Top-Down Design Using Cycle Based Simulation:
an MPEG A/V Decoder Example

Dale E. Hocevar, Ching-Yu Hung, Dan Pickens and Sundararajan Sriram
DSPS R&D Center, Texas Instruments, Inc.
P.O. Box 655474, MS 446
Dallas, TX

Abstract

This paper presents a discussion of a top-down VLS]
design approach which involves system level performance
modeling, block level cycle based simulation, RTL/VHDIL
simulation and gate level emulation. An MPEG-2 Au-
dio/Video decoder design example illustrates the use of this
top-down approach. Most of the discussion concentrates
on the concept of block level cvcle based (BLCB) simula-
tion. HW/SW co-design also plaved an important role in
this work and our approach rowards such co-design is dis-
cussed as well.

1. Introduction

In the past several years there has been a dramatic in-
crease in the structural complexity of VLSI designs. Many
of the modern CAD tools have advanced and can handle
these large designs from a structural viewpoint. In addition,
the behavioral complexity has dramatically increased as
well and even though simulation capabilities have im-
proved considerably. and new higher level simulation
capabilities have become available, it is still difficult to
deal with this high behavioral complexity. Structured top-
down design offers a solution but has not been widely
adopted. Partially this is due to the reluctance of design en-
gineers to change their ways and to a lack of perceived
benefit. In this paper we discuss an approach we developed
for top-down design and which we applied in an actual de-
sign, a complex signal processing device.

One problem occurring in VLSI design stems from the
architectural design being done without using any simula-
tion model to verify the analysis and to address the high
level communication, interface and synchronization issues.
Another related problem occurs after this architectural
stage when the engineers often proceed immediately to the
sole task of designing their particular modules. These are
later pieced together and made to obtain the correct system

0-8186-8409-7/98 $10.00 © 1998 IEEE

400

75265

function with much pain and effort, a task that can take
months. The reason for this difficulty is because many sys-
tem level issues, control and synchronization in particular,
and the top level interfaces have been left to be determined
late in the design cycle when the simulation models are
very detailed. At that point it can only be a slow and costly
process to complete the design.

One solution to this problem is to apply a structured
top-down design methodology, as mentioned above. We
have devised such an approach for our particular situation
and applied it to the design of a combined audio/video de-
coder for MPEG-2, [1]. Such an approach can greatly
reduce the overall design time because much less time is re-
quired for the later debugging phases.

This approach consists of building a high level system
model for designing the required system operation, syn-
chronization and data flow between top level modules.
Called the performance model or performance simulation,
it also provides many performance measures for assisting
during the architecture evaluation. Next, the concept of
block level cycle based (BLCB) simulation was utilized
taking the design another step lower in the process and
through which considerably more design detail was added.
The performance model was transformed into this BLCB
model. This overall process entailed some novel approach-
es toward HW/SW co-design. The next phase in this
process was to complete the synthesizable RTL descrip-
tions for the modules and to verify the complete VHDL
simulation model.

This paper discusses this overall approach and its ap-
plication to the A/V MPEG decoder design, mainly
concentrating on the BLCB model.

2. Decoder Architecture and
Performance Model

The architecture for the audio/video decoder which
utilized this design approach is shown in Figure 1. It con-



sists of an MPEG-2, main level, main profile, video
decoder. and associated audio decoder which is mostly
self-contained. The video decoder uses an ARM7 proces-
sor for overall control and general processing. The bulk of
the video data passes only through the video data-path
starting with the Variable Length Decoder (VLD) and end-
ing with the Video Display Unit and using the external
SDRAM for temporary storage along the way.

In order to validate the architecture, develop the data
flow synchronization, and resolve many system level is-
sues, a performance simulation model was built. This
model operated asynchronously at the level of block data
transfers and did not actually pass or process video data. It
did however actually parse the bitstream to allow for cor-
rect modeling of the data dependent operations such as the
amount of VLD processing and the amount of motion com-
pensation for each macroblock. This model provided
extremely fast simulations, several frames a second, and al-
Jowed us to complete the system level design with the
assurance that when the design was built it would operate
correctly. Figure 2 shows the performance model for this
decoder which was written in C++ using the simulation
package CSIM from MCC [2]. All rounded corner boxes
are “processes” operating concurrently in the simulation;
note that those in the CPU represent software tasks. This
model is discussed in more detail in [3].

3. Block Level Cycle Based Simulation

Cycle based simulation is an approach used to model
synchronous hardware in a simplified manner in order to
significantly increase the speed of simulation. The simula-
tion computation occurs for all hardware pieces once for
each clock edge; for our purposes just the rising edge. The
computation involves determining the next values of the
stored signals (registers and memories) from the present
values of the stored signals and inputs, and then updating
the storage elements. The hardware consists of logic por-
tions and storage portions, and the Jogic portions must be
evaluated as part of this computation on each cycle.

Block level cycle based (BLCB) simulation is essen-
tially this same concept except that the design is presented
as large modules which are not described as circuit logic,
either structurally or behaviorally. Rather they are modeled
at a higher behavioral level and are written in a high level
procedural language such as C or C++. When such a block
is executed at each clock, it utilizes its present interface sig-
nal values and returns its next clock signal values. The
modeling internally can be accomplished in several ways
as will be discussed later. It should be mentioned that
though the blocks are modeled at a high level they are a
functionally correct model of the actual hardware logic.

This biock Jevel design model then provides an exact
description of the top level of signals; L.e.. the signals inter-
facing between the blocks. This description i1s not just

! Inputs
o
L lele]
3
DQ 2L ver bl B lelvioeanl T
e MoCOoM
ROM 1 2
4 Data
Tran:sfer
ARM VPP t_. Unit LA
:CPU: r ARM 1/O Bus ] 1 :
- external
J T L ~ SDRAM
%] SRAM Controller B —_l (-16 Mbit)
Audio SRAM_A SRAM_B i
VYideo
Decoder Audio ‘ BMEM VYLD FIFO | Display 5
RM I-pazch Mem’s Unit

- VYideo Buffer
Date Mem QMEM ‘
Lotz /Coefl. Video Output

Figure 1. Hardware architecture for MPEG A/V decoder design.

401



structural, but is also behavioral in that for any set of device
input signals, simulation of the model provides the clock by
clock values for these top level signals.

The advantage of this block level cycle based simula-
tion is that it provides a means for performing top-down
design. One facet is that it allows the engineers to develop
a very detailed simulation model, one which is actually a
description or an encapsulation of the design down to this
level. It also provides for very fast simulation which helps
this model to be built more quickly. Once the model is con-
structed, it then drives the next stages of design in an
effective manner.

3.1 Implementing the BLCB Model

Our initial version of the BLCB simulator model was
based upon a simple transformation of the performance
simulation model. This involved the introduction of a clock
signal and the translation of all higher level, more abstract,
CSIM synchronization mechanisms, such as events, mail-
boxes, event arrays, and facilities, into circuit signal
mechanisms which were aligned with the clock.

Event mechanisms were handled as follows. Suppose
we have event modA_snd, with some modules setting it
as, modA_snd.set(), and some waiting on it to be set as,
modA_snd.wait(). A new C++ variable (array of length
two) would be created called modA_snd_EVT and the
following changes would be made.

modA_snd.set() modA_snd_EVT[NV] = 1;

and

<>

while( 'modA_snd_EVT[PV])
clock.wait();

modA_snd.wait() <-->

Here PV is the present value index of 0, and NV is the
next value index of 1.

Event arrays were handled as an extension of the
above method. Mailbox mechanisms were also handled in
a similar fashion except that a count variable was main-
tained for the number of items sent but not yet received.
This works only for mailbox constructs where the message
content is nil.

This approach for transforming the performance mod-
el into the initial cycle based model works very well. We
completed the decoder transformation in only one man-
week. The biggest difficulty is in determining when to
insert extra clock waits to allow the overall synchronization
operations to work properly due to the change from asyn-
chronous operation to synchronous.

402

Hi Fifo
{ Host
| Intertace CP Fifo
DTU

ToTTTTT T T L
'

Field

[ COORD oTUY

Soru_cp_riFo r—
vp_vid_svents
MB_MC
cp_events_in Lum/Chrom
Y & _out Butter

r -

[...] l“‘] F;PELD, SYNC. l_—::] i Display oTU
L | VP AP MB_MC - infout WY syme | (&0SD)
i W/ HY Sync Gen.

S
2l (e
2]

5
5 /| a

_

1 HV_SYNC, DTU_DMA -in
> ¢ GBUS_DTU - out
AU, VLD

cPU

Arithmetic
Unit

v v
HI CPU AU

Figure 2. Schematic of performance simulation
model for A/V decoder design.

3.2 Module Coding Approaches

As the design progresses, more detail is added to the
modules, specifically for the signal interfaces. Hardware
modules can be coded in a fairly free manner, similar to
VHDL, but with the greater ease of C++. Since clock syn-
chronization is obtained anywhere in the code by placing a
clock.wait() function, the code can be structured with
loops that execute on each clock and/or the clock.wait()
functions can be distributed throughout the code section.

An extension of this which offers great flexibility is to
use per cycle functions. In this case, the module takes the
form of a function call which is invoked after each clock in
an unending loop.

One example of this is for very large modules such as
a CPU, here the per cycle function could invoke an intricate
model of the CPU on a cycle basis. The CPU model itself
could be implemented as a detailed event driven simulation
model which simply simulates one clock cycle on each in-
vocation by processing the necessary internal events in its



queue. The ARM CPU in our decoder was incorporated
into our cycle based model in exactly this manner.

Another example concerns RTL modeling. Small to
medium size modules can be modeled at the level of RTL
through simple C coding methods. In the past (before
VHDL or Verilog were commonplace), many designers de-
veloped the initial version of their designs with this type of
modeling. The code is simply structured such that the top
Jevel function executes the RTL model for one clock cycle.

Such an RTL mode! for a block would contain much
more design detail than the more abstract, behavioral ap-
proaches that could be used just to obtain correct signal
interface and functional behaviors. One key feature that
this approach provides is the ability to add more design de-
tail to the overall design. More specifically, at later stages
in the design process the RTL level can be designed, block
by block, through replacing the behaviorally modeled
blocks with their new RTL block descriptions.

3.3 Comparison to VHDL/Verilog

The approach we have taken towards block level sim-
ulation using C++ and CSIM could also have been
implemented using VHDL or Verilog. If one is starting a
new design this would be an option to consider. One advan-
tage of VHDL and Verilog is that they directly contain the
hardware signal mechanisms.

If one is building a dedicated design, with limited pro-
grammability, and the algorithms being implemented are of
significant complexity, then our C/C++ approach using
CSIM has some advantages. Especially if the algorithms
need to be implemented first in a high level language in or-
der 1o fully understand the design issues. The advantages
are basically the ease of coding and the execution speed.
HDLs are not very friendly for coding complex algorithms
at the behavioral level. In addition, often an implementa-
tion of the algorithms may exist already in C/C++, in which
case it allows for moving more quickly into such a model.
Furthermore, if basic design correctness requires repeated
simulations, each using millions of clock cycles, such as
video decoders, then the speed advantage of the more
streamlined CSIM approach is very advantageous.

4. BLCB Simulation and A/V Decoder Design

After the initial BLCB model was obtained from the
performance simulation model, the next phase entailed de-
signing the interface signals and incorporating the
functional computation behaviors.

403

4.1 Design of Module Interface Signaling

The next step was to develop the signal interface
mechanisms between modules and implement these into
the simulation model. Existing signals from the perfor-
mance model, which operated at an abstract, non-physical
level, were gradually replaced with the newly designed,
physical signals.

This design process progressed block by block through
the design, all the while maintaining a correctly function-
ing model. The development started at the front of the
video data path, the VLD, and progressed along the path to
the Video Display Unit. For some modules not all the sig-
nals were implemented the first pass through. specifically,
those dealing with the ARM bus and the centralized
SRAMSs were done later. This illustrates the flexibility of
this approach.

The original performance model did not perform actu-
al data computations on the bitstream data past the VLD.
Thus, for all modules downstream, the algorithm computa-
tion was now also implemented into the modules. of
course, this was done behaviorally, not reflecting the RTL
hardware to much degree.

The development process described above has some
important advantages. It allows one to maintain a fully
working model which decodes bitstreams through several
picture frames (though perhaps without all the computation
being carried out) and to step by step add more detail to that
model. This is continued until eventually all the module in-
terface signals are completed and full data computation is
incorporated. The model can be tested with all types of bit-
streams until correct functionality is achieved. This is
much easier than later piecing together modules designed
by different engineers in an HDL at the RTL or synthesiz-
able level, and then working out the problems with slow
and detailed simulations.

At this point in our process, the full ASIC design could
be considered well over half way finished. The largest re-
maining work would be to complete the RTL and synthesis
of the modules. But it should be remembered that during
the architecture design and performance modeling phases
that much of the internal module architectures, including
rough RTL modeling, has already been devised. This is
necessary to obtain reasonable size estimates and to deter-
mine feasibility of operation at the required speeds.

4.2 HW/SW Co-Design

Design of the video decoder also involved performing
HW/SW co-design and software development for the ARM
processor. The performance simulator modeled the CPU’s



functions in an abstract manner as discussed in [3]. Though
this modeling included parsing the bitstream, computing
motion vectors, controlling the overall decoding process,
etc., this was accomplished through modeling, not via soft-
ware running on the ARM processor. Thus, for the BLCB
model the ARM software needed to be developed.

Most of the code development was done using the C
language; though. later some assembly language was used,
in particular for the interrupt codes. TT's instruction level
simulator and C source debugger for the ARM7 processor
were utilized to develop this software.

The initial development on the ARM simulator was to-
tally independent from the module development discussed
above. The converted performance simulator’s CPU model
sufficed to drive the hardware development in the BLCB
model to near completion. Also, the first phases of software
development required only limited interaction with the
non-ARM hardware, and this was easily modeled.

Later in the process, a cycle based, signal accurate,
ARM simulator model (also available within TT but differ-
ent from the instruction simulator) was merged into the
BLCB decoder model. At the same time the abstract CPU
modeling was removed. It was interfaced basically via the
per cycle function method mentioned earlier. Though con-
ceptually this is a simple step, in practice it requires some
effort. To simplify the process this ARM model was first

Architecture Design
s Basic Structure

» Tradeoffs Top Level Module
» Module Pre-Design Design
' * Interfaces
» Functional Data
Performance Computation
Simulation Y
w/ C+/CSIM
or HDL Block Level
Cycle Based
Simulation
C/IC+ & CSIM
or HDL

interfaced with a simple cycle based test bed. thus tempo-
rarily eliminating the complexity of the decoder model.

Once the ARM model was incorporated. its software
could be run in conjunction with the actual hardware mod-
ules and further design continued. It only took a couple of
weeks before entire picture frames could be correctly de-
coded with the full BLCB model.

5. Further Levels of Top-Down Design

The next stage of design involves the continued devel-
opment and refinement of the software, and the design of
synthesizable RTL for the hardware modules. At this point,
for each module the designer has an exact executable be-
havioral description as well as the ability to capture all the
interface signal values. This allows any particular module
to be further designed by reworking the description down
to an RTL mode in C++ and resimulated within the block
level model. Or, the module RTL description could be
worked out in VHDL/Verilog first, using the saved inter-
face signals as test vectors. VHDL simulation of the entire
design would not be necessary until the modules are com-
pleted and verified at the level of RTL, using this block
level cycle based model. At this point, the design can be
moved to Quickturn type emulation fairly quickly. The

Module Design:

internai RTL
in C/C++/VHDL Full Design
y Simulation,
* CB Sim.: w/ C/C** Debuq & Test
Detailed Modules v

« VHDL Sim. of VHDL
Detailed Modules * Limited Full VHDL Sim.
e Possibly BLCB Sim. on Workstation
w/ VHDL Co-Sim.  « Extensive Emuiation
Gate Lvi on 'Quickturn’

A4

Switching Simulation
Levels

Evolutionary Design/Simulation Progression

B

Figure 3. Top-down design levels and simulation models.

404



overall top-down design concept is shown in Figure 3.

This 1s opposed to the less structured approach of de-
signing the modules separately then merging them together
and performing full design simulation debug on the large
detailed design. In that approach there are typically numer-
ous issues involving signal interfaces and synchronization,
etc., which were not thought out previously and now need
to be worked out. This is a slow and painful procedure, in
fact, this phase alone can take months to complete. The
structured top-down approach described in this paper elim-
inates this problem.

6. Conclusions

This paper discussed an approach towards structured
top-down design, specifically as demonstrated through the
design of an MPEG-2 A/V decoder. Concentration was
mainly on the concept and approach for building a block
level cycle based simulation model.

The overall top-down approach begins with the con-
struction of a performance simulation model [3], and
provides a means for performing top-down design in a
stepwise manner whereby over time more and more detail
1s added to the model. If desired, when the model is taken
down to the RTL level, this can be done essentially within
the same environment, before using an HDL.

There are many advantages to this approach. Specifi-
cally, the performance simulator allows for an early
simulation model which encompasses the entire design be-
haviorally. This can be used to verify architectural and
system level issues, and to develop the basic operational
details such as control and module synchronization, etc. It
can also be devised to provide whatever amount of func-

405

tional data 1s desired at this level. The block level cycle
based simulation model then provides a means for develop-
ing much of the module level detail, including the interface
signals and mechanisms, as well as the internal functional
operation. This code, together with the architecture design
documents (which would have been produced), form a de-
tailed specification for each module. Also, if there is an
embedded processor, its application software would have
been developed with the block level model so that full
functionality could be achieved. Lastly, the overall block
level model provides an exact model of the device which
has the same functional and clock cycle behavior that the
final ASIC will have. If desired, the module’s detai] can be
developed down to the RTL level (in C) within the block
level model. Alternatively, this can be done in VHDL using
the block level model to provide any type of test vectors de-
sired around the module’s boundary, thus greatly easing
the design time and effort.

References

[1] T. Sikora, “MPEG Digital Video-Coding Standards,”
IEEE Signal Processing, Vol. 14, No. 5, pp. 82-100,
Sept. 1997.

[2] H. Schwetman, “Using CSIM to model complex sys-
tems,” Proc. of the 1988 Winter Simulation
Conference, pp. 246-253, 1988.

[3] Dale E. Hocevar, Sundararajan Sriram, and Ching-Yu
Hung, “Performance Modeling for System Design: An
MPEG A/V Decoder Example.” IEEE Int. Sym. Cir-
cuits & Sys., June 1998.



	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index




