Low-Power Driven Scheduling and Binding'

Jim Crenshaw and Maijid Sarrafzadeh

Electrical and Computer Engineering Department
Northwestern University
Evanston, lllinois
crenshaw @ ece.nwu.edu, majid@ece.nwu.edu

Abstract

We investigate the problem of exploiting
signal correlation between operations to find a
schedule and binding which minimizes
switching. We propose several heuristics to
solve the problem. Experimentally, we give an
algorithm for scheduling communications on a
bus, which reduces bus switching up to 60%,
without increasing the number of cycles
required for the schedule. Low-power
scheduling efforts in the literature have focused
on decreasing the number of cycles in the
schedule so that the voltage required to run the
resulting circuit can be lowered. However, the
number of voltages supplied to a chip is likely to
be limited, so among the processes to be
implemented, typically only a few will determine
the minimum voltages, and the rest will have
slack in their schedules. Therefore it is
interesting to inquire about the impact of
scheduling which does not reduce the number of
time steps in order to decrease switching. In this
paper, we show that power-aware scheduling
can lead to significant decreases in switching,
often without an increase in the number of time
steps required. The technique is general, and
can be used to schedule operations 6n any kind
of resources.

1 Introduction

An increasing number of Design
Automation tools are taking power into account
as a solution metric along with the traditional
goals of high speed and low area. This trend is
driven primarily by the demand for battery-
driven, wireless devices, so less energy is
required to complete a given computational task.
In addition, low-power design techniques often
reduce the heat produced by a circuit, so major

cost benefits can be realized by less expensive
packaging requirements.

To address the power issue as effectively as
possible, it is important to take it into
consideration as early in the design cycle as
possible. In this paper, we show that signal
correlation information can be effectively
captured during behavioral simulation in such a
way that it can be used to decrease switching in
the resultant circuit by up to 60%, without
increasing the number of cycles required for the
schedule. Thus, this technique can be applied in
addition to popular voltage reduction methods.

The rest of the paper is organized as
follows. In section 2, previous work is discussed.
Section 3 covers background information and
assumptions in our switching model. Next, the
low-power scheduling problem is explored in
section 4. Experimental results given in section
5 show that heuristic methods can result in
significant improvements in power. Finally,
brief conclusions are drawn in section 6.

2 Previous Work

Interest in low-power design automation
has resulted in a significant body of work at
many levels of design abstraction. General
survey papers covering circuit level to
architectural and behavioral level include [1, 2].

For high-level synthesis, a number of
techniques have been demonstrated. One of the
most influential papers, [3], shows the
usefulness of increased parallelism to allow
voltage reduction for the same computational
throughput. This work has influenced several
research teams, such as [4] who show how to
use slack to avoid unnecessary computation, and
{Slwho show how a DFG might be partitioned
for multiple voltages. Other papers on modeling
functional units for behavioral level power
estimation have been written, such as [6].

" Research Supported in part by Motorola University Partnerships in Research and NSF grant number MIP-9527389.
Copyright 1998 [EEE. Published in the Proceedings of GLS-VLSI'98, February 19-24, 1998, Lafayette, Louisiana.

0-8186-8409-7/98 $10.00 © 1998 [EEE

406

The voltage idea was combined with an
iterative improvement approach using a square
switching matrix as the basis for a signal
correlation metric in [7]. The same authors had
earlier published an iterative algorithm designed
to reduce switched capacitance also based on the
square switching matrix, in [8]. Neither of these
papers investigated the effects of scheduling
changes alone. In the latter, capacitance
estimates are included to drive synthesis, and in
the former, the voltage reduction is key. Another
switching matrix based approach used a
simulated annealing technique in [8], but the
square table was suitable only for scheduling
DFGs without conditional statements, and the
annealing itself did not produce outstanding
results.

Other signal correlation techniques, based
on the dual bit type method are suggested in [10,
11], and exploitation of regularity in [12]. In
[13], switched capacitance is reduced by
partitioning the CDFG into groups with
minimized inter-group communication.

Other techniques include [14], which
attempts to improve sleep-mode for memories,
and for control synthesis, [15] among others has
presented a method. In the remainder of this
paper, we investigate the impact of scheduling
general CDFGs without voltage reduction to
reduce switching.

3 Background

This section describes the CMOS power
model which will be used in the rest of the
paper. The power derived from switching can be
calculated from the equation

1 9 :
pP= E—T—Z . Vpps,c, wheres, is the number
tenodes

of times node i switches during time T, ¢; is the
capacitance of node i, and Vpp is the supply
voltage.

In general, the switching of a node in a
circuit occurs when some primary input to the
circuit changes. In a non-idealized circuit
model, propagation delays and re-convergent
fanout can cause a node to switch more than
once for each change of primary inputs. After all
inputs to a combinational circuit have been
steady for a sufficient time, all switching ceases,
and the circuit settles into a state determined
entirely by the inputs. Now, after a new input
has been applied, the internal nodes may switch
and after some time, the circuit comes (0 a new

407

state. It is thus easy to see that the switching in a
combinational circuit is not determined by the
current inputs alone, but by the previous inputs
in conjunction with the current inputs.

Information about possible input pairs can
be captured during behavioral simulation using
a data structure known as a switching table.
Such tables can be used to account for switching
between sequentially —ordered operations,
conditional operations and operations which are
sequential with respect to two iterations of a
loop, and have been shown to be very accurate,
[16], typically to within about 6%.

The table has three dimensions, each of
which corresponds to atomic operation nodes in
the sequencing graph. The first axis represents
the previous operation, the second axis the
current operation, and the third accounts for a
single conditional operation which is scheduled
in between. By convention, the zeroth element
of the third axis corresponds to the case where
no node scheduled in between the other two.

At the end of each loop iteration during
behavioral simulation, all appropriate node
triples are enumerated for operations which
executed during the iteration, and the switching
associated with each is added to the switching
table. Once the simulation is complete, the table
may be used to quickly evaluate particular
schedule and binding solutions, accounting for
the entire simulation, but taking time
independent of the simulation length.

As an example of how switching tables are
constructed, consider the following HDL code.

while (true)

a=b + ¢;
while (port p
d = e +
endwhile
g=2*4;
h=54+g;
endwhile

Suppose this code is simulated for two
iterations of the outer loop. In the first iteration,
suppose port p is 1 for one time step (so d is
calculated once); and in the second outer
iteration, p is 0. Suppose further that b, ¢, e and
f are inputs, and their values are 15,14,21,11 for
the first iteration, and 14, S, don’t care, don’t
care, for the second. Then the operations of a
behaviora! simulation are shown in Figure 1. In
the first column, the first outer loop iteration is
shown. Since p is 1 for exactly one inner
iteration, a, d, g and h are calculated in order.

==1)
£;

Below the calculations in the figure, the two
levels of the cubic switching table are shown.
Since there is a level for each potential blocking
operation, plus one level for no blocking, and ¢
is the only potential blocking node, we have two
levels. For the first iteration of the outer loop,
since d executes, for each cell in the k=null
level, switching is calculated as if the row
operation were scheduled before the column
operation, and the result of the switching
function is added to the cell (here we suppose a
function s returns the zero delay switching for
an adder). In the k=d level, since 4 executed, no
switching will be added to any cell (because cell
X, v in that level means the switching incurred
by x following y if d is scheduled in between).
Now, for the second iteration of the outer loop,
the figure shows that d is not calculated, so
switching for the triple a,d,h and h,d a is added
to the table in the k = 4 level, and the k = nui!
level is calculated as before.

4 Scheduling and Binding

In this paper we investigate the impact of
signal correlation on switching. To do this we
wish to evaluate the switching resulting from
power oblivious schedule and bindings and
compare that to schedule and bindings that seek
to place highly correlated operations
sequentially on the same resource. We show that
a very restricted case is NP-hard, and therefore,
heuristic methods must be applied. Fortunately,
we are able to demonstrate significant savings in
switching without an optimal algorithm.

4.1 Single-resource low-power DFG
scheduling and binding is NP-hard

It is obvious that minimum time scheduling
on a single resource is a simple problem.
Similarly, minimum area solutions for
unbounded time are found trivially. And when
the dependency partial order is empty, optimal
area and time solutions can be found. But the
low-power scheduling and binding problem is
difficult, even for the case where only one
resource is available, and no dependencies are
present in the DFG.

To develop an intuition for this problem,
consider the switching table for a DFG with no
dependencies. Since there are no conditional
nodes, the table has only two dimensions: it is
symmetric about the diagonal and there are
values in each cell except those on the diagonal.
The table can therefore be interpreted as a graph
with edge weights equal to the cell values.

Now consider the task of sequencing the
operations on a single resource. This amounts to
finding a minimum weight path through every
node of the graph, which is almost the
formulation of the Traveling Salesman Problem.
The only difference is in the edge weights. For
TSP, and even TSP with triangle inequality
property, more freedom is allowed in the choice
of edge weights than we have.

As an illustration of a possible edge weight
calculation, suppose the required task is to
sequence data words from an n-word wide on-
chip DRAM output onto a one word bus. Since
the data is presented all at once, there are no
order constraints. So, if

fteration ! ({p==1) lteration 2{p==0) it is known that certain
29=15+14 I9=14+ 5 - .
32=21+11 d not recalculated of [hé words Tdy be
64= 2 %32 64= 2 *32 cqrrelated, thxs. fact
£9= 5 +65 69= 5 +65 might be exploited to
reduce switching on
[((l,d) = 3(15,14,21,11) l(a,d) +=0 [he bus In fact’ by
Hdww #3(21,11,15,14) Hda)+=0 iy . I,
Hah) = 5(15,14.5.65) Hah) += s(14.5,.%5) simulation, we can
ete. ete.. derive the relationship
of switching between
a d h a d h a d h a d h e
the words and store
Sl AR R IR I IO B S I 3 1513612 i that information in a
d |15 17114 d 115 vllal -1~ 1" switching table. Thus,
s —— —t T the weight of a path
i) through the
k = null k=d k= null k=d corresponding graph
. . can be calculated in
Figure 1 Cubic Switching Table Example: Calculating the table during O(n) time. and the
simulation. value is the amount of

408

switching for the entire simulation due to the
chosen sequence.

In this example, the weight of edge (1, v} is
the sum of the hamming distance of the value of
word u and word v over all iterations in the
simulation. That this obeys the triangle
inequality property is easy to show, but it is also
more restricted. First, the size of the simulation
must be assumed polynomial in the size of the
sequencing graph. Also. since the switching
metric is hamming distance, the graph can be
thought of as a subset of the nodes of a word-
size times simulation-length dimensional
hypercube, with the edge weights given by the
distance between the nodes in the hypercube. So
we must show that the probiem is difficult under
such conditions.

Theorem 1. The
dependency, minimum-swirching scheduling
problem is NP-hard.

Proof: That the decision version of this
problem is NP-complete can be shown by
reduction from Hamiltonian Path. We omit
the proof here due to space considerations.l]

This result shows that finding optimum
low-switching schedules is a difficult task, and
justifies the use of heuristic techniques. As will
be shown in the remainder of the paper, despite
the complexity of the problem, heuristic
scheduling algorithms can significantly improve
switching.

single-resource, no-

reducing the number of time steps, and was
often able to generate a minimum time schedule.
Note that there are several degrees of freedom
for low power scheduling. First, position p is
simply the first available, so clearly other
positions may have the same time value but
reduce switching. Also, scheduling the complex
nodes first means that they cannot take into
account nodes which may ultimately be
scheduled before them. Finally, the ready queue
does not need to be ordered, so any ready node
could be scheduled first.
Lemma : The time complexity of the power
oblivious scheduling algorithm is O(IVY)
where V is the set of nodes in the sequencing
graph.
Proof: This follows from the fact that
topological sort is O(IV1 + IEl} and placing
each node may take up to O(1V1) time to find
a vacant position in the scheduleld

4.3 Switching table based evaluation

Consider a set of nodes scheduled in the
following order, nn;...n, . Then clearly a lower
bound on switching in the model is obtained by

Z:f lcell(n,) If
conditional nodes are present in the model, then
this provides exact zero-delay switching.

To handle conditional nodes, the cubic table
augments the sguare table estimate by including
data for switching from node n; to node n,,,
where j > 1. To compute this, the cubic table

summing no

4.2 Power
Oblivious Scheduling
and Binding
As a benchmark
against which to compare Add
Mult

results, a power oblivious
scheduling algorithm is
used. The basis for it is

Cyl
a

For iterations whered executed, schedule is

Cy2 Cy3 Cy4
d - h
- £

adder’s switching is
tHanull d) + td null hx 32
15 + 17 =

And whend doesn’t execute, we have:

. , 2 Cy3 Cy4 e
the As Soon As Possible Cyl O O3 O adder’s switching is
method. Since the Add a ta,dh)=11
primary goal of this Mult g
algorithm is to reduce.the 5 1 a1 h a]d|nh
num‘ierdoi cycl\cs re?u“l'red Finalk=null [~ — 1 Finalk=d = =
to schedule a scqun‘g‘un: Level Level
graph, it 1s consistent i1 1s 17 d
with design
methodologies which h |36 b

secek to reduce required
voltage.

This algorithm
performed quite well at

Figure 2 Cubic table evaluation example shows how the two parts of a to
d switching are summed.

409

cells (a,S,b) are used, where § is a node
scheduled between a and b. Note that if S is not
a conditional node then cell(a,S,b)=0. To get the
switching for j>2 we compute switching s(n,,

Miyj) = minhk,m},‘]cell(n,,n,,nj). Thus to

the basic square table switching, the following
. i=k~1

sum is added, ZM s(n;,n.,,).

The example of Figure 1 is continued in
Figure 2, showing the use of the cubic table.

In the figure, note that the square table
alone does not capture switching from a to h
properly, since d is in between. By using the k =
d level, exact a to h switching is available. For
the case where multiple conditional nodes fall in
between, the table cannot give exact switching,
however it has been shown empirically that
taking the min over all the related cubic table
cells gives a good estimate.

These evaluations can be performed while
the schedule is being created, and can be used to
evaluate possible schedules. The time taken to
evaluate a schedule is clearly O(IVF). The next
section discusses several variants.

4.4 Greedy Low-Power Scheduling
and Binding Algorithm

Three different power aware scheduling
heuristics were added to the basic ASAP
algorithm. The first requires the least
modification to the original algorithm,
consisting only of evaluating ties while placing
the sorted nodes. The second performs the
recursive scheduling of sub-sequencing graphs
while placing the sorted nodes. In the final
variant, several nodes are removed from the
topological sort’s FIFO queue at once, and are
placed according to the best swiiching.

ASAP can be modified to break ties among
possible equal-time positions in a greedy
fashion. The outline of the algorithm is identical
to the power oblivious version, except when
nodes are placed. In the previous version, a node
was placed in the first available position. Here,
all equal-time positions are considered by
performing a cubic-table switching evaluation,
and selecting the best one. It was found
empirically that this method often reduced
power, but not a great deal.

The problem with this method is that each
complex node starts out oblivious of what might
be scheduled before it, so early nodes in each
subgraph are not scheduled wisely. Furthermore,

410

the number of equal-time positions available to a
complex node is likely to be limited, so finding
the best tie-breaker is not a significant
improvement.

Lemma : Time complexity of the greedy

scheduler is O(IRIIVI*).

Proof: For each node, the schedule is

evaluated for up to IRl positions, where R is

the set of resources available.Q
4.5 Hybrid Low-Power Scheduling
and Binding Algorithm

To improve on the greedy method, two
techniques were implemented and combined
serially. The first method involves scheduling
complex nodes as they appear in the topological
sort, and the second method can take more than
one operation node from the ready queue, and
thereby considers more scheduling options
simultaneously.

The first improvement in the hybrid
algorithm consists of allowing subgraphs to be
scheduled with information about nodes
scheduled before them. The power improvement
from this method is quite significant, and shows
up to 45% reduction of switching without
adding more time steps than the power oblivious
algorithm. However, in some cases only a small
reduction was achieved. To improve on such
tough cases, additional freedom is required for
the scheduler.

Since the ready queue may have several
nodes in it at once, it makes sense to consider
the scheduling of those nodes simultaneously.
This amounts to scheduling nodes which have
no data dependencies across all available
resources. However, even though this is the
simplest possible form of the low-power
scheduling problem, we have already seen that
for the single-resource case, the problem is NP-
Hard. Since the number of nodes available in the
queue is typically small, we chose to test all
possible schedules for up to k nodes at a time,
where k is a supplied parameter.

To keep the time complexity for this
variation practical, the size of k must be small.
For practical purposes, & greater than 4 or § is
unreasonable, and for this paper, k was set to 3.
Since each possible configuration is evaluated,
the time complexity is OU(KIRVI/KIRI-k NV +
).

The results from this variation are generally
good. However, the added freedom results in an

increase in the number of time steps required.
This is fine as long as there is slack in the
schedule, but in general no such slack may be
available. To address this, the hybrid scheduler
considers the results of each of its parts, and
selects the quicker one if the two switching
values are within 5% of each other, otherwise it
takes the lower switching value. In practice, this
parameter would be changed or replaced by a
criterion dependent on slack in the schedule.
Lemma : The time complexity for the hybrid
algorithm is O(((KIRU/KIRI-IOIVE + IVT¥)
where k is a parameter, and IRl is the
number of resources.
Proof: The time complexity of the better
subgraph scheduler is the same as the greedy
scheduler, and is therefore dominated by the
k at a time scheduler.d
Although this algorithm has a worst case
asymptotic time complexity which is fairly
significant, the actual running time is much
better because the evaluations are never over all
n nodes.

5 Experimental Results

We implemented all four of the proposed
scheduling algorithms listed in the previous
section. Each algorithm was run on five
implementations of each of three behavioral
models. Switching was measured for
communications over buses, and the algorithms
described in the models were Bresenham’s line
rasterizer, 2D clipping, and heapsort. Each
implementation was tested with 100 sets of input
data generated randomly but in such a way as to
make sense for the given problem.

5.1 Experiment Framework
During behavioral simulation, switching
tables are generated. Afterward, several

scheduling algorithms can be applied, and the
resulting schedule simulated, with switching
summed according to the implicit RTL
description. The platform is written in Java, and
all experiments were run on a 150MHz Pentium
using the Symantec Just-In-Time bytecode
compiler.

This process was applied forty-five times 1o
generate the data summarized in Table 1. Each
scheduler was applied to each HDL model with
five different bus allocations. The results show
that scheduling for signal correlation can

411

Hybrid Greedy Oblivious
bres 1 345826 345826 | 34582
bres 2 271457 326305 | 371757
bres 3 133182 218422 | 378102
bres 4 134683 175652 377340
bres 5 134631 175512 377340
clip 1 14222 14222 14222
clip 2 13012 15118 14530
clip 3 11396 15636 15277
clip 4 10820 14218 12718
clipb 10780 12705 14324
heap 1 53655 53655 53655
heap2 | 41888 53312 52340
heap 3 41675 52755 52821
heap 4 | 35230 48231 50237
heap 5 35918 50412 52002

Table 1 Absolute Switching Counts
provide a significant improvement in power over
designs which ignore such information.

The first column shows each model’s name
with the number of buses in the particular
implementation. So clip 5 is the 2D clipping
algorithm model, with 5 buses allocated for
scheduling communications. The next three
columns show the raw switching counts for each
of the power oblivious, greedy, and hybrid
approaches respectively.

For most of the examples, improved
switching does not come at the price of
increased schedule time. The final number of
control steps required for each schedule is
shown in Table 2. The increased schedules
(relative to the power oblivious version} occur

Hybrid Greedy Oblvious
bres 1 14 14 14
bres 2 ik 7 7
bres 3 5 5 5
bres 4 4 4 4
bres 5 4 4 4
chip 1 33 33 33
clip 2 27 22 22
clip 3 27 18 18
chp 4 26 17 17
chp 5 17 17 17
heap 1 27 27 27
heap 2 25 19 18
heap 3 22 17 17
heap 4 17 17 17
heap 5 17 17 17

Table 2 Time steps resulting from application of
schedulers.

Line Rasterizer Switching Trends

Swlching

Aflocation

Figure 3 Bresenham's Line Rasterizer Switching Trends. As more
buses are allocated, low-power schedulers can find solutions with

decreased switching.

bras 5

only when the hybrid algorithm chose the add-k
method over the better subgraph scheduler.

5.2

Bresenham’s Line Rasterizer

The line rasterizer algorithm has only 15
operations, and most of the simulation time is

spent in a tight loop with
only 7 operations total.
Because of the high
correlation between some of
the operations, it s
relatively easy to create a
good low-switching
schedule. In Figure 3, the
trends of improvement with
more resources, and from
oblivious to best algorithm
can be seen. Each ribbon
shows how the scheduler
does as more resources are
added for scheduling
communications. The
oblivious scheduler actually
does slightly worse as more
buses are added, whereas
the hybrid algorithm finds a
solution over 60% lower.
Even the greedy algorithm
works well.

5.3 2D Clipping

Oblivious

Scheduler

algorithm is unable

The 2D clipping
algorithm is a particularly
hard example because it
consists of many nested
conditional statements, and
no loops. Thus, while broad

generalizations about
positive and negative
values may allow some

switching optimization, in
general when the data is
drawn from a uniform
distribution, it is not easy
to find good solutions.
Nevertheless, the hybrid
scheduler managed to find
solutions which are 14%-
25% better than the
oblivious scheduler. These
results are shown
graphically in Figure 4.
Note that the greedy
to beat the power oblivious

algorithm in several instances. This is due to
poor choices made by the greedy algorithm

during the complex

node scheduling phase, and

lucky decisions by the oblivious algorithm.

2D Clipping Switching Trends

clip 4

Obinaous.

Schadkiier

cp s

Figure 4 2D Clipping Algorithm Switching Trends. As more buses are
available, hybrid algorithm consistently beats oblivious.

412

54 Heapsort Algorithm

The heapsort algorithm consists of several
loops, as well as conditional statements, so it
represents a fairly typical general algorithm.
Again, the hybrid algorithm is best. The
oblivious trend is almost flat, and the greedy
heuristic barely beats it, but the hybrid manages
to do 19%-30% afier an extra resource IS
available.

6 Conclusion

We have shown that optimum switching
scheduling is a difficult problem, but that
heuristic efforts to reduce switching by
exploiting signal correlation can improve
switching significantly. This conclusion is based
on experiments involving three very different
algorithms, all with conditional operations,
scheduled over five different allocations.

As future work, it would be interesting to
find an algorithm that uses the cubic switching
table to find lower bounds on the amount of
switching required for a given algorithm over
various allocations.

Bibliography

{11 S. Devadas and S. Malik, “A Survey of
Optimization Techniques Targetung Low
Power VLSI Circuits,” presented at Design
Automation Conference, 1995.

{2] M. Pedram, “Power Minimization in IC
Design: Principles and Applications,” ACM
Trans. on Design Automation of Electronic
Systems, vol. 1, pp. 3-56, 1996.

{3] A. Chandrakasan, M. Potkonjak. R. Mehra.
J. Rabaey, and R. Brodersen, "Optimizing
Power Using Transformations,” [EEE
Transactions on CAD, vol. 14, pp. 12-31,
1995.

[4] J. Monteiro, S. Devadas, P. Ashar, and A
Mauskar. “Scheduling Techniques to
Enable Power Management,” presented at
Design Automation Conference, 1996.

{5] S. Raje and M. Sarrafzadeh, “Vanable
Voltage Scheduling,” presented at
International Symposium on Low Power
Design, 1995,

[6] S. Gupta and F. Nam, “Power
Macromodeling for High Level Synthesis

Power Estimation.” presented at
ACM/IEEE Design Automation Conference,
1997.

{7] A. Raghunathan and N. Jha, “An lterative
Improvement Algorithm for Low Power
Data Path Synthesis,” presented at

International Conference on Computer
Aided Design, 1995.

[8] A. Raghunathan and N. Jha, “Behavioral
Synthesis for Low Power,” presented at
ICCD. 19%4.

[9] A. Dasgupta and R. Karri, “Simultaneous
Scheduling and Binding for Power
Minimization During Microarchitecture
Synthesis,” presented at International
Symposium on Low-Power Design, Dana
Point, California, 1995.

[10] P. Landman and J. Rabaey . “Black-Box
Capacitance Models for Architectural
Power Analysis,” presented at International
Workshop on Low Power Design. 1994,

{11] P. Landman and J. Rabaey, “Architectural
Power Analysis: The Dual Bit Type
Method,” /EEE Trans. on VLSI Systems,
vol. 3. pp. 173-187, 1995,

[12] R. Mehra and J. Rabaey, “Exploiing
Regularity for Low-Power Design,”
presented at ICCAD. 1996.

{13] R. Mehra, L. Guerra, and J. Rabaey, “Low
Power Architectural Synthesis and the
Impact of Exploiting Locality,” Journal of
VLSI Signal Processing, vol. 13, pp. 239-
258, 1996.

[14] A. Farrahi, G. Tellez, and M. Sarrafzadeh,
“Memory Segmentation to Exploit Sieep
Mode Operation,” presented at Design
Automation Conference, 1995.

[15] L. Benini and G. DeMicheli, “Automatic
Synthesis of Low-Power Gated-Clock Finite
State Machines,” [EEE Transactions on
Computer-Aided Design, vol. 15, pp. 630-
643, 1996.

{16] J. Crenshaw and M. Sarrafzadeh, “Accurate
High Level Datapath Power Estimation”
presented at European Design and Test
Conference, 1997,

Neapaort Swhtehing Trands

Figure 5 Heapsort Switching Trends are
shown. The hybrid algorithm is up to 30%
better than the power oblivious scheduler.

413

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

