annotate annotatable types.

Intensional types that model EDA domain-specific
constructs are instances of VEDL Domain, and types
derived from these types are VHDL Dertved, either in
VHDLY or VHDL~. If intrinsic VEDL properties are
removed from a VHDL Domain object via a query op-
erator, it becomes a VHDL™ object; adding properties
makes it a VADL'T object. The entities and relation-
ships depicted in Figure 4 are formally defined as se-
mantic domains in our denotational definition.

Additional semantic spaces can be defined for other
data models or formats. For example, a Standard De-
lay Format (SDF) [6] model appears in Figure 5. The
primary types supported by SDF are DesignAnnota-
tion, DesignRegion, and TimingSpecification. A Des-
ignAnnotation denotes the design being annotated; it
consists of annotations for DesignRegion where each
region may be a component of the design. The an-
notation data depicted here are timing specifications;
a specification may take various forms such as delay,
timing checks, and timing environment information.
An SDF design annotation abstraction corresponds to
a VHDL entity and architecture; a design region to a
component instance in VHDL.

Design Annotation Design Region
name ~ 1+ cell type
version cell instance
technology

(Timing SpeclﬁcatlonJ
N

[|
Timing Timing

Check Environment

Figure 5: SDF Semantic Space

A VHDL object annotated with SDF data can be
output as a VHDL object (with SDF data as embedded
annotations), and is thus usable by VHDL-based tools.

4 Query Algebra

This section describes our query algebra and illus-
trates it with some example queries. The query oper-
ators are used to share data across semantic spaces,
in addition to allowing queries to be expressed over

435

individual semantic spaces. The query operators fa-
cilitate retrieval of designs based on search criteria,
where this capability was not previously possible in
a file-based environment. In addition, the ability to
share data between formats is now accomplished by
formally defining the semantics of data integration,
where this capability previously existed only in appli-
cation software.

4.1 Operators

The input and output of queries are collections; a
collection has an intension (type) and an extension
(set of members). All operators create new collec-
tions. The project, extend, union, intersect, and
restrict operators create a new intension if necessary.
The definition of the query language infers a query
result’s intension from the intension of the input and
the query operator.

The select operator is a set-manipulating op-
erator that returns a subset of the members
from a source collection. The operator has the
syntax <output_collection> := select(<predicale>)
<input_collection>> where <predicate> is a function on
the source collection and its associated intension. The
semantics of select are to collect all the input members
satisfying the predicate into the output. The output
collection has the same intension, i.e., the same type,
as the input collection.

The project operator derives an intension from an
existing intension; the properties to be preserved are
specified as an argument. The new intension is a su-
pertype of the input intension. and may belong in
a different semantic space depending upon its list of
properties. For example, if the input intension is in the
VHDL semantic space and some of its builtin proper-
ties are missing in the output, the resulting intension
will be in the VHDL™ space. The set of members in
the output collection remains the sanie.

The extend operator defines a new intension by
adding a new property to an existing intension. The
annotation argument to extend may take one of two
forms. In one form, the property being added takes
values from existing data. The annotation is specified
as a query expression; values are derived from existing
data. The Annotated Architecture view illustrated in
Figure 2 is defined using this form; this extend op-
erator is similar to Scholl’s extend [8]. In the second
form, the annotation definition consists of only a prop-
erty name and type; values are provided later. This
is a schema evolution operation with both the new
and old intensions and extensions being maintained.
The old intension continues to support existing appli-
cations while the new intension is available for further
processing.

The restrict operator limits the domain of a prop-
erty to a subtype of its existing domain.

The union operator returns a set of objects con-
sisting of members in either or both of the input col-
lections. The resulting intension is the lowest common
supertype.

Members of the output collection of the intersect
operator consist of objects that are in both the input
collections. The intension of the result is the greatest

supertype-of
has-extent

superset-of

Extension

subtype-of ; subset-of
query expression
Space Space perty
A A
has-property L !
Annotatable Non-Annetatable Annotation l VHDL Built-in
annotated-by
. . i annotates intrinsic-prpperty-of
type-of-annotation
VHDL Domain r VHDL Derived
i$-property-of J
[1
l VHDL Built-in Type J ' VHDL User-defined Type J
used-by uses
4
4

YHDL+ VHDL-
Space Space

Figure 4: Meta-space for SDF and VHDL

common subtype of the intensions of the input collec-
tions.

The rjoin operator performs a reference join be-
tween the input collection and the members of the
codomain of one of its properties.

The flatten operator operates on sets of sets and
returns a set of objects. It is similar to the flatten
operator in Shaw and Zdonik’s algebra [9].

Ezample 1: Figure 2 depicts integrating instances
in the VHDL and SDF semantic spaces via a query.
The VHDL Architecture and DesignAnnotation in-
stances are members of collections ArchCollection and
TimingDataCollection, respectively. The following
query creates an AnnotatedArchCollection consisting
of Annotated Architecture instances:
AnnotatedArchCollection = restrict (timing =
select (self.name == timing.name) TimingDataCol-
lection) ArchCollection

The query (i) extends objects in ArchCollection with
a timing attribute, and (ii) specifies attribute values
via a join (based on name) between ArchCollection
and TimingDataCollection. AnnotatedArchCollection
may now be queried to retrieve VHDL architectures
based on timing data. Other EDA tools may perform
different analyses over the same VHDL architectures
and accordingly define other tool-specific views. Both
intensional and extensional results of queries are au-
tomatically inferred.

Ezample 2: Figure 6 illustrates example queries issued
by synthesis and simulation processes. The goal of

436

the synthesis process is to generate a structural de-
scription from a high level behavioral specification;
both the structural and behavioral descriptions are
in VHDL. The synthesized design must satisfy con-
straints on, among other things, area, power, and tim-
ing. The goal of the simulation process is to verify
functional correctness of designs as well as to obtain
accurate estimates on timing. Under the methodology
used for this example, SDF is used to model timing
data and constraints on area and power are specified
using simple attributes.

Database activities of the simulation process are
to (i) retrieve and classify VHDL designs as simulat-
able, and (ii) annotate them with analysis results (SDF
space); these are depicted in queries @, @, and @).
Database activities of the synthesis process are to (i)
identify designs suitable for synthesis, (ii} annotate
them with constraints on aree and power, and (iii)
retrieve designs based on constraints. The first two
activities are depicted in queries @, @), and ®).

In this example, both simulation and synthesis pro-
cesses share VHDL data but analyze and annotate
them separately. Annotations from simulation and
synthesis are then integrated via queries to obtain
query answers in © and (. The intension for collec-
tion SimSynArchitectures (D), SIM-SYN-ARCH, is in
the VHDL™ semantic space; SIM-SYN-ARCH s derived
from ARCHITECTURE (VHDL space) by enhancing it
with timing (SDF space), area, and power properties.
Projecting power and area properties from SIM-SYN-

ENTITY

implementations

-

l

ARCHITECTURE

[

|

SIM-ENTITY SYN-ENTITY
SIM-ENTITY

SYN-ENTITY N

SYN-ARCH

SIM-ARCH

I e

i implementations__~

implementations

SIM-SYN-ENTITY SIM-SYN-ARCH
(a)
AlEntity AllArchitecture
ENTITY ARCHITECTURE
@ Collection of all Entity objects Collection of all Architecture objects

{EI(A1.2), EX), E3(A5.6). E4(A34), ES(A7.8.9))

T

SynEnts SimEnts
SYN-ENTITY SIM-ENTITY
select (..} select (...}

extend (classt : String)

extand (class2 : String)

{Al - A9}

SR

SynArchitectures SimArchii es
(E3(AS.6). E4(A34), ES(AT.8)} {E10, E2(), EX(A5,6)) SYN-ARCH SIM-ARCH
select (..} select (.}
@ extend : restrict (timing = ...)
* {arez : sq microns; power: watts’

SynthesisEntities SimulationEntities (A3 - A3 [A3 - A6}
SYN-ENTITY SIM-ENTITY" /
restrict restrict . .

(impls.. = Hatten(join (sef.impls..) SynEnts} (imphe.. = flattenirioin {sef.impis..) SimErts) @ SimSynArchitectures

SiM-SYN-ARCH

n SynArchitectures

N SimArchitectures

{E3(A5.6), EA(), ES(A7.8))

SimSynEntities

{E1(). E2(). E3(A5.6))

SIM-SYN-ENTITY

intersect (Syn..Ent.., Sim..Ent..}

{E3(A5.6)}

(b)

Intersect (Syn..Arch.. , Sim.Arch..)

{A5.A6)

Collection

niension

Query (membership definition)

Members

Figure 6: Example: Extend. Restrict, and Intersect

437

ARCH would generate a result in the VHDL™ space.

Tools can now query collections © and @ to re-
trieve designs satisfying timing as well as area and
power requirements; this can now be accomplished
without parsing multiple files in VHDL and SDF for-
mats. Matching designs are input to subsequent pro-
cesses such as floorplanning and layout generation.

Multiple inheritance conflicts arising from redefini-
tion of properties (such as by restrict) are automat-
ically resolved, an algorithm and proof of correctness
are available [12].

5 Conclusions

In this paper, we examine an application area, elec-
tronic design automation (EDA), and discover oppor-
tunities for introducing database technology into the
EDA software environment. In particular, we address
the lack of query processing capabilities, and the pro-
liferation of data formats. We propose a meta-model
that relates models of EDA data formats (called se-
mantic spaces here). To allow queries over semantic
spaces, we define query operations as general trans-
formations over semantic spaces. Contributions of the
research have two aspects: one is the fundamental re-
search in data modeling and query language seman-
tics, and the other is the practical impact that the
research has for EDA environments.

Contributions related to modeling are summarized
below.

e We propose a semantic space model for formally
capturing and preserving the semantics of related
EDA file-based modeling languages/formats.

e The meta-space defines a clear separation of types
{(intension) and collections (extension), and it
supports multiple extents per type.

¢ The semantic space model provides the basis for
formally defining transformations for migrating
objects from one semantic space to another. In
other words, importing and exporting objects de-
fined using related models is automatically ac-
complished via the semantics of the operators
used to define object collections.

The impact of the research on EDA tools and envi-
ronments is described below.

e Query capabilities are added to an environment
previously lacking them.

¢ Existing tools are transparently accomodated.
e Evolving applications can be supported by queries
or customized transformations; new semantic

spaces can be defined and incorporated as well.

¢ Data integration semantics are formally defined
in a tool-independent manner.

Considerations for future work are outlined below.

438

¢ A future extension would be to model the con-
straints of each semantic space rather than just
structure and relationships.

¢ Query optimization, both over the meta-space
and for individual semantic spaces, could be ex-
plored.

¢ We have considered two disjoint semantic spaces
in this paper, but we have not addressed the over-
lap between semantic spaces (such as VHDL and
CFI Design Representation) here. We address se-
mantic mapping in an earlier work [16], but not
in terms of semantic spaces.

o Currently, semantic spaces are defined by domain
experts. Users and tools can instantiate existing
spaces, and generate new intension/extension via
query operators or other transformations. Au-
tomatic or partially automated generation of se-
mantic spaces is a topic for future investigation.

References
(1] T. J. Barnes et al. Electronic CAD Frameworks.
Kluwer Academic Publishers, 1992.

IEEFE Standard VHDL Language Reference Man-
ual. New York, NY, 1993.

W. Kim, J. Banerjee, Hong-Tai Chou, and J. F.
Garza. Object-oriented Database Support for
CAD. Computer Aided Design, 22(8):469-479,
October 1990.

R. Miller, H. Carter, K. Davis, and S. Venkate-
san. Hardware/Software CoSynthesis: Multiple
Constraint Satisfaction and Flexible Component
Retrieval. In International Conference on En-
gineering Complez Computer Systems, Montreal,
Canada, October 1996.

Tapas K. Nayak, Arun K. Majumdar, Anupam
Basu, and Santonu Sarkar. VLODS: A VLSI Ob-
ject Oriented Database System. Information Sys-
tems, 16(1):73-96, 1991.

Open Verilog International, Los Gatos, CA
95032. Standard Delay Format Specification, Ver-
ston 3.0, May 1995.

James Rumbaugh et al. Object-Oriented Modeling
and Design. Prentice Hall, Englewood Cliffs, NJ
07632, 1991.

Marc H. Scholl, Christian Laasch, and Markus
Tresch. Updatable Views in Object-Oriented
Databases. In Proceedings of the 2nd Inter-
national Conference on Deductive and Objeci-
Ortented Databases, pages 189-207, Munich, Ger-
many, Dec 1991.

G .M. Shaw and S.B. Zdonik. A Query Algebra for
Object-Oriented Databases. In Proceedings of the
6th International Conference on Data Engineer-
ing, pages 154-162, Los Angeles, CA, Feb 1990.
IEEE Computer Society.

2]
(3]

[7]

(10] E. Siepmann and G. Zimmermann. Object-
Oriented Datamodel for the VLSI Design System
PLAYOUT. In Proc. of the 26th ACM/IEEE De-
stgn Automation Conference, pages 814-817, Las
Vegas, NV, 1989.

[11]) Ranga Vemuri, editor. Proceedings of the
COMET Project Review Meeting, Cincinnati, OH
45221-0030, Sep 1995. University of Cincinnati.

[12] Satish Venkatesan. Database Modeling for Elec-
tronic Design Automation Environments. PhD
thesis, Electrical and Computer Engineering,
University of Cincinnati, Cincinnati, OH 45221-
0030, January 1996.

[13] Satish Venkatesan and Karen C. Davis. Attribute
Management in a DBMS for VHDL-based CAD
Environments. Technical report, University of
Cincinnati, 1995.

{14} Satish -Venkatesan -and -KarenC: Davis.—De=- -

sign of a DBMS for VHDL-based CAD Environ-
ments. In CHDL’95, IFIP International Con-
ference on Computer Hardware Description Lan-
guages, pages 539-544, August 1995.

[15] Satish Venkatesan and Karen C. Davis. Odyssey:
An Electronic Design Automation Database. In
2nd International Conference on Applications of
Databases, pages 147-157, Santa Clara, CA, De-
cember 1995.

[16] Satish Venkatesan and Karen C. Davis. A Meta-
model and Semantic Mapping Methodology for
Hardware Design Data Management. Journal
of Integrated Computer-Aided Engineering, spe-
cial issue on Integrated Product and Process Data
Management, 3(1), 1996.

[17] Satish Venkatesan and Karen C. Davis. Flex-
ible Component Retrieval. Current Issues in
Electronic Modeling, Special Issue on Hard-
ware/Software Co-Design and Co- Verification, 8,
December 1996.

(18] VITAL. VITAL: VHDL Iniliative Towards
ASIC Libraries - Model Development Specifica-
tion, v2.2b, March 1994.

[19] Flavio R. Wagner. Design Management Require-
ments for Hardware Description Languages. In

EFURO VHDL 95, 1995.

[20] Flavio R. Wagner et al. Design Version Manage-
ment in the STAR Framework. In M. Newman
and T. Rhyne, editors, 3rd [FIP Workshop on
Electronic Design Automation Frameworks. El-
sevier Science Publishers B.V. (North-Holland),
1992.

439

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

