RCRS: A Framework for Loop Scheduling with Limited Number of Registers *

Kaisheng Wang Ted Zhihong Yu

Edwin H.-M. Sha

Department of Computer Science & Engr.
University of Notre Dame
Notre Dame, IN 46556

ABSTRACT

Many real time applications such as multimedia and DSP sys-
tems require high throughput, so it is necessary to have special
purpose designs for them. Loop pipelining is an effective approach
to reduce the total execution time of loops. While most previ-
ous research concentrates on the scheduling of computation, the
experiments show that data access may give significant overhead
if the register resource is limited. This paper studies the regis-
ter constraint problem and presents Register Constrained Rotation
Scheduling (RCRS), including the algorithm analyzing the num-
ber of required registers for loops and two classes of algorithms
based on different assumptions. The first class is for loop schedul-
ing with a given number of registers. If the number of registers
is too stringent, the second class of algorithms are applied by in-
serting necessary LOAD/STORE operations into the loop sched-
ule. Through the series of experiments, the RCRS algorithms are
shown to achieve near optimal schedule length while satisfying
register constraints.

1 Introduction

Since loops are the most time consuming sections found in the
applications, the designer needs to explore the parallelism embed-
ded in repetitive patterns of loops, in order to reduce the total com-
putation time. Many applications, such as DSP and image process-
ing, have uniform dependencies in loops which can be modeled
by cyclic data-flow graphs (DFGs) where nodes represent com-
putations and edges represent dependencies between the nodes.
The delays along an edge represent loop-carry (or known as inter-
iteration) dependencies.

Previous approach in register constrained scheduling [2-4] is
to follew the Modulo Scheduling based on a different hardware
model. In their approach, they will first find an initial schedule
table with the theoretical lower bound of schedule length. Then,
they try to satisfy the register constraint by increasing the sched-
ule length. Each time when they need to change a schedule, they
construct their new schedule table from scratch. We do it in a quite
different way. Apart from the difference between our models, our
initial schedule table is guaranteed to satisfy the register constraint.
And we try to compact it with our RCRS technigues, which only
need to re-schedule a small number of nodes each time.

Original rotation scheduling [1] is an efficient technique for
loop pipelining. The experiments [1] show it can achieve optimal
solutions efficiently. One of the most important problems of the

" This work was partially supported by NSF MIP 95-01006 and NSF
MIP 97-04276

0-8186-8409-7/98 $10.00 © 1998 IEEE

rotation scheduling is that it assumes there are unlimited number
of registers. But register resource is not unbounded in the real de-
signs. In our first approach of this paper, we present algorithms
to obtain an initial schedule table and compact it under the con-
straints of both functional units and registers by our modified rota-
tion scheduling. In the second approach, we have two algorithms
to construct initial schedule by inserting new LOAD/STORE in-
structions. And we present two loop scheduling methods to
shorten the initial schedule table together with the LOAD/STORE
instructions in it. The experiments show our approaches are effi-
cient and robust. The final compacted schedule tables are reached
within the first few steps of the RCRS operations.

As an example, a DFG is shown in Figure 1. Suppose all
the nodes stand for general type of computations. Assume that
there are two functional units available, and the register constraint
is 2. There will be no legal schedule if we can not temporarily
store the values of the registers into the memory. By inserting
LOAD/STORE instructions, we construct a legal initial schedule
table by our initial algorithm, shown as the table in Figure 1. The
L% in the table represents a LOAD operation fetching the value F
of three iterations before. Similarly, the S% is for a STORE oper-
ation saving the value B of current iteration. Afterward, this initial
schedule can be compacted to 7 control steps, as shown in Table 1,
after the RCRS algorithm runs just 9 steps. The improvement is
30% of schedule length.

¢ Time Siep FUT FUZ Registers
i 1 Ly]
1 ~ "l A 1
o T
0 P }B} T B)
4 s 2
/ 3 ¢ b T
/ 3 s% 1 L% 2
/ 7 E 7
B 3 LY 2
i F 7
10 s% |

Figure 1. A DFG and its schedule

Time Step FUT FU7 Regisiers
] F Lt 2
2 s% A 2
3 B 3
4 s% c 2
T 5 T
T T
6 s 1 LY 2
7 E LY 2

Table 1. A compacted schedule table for table
in Figure 1 from algorithm 2 of RCRS

In Section 2, we'll first introduce some basic concepts for our
RCRS. From Section 3 to Section 4, we describe each algorithm of

(a) (b)

Figure 2. Example of a DFG, and retimed DFG

/R

[F R
\ i
T hoy
Lo
L
Figure 3. The DFG to be scheduled

RCRS. Section 3 is for obtaining an initial schedule table without
LOAD/STORE instructions, and discussing rotation scheduling
under the register constraint. In Section 4, we focus on inserting
LOAD/STORE instructions into schedule table if not enough reg-
isters are available during the initial scheduling, and also analyze
rotation methods for the schedule table with LOAD/STORE in-
structions in it. Experiments are shown in Section 5.

2 Background

A data-flow graph (DFG) is a directed weighted graph G =
(V, E,d,t) where V is the set of computation nodes, E is the set
of edges which defines the precedence relations from nodes in V/
to nodes in V', and d(e) is the number of delays (registers) for an
edge e € E. Each nde v in V is associated with a positive integer
t(v) which may represent the computation time for the node v.
Figure 2 shows an example of DFG.

An iteration is the execution of each node in V" exactly once. It-
erations are identified by an index ¢ starting from 1. Inter-iteration
dependencies are represented by the weighted edges described pre-
viously. A static schedule of a loop is 2 schedule of computations
to be executed repeatedly. A static schedule must obey the prece-
dence relations defined by the DFG described in the previous para-
graph. For any iteration j, an edge e from u to v with delay d{e)
conveys that the computation of node v at iteration 7 depends on
the execution of node u at iteration j — d(e).

For each computation in the DFG, its input and output data are
transfered through registers. During the first stage of a compu-
tation, the input is read from register(s) and then the register(s)
can be released. At the last stage of the computation, the result
is written to a destination register. The model here is called Non-
overlapping Register model, because there is no overlap between
the life time of registers holding input and output. Hence the reg-
ister storing the input value can be re-used for storing the output
value if necessary. The instruction such as ADD R1,R1,R2 can be
supported by this non-overlapping register model.

There are many different schedules for one DFG. As the DFG
in Figure 3, Schedule 1 in Figure 4 is a legal schedule table in the
sense of data dependencies. The register usage is drawn according
to our Non-overlapping register model. Four registers are needed

387

ABCDEFGH ABCDEFGH
Scheduie 1. A . i Schedule 20 A B "
o gl <
EF g o E B | |
G :;’t | GD 'E
. < | ar o
} I i ‘
need 4 regisiers need 3 registers

Figure 4. Two schedules for Figure 3 require
different number of registers

° itial schedite Table
Time Step | Function Unet ¢ Function Unit 2
- {2)
1 A
2 8 c
3 D
(a) (b}

Figure 5. An example of DFG and one of its
initial schedule table

to execute the operations of Schedule 1. While in Schedule 2, only
three registers are enough. If we have the constraint that the total
number of available registers 1s 3, Schedule 2 is a legal schedule
table under the register constraint, but Schedule 1 is not.

Because of the data dependencies, there are some free func-
tional units in certain time steps of schedule table. We can make
fully use of them by inserting new LOAD/STORE instructions.
With the help of added instructions, we can always have a legal
schedule table if the register number is great than or equal to the
maximum number of input for each node of the DFG. This can be
achieved by inserting LOAD instructions before each computation
to get each input value, and inserting STORE instructions when
the computations finish.

The retiming technique was first implemented to reduce the
length of the critical path of circuits {5]. This method attempts
to evenly rearrange registers (delays) in a circuit so that the itera-
tion period gets smaller. Chao et al have pointed out the fact that
retiming and loop pipelining are the same concept [1].

A retiming r of a node u, r(u), is a function from V' to the
integers. The value of this function is the number of delays taken
from all incoming edges of u and moved to each of its outgoing
edges. The total number of delays after retiming in a loop or cycle
must be preserved. Looking at the example in Figure 2(a), we can
see how retiming works. After retiming the graph by r(4) = 2
and r(B) = r(C) = 1, we obtain anew graph G, = (V, E . d, , t)
shown in Figure 2(b).

Rotation scheduling is a flexible technique [1] for schedul-
ing cyclic DFGs using loop pipelining. The rotation technique
consists of two major steps: rotation based on retiming, and re-
location based on data dependencies. It repeatedly transforms a
schedule to 2 more compact schedule, and concerns the resource
constraints while scheduling.

When a node 1s rotated down, a delay is pushed from all of its
input edges to its outgoing edges. Consider retiming r{4) = 1
in Figure 5(a), Node 4 - a source of the original DAG, becomes a
sink node in the new DAG, shown in Figure 6(a). Thus, intuitively
itis rotated down. When the retiming of a node 1s represented by
schedule table, it's equivalent to rotate the nodes in the first row of
Figure 5(b) down to the bottom row, shown as Figure 6(b).

Function ini Function Uit
1 2
8 o3
s}
A
(a) (b)

Figure 7. An example of DFG

Scheduling without LOAD/STORE

In this section, we present several algorithms which implement
the first approach. We begin by demonstrating how to count the
register requirement for a schedule, and then discuss how to obtain
a legal iniial schedule. At last, we show the algorithms to reduce
the schedule length with modified rotation scheduling.

One of the most important tasks in our algerithm is to deter-
mine how many registers are needed for a particular schedule. This
is important for both creating the initial schedule, and reschedul-
ing it in our RCRS algorithm. In order to determine the register
requirement, we first define the begin-time, the end-time, and the
life-time of a node.

Definition 3.1 Given a schedule, let begin-time(n) of node n be
the time when its output data are computed.

Definition 3.2 Given a schedule, let end-time(n) of node n be the
time when all the nodes that depend on this output have been com-
puted.

Definition 3.3 Given a schedule, the life-time(n) of node n is de-
fined as the duration from begin-time(n) to end-time(n), repre-
sented by a tuple (begin-time(n), end-time(n)).

We assume that a register holds exactly one datum value. The
register requirement in each control step needs to include the data
whose life time contains this control step, and input/output data
for all the computation of current time step. Note that it is possi-
ble that an output data can be stored in one of the input registers if
such an input data is not used in the future steps. We call this regis-
ter requirement the “register number” for the given time step. For
a cyclic graph, obtaining the register number can be more compli-
cated than for a DAG.

Two models, static assignment model and register pool model,
are proposed in order to find an optimal register configuration in
a graph. In many modern microprocessors, register pool model is
used.

Definition 3.4 Static assignment model: the register assignment
for the output data is the same in each iteration of a loop.
Register pool model: the register assignment for the output data is
not necessary io be the same in each iteration of a loop.

388

Algorithm 1: Register counting procedure

Input: schedule table ST
Output: # of registers needed for each step RegNurm|l
COUNTREGISTER(ST)
(1 cycle = ST scheduleLength
{2} for 1 = 0 to cycle
RegNumii, =0
for : = 0 to cycle
for j = 0 to ST. functionallnits

3}

6} node = READINGSCHEDULETABLE{ST i, j)
7y lifeTime = GETMAXLIFETIME(node)

(8 fork=1+1tolifeTime ~1t+ 1

(9) RegNumik % cyele; ++

{10) return RegNum

Unfortunately, for the static assignment model, finding the
optimal number of registers in a given cyclic graph is an NP-
complete problem [6]. It can be reduced to the minimum color-
ing problem. For the register pool model, we've proved that the
register requirement can be calculated in polynomial time.

Our register counting algorithm is based on the left edge algo-
rithm [6] using the register pool model. The polynomial-time reg-
ister counting algorithm gives optimal solutions under the register
pool model. Algorithm | presents our register counting algorithm
which can handle the cyclic graph case.

(a) (b)

Figure 8. Life time of the DFG in Figure 7

The graph illustration of register requirement counting algo-
rithm is shown as Figure 8, where each line segment represents a
life-time of a value. We first transform the life-time graph of cyclic
DFG 1o a graph with no overlapping between two adjacent itera-
tions, then count the register requirement. The key step in Algo-
rithm 1 is the for loop presented in Line 9. We consider the input
data which are necessary for the computation of this time step and
the values we have to keep for later computation. In Figure 8(a),
the lifetime for each value is represented by the line segments.
Since the static schedule length of this graph is 4, an iteration win-
dow, shown by a box, has the height of 4. We can calculate the
register requirement based on these line segments in the box. Fig-
ure 8(b) is an equivalent way to show the lifetime. Basically, if a
line segment extends beyond the current iteration window, the out-
side part of the segment can be equivalently represented by other
segments of previous iterations coming inside current iteration. In
a certain control step, the number of segments existing is the num-
ber of registers required for this control step. We can prove the
following theorems. Because of the space limit, the proofs are
skipped here.

Theorem 3.1 The mumber of required registers obtained by 4lgo-
rithm 1 for register pool model is minimum.

Theorem 3.2 The register pool model gives the lower bound for
the minimum number of required registers for static assignment
model. The minimum number of required registers on register pool
model is less than or equal to the minimum number required on
static assignment model.

Algorithm 2: Obtaining initial schedule table

Input: a data-flow graph DFG, register constraint R
Output: an initial schedule table ST
CeTINITIALSCHEDULETABLE{ST)

(1) controlStep = 0

2) copy all nodes of DFG into V
3) while V' # @
(4) list = @
(5} if node u € V' with no incoming edge
(6) list = InsERTLIST(u. list)
(7} list = PRIORITIZE(l1st)
(8} while list # @ and FinoFU() = TRUE
(8) SCHEDULEONENODE(S T, list)
(10) if MEeTCONSTRAINT{ST, R)
(11) list + hist.next
(12) Ve Vou
(13} else
(14) UNpOSCHEDULE(ST)
(15) controlStep = controlStep + 1
initial scheaute Table
Time Step Function Untt 1 Function Unk 2 Registars

1 A 2

2 B c 4

3 D 4

4 E 4

Figure 9. An initial schedule for the DFG in
Figure 7, with at most 4 registers available

We use list scheduling [6] to produce an initial schedule, not-
ing that list scheduling can be replaced with any DAG scheduling
algorithm. In this paper, the maximum fanout number is the key
for the priority function. In other words, a node which has the
maximum fanout will have the highest priority and will be sched-
uled first. The algorithm for obtaining an initial schedule is shown
in Algorithm 2. As an example, Figure 9 shows how the initial
scheduling algorithm works for the graph in Figure 7.

After obtaining an initial schedule table using Algorithm 2, we
can get a better schedule table by performing the function ROTA-
TEONESTEP on the initial schedule. Intuitively, this function ro-
tates nodes from the first row down to the bottom of the schedule
table. The rotated nodes then are re-mapped to a higher position
in the table, taking into account the register constraint. The algo-
rithm searches from the top row for available positions, and this
scanning mechanism guarantees that a node will be scheduled to
the highest possible position.

In Line 5 of the ROTATEONESTEP algorithm, function COUN-
TREGISTER is called to calculate the register requirement. If all
the nodes in the last row can be rescheduled to higher position in
the table, the length of the schedule is reduced. Otherwise, the
total schedule length remains the same. We then begin a new iter-
ation of rotation based on this intermediate schedule table.

If the register constraint is violated, we mark down the current

position, move the node back to the old position at the bottom of
table. Then, we try to schedule 1t in a new available cell in the

Algorithm 3: One step of RCRS procedure

Input: schedule table
Output: schedule table after one step of rotation
ROTATEONESTER(ST)

(1} rotate down all the nodes in the first row of ST
(2 foreach node v, in the last row of ST

{3 if a FU available in higher position of ST
(4 move current node v, up to that FU

(5 COUNTREGISTER()

(6

7

continue to relocate next node v;4}

else
try another available functional unit

[Selie o}

)
)
)
3 if register constraint is satisfied
)
)
)

table. Taking Figure 9 as an example, suppose the register con-
straint is 4. Figure 9 is the initial schedule table for Figure 7. We
re-schedule node A by rotating node A down to the last row in
the table of Figure 10(b). We then try to relocate a higher position
for node A. From the sense of data dependencies, node A can be
moved to any place in the table. Because time step 2 is the high-
est position with a functional unit available, node .4 is temporarily
moved to that cell. Then we calculate the register requirement
based on this temporary schedule table. In this case the register
constrain is still satisfied, so node A is assigned to that new posi-
tion. The resultant schedule table is shown in Figure 11.

initial schedule Table
Tune Step Funchion Unitt 1 Function Unit 2 Ragistars
1 B c 4
2 D 4
3 E 4
4 A 2

(b)

(a)

Figure 10. Schedule(b) is obtained after one
step of RCRS on graph (a)

4 Scheduling with LOAD/STORE

In this section, we introduce the concept of LOAD/STORE.
We also revise our algorithms for obtaining the initial schedule
which satisfy the register constraint. The initial schedule is com-
pacted with our RCRS algorithm at the end of this section. In
Section 3, it is assumed that all the output data would be kept in
registers. In fact, the output data can also be temporarily saved
in other places (such as the system memory), and loaded into reg-
isters again before it is referenced. By doing this, we have more
flexibility in dealing with the output data.

Initial Schedule Table
Time Step | Functional Unit T Funcuonal Unit 2 | Registers
1 A 3
2 B C 3
K D E 5
s F S

Table 2. Schedule table and register require-
ment for Figure 1

We consider the DFG in Figure 1. and the schedule table shown
as Tabie 2. with register requirement of 5. If the register constraint
is 3. this schedule table is not feasible. When we examine the hife

initial scheguie Table
Time Step | Function Unit 1 Function Unit 2 Registers
1 8 C 4
2 D A 4
3 3 2

Figure 11. Table in Figure 11(b}), Node A is re-
mapped

time of the output data, node F has the longest life time which is
longer than the schedule length. In loop case we need more reg-
isters to store node F'. If we store its output value in the memory
at time 5, and load t back at time 12, the register constraint is
satisfied.

We use the notation ijgf;‘g to stand for the inserted STORE

instruction. node is the name of the value we are going to store.
delay is the number of iterations the vaiue was computed before

current iteration. A similar notation L:?:ey is used for the inserted
LOAD instructions. The schedule in Table 2 is changed to Ta-
ble 3. Since the store of F is executed in the next iteration, Sk
is inserted. Similarly, L% loads the data produced two iterations

before and gives to A in the next iteration.

Initial Schedule Table with LOAD/STORE
Time Step T Functional Unit T T Functiona]l Uit 2 | Registers
1 A SL 2
Z B C 3
3 D E 3
4 F L% 2

Table 3. A legal schedule for Figure 1 with
register constraint of 3

If LOAD/STORE instructions are applied in the schedule, it’s
easy to calculate the minimum number of registers needed for a
legal schedule table. We simply can examine each node in the
DFG, and find out the node with maximum number of input values.
Particularly, if we suppose for each node there are one or two input
values, and one output value. The lower bound number of registers
for a legal schedule table is 2.

Time Step Registers

[ST B

josd = RV=1 =5 ERTRC N KUY IF) [99) PN O

o~
bd
e L LYY IV

Table 4. Initial schedule table for Figure 1 by
INITIALSCHEDULE!

To implement a legal schedule table which uses the minimum
number of registers, we can store each output immediately after
it is computed. All the registers are available for computing next
nodes. As we see, there are many unnecessary LOAD/STORE,
we develop two algorithms to reduce them. Our first approach
is to save a value as early as possible, and load it back as late
as possible. This is done by adding the STORE instruction after
each computation, but inserting a LOAD instruction only when it is
necessary. Our second approach inserts both LOAD and STORE
instructions as late as possible. The initial schedule table for Fig-
ure | generated by INITIALSCHEDULE] is shown in Table 4.

We have another algorithm for initial scheduling, which is im-
plemented by function INITIALSCHEDULE2. It does not save a
value into the memory right after it is computed. When a register
is going to be overwritten, a function inside INITIALSCHEDULE2
checks if this value will be referenced later and if it hasn't been

390

Algorithm 4: Select a data to be stored into memory
Input: schedule table ST

Output: name of the register to be saved
STORESELECTION{ST)

(0 list = @

(2} foreach node v; in ST

(3) CACULATEIDLETIME{w;)

(4) if vy — [dleTime.Begin < cur.T' < v; — I/dleTime.End
(5) AppList{list, v)

(6) SortList(list) // by vi — ldleTime End

(7) return list{0].name

Algorithm 5: Rotation one step, with LOAD/STORE
Input: schedule table

Output: schedule table after one step of rotation
ROTATEONESTEPSL(ST)

rotate down all the nodes in the first row of ST

(2) foreach node v; in the last row

(3) if a free FU is available in higher position of ST
(4) move the current node v; up to this FU

(5) COUNTREGISTER()

(6) if register constraint is satisfied

(7} continue to reallocate next node vj.,
(8) else

(9) if save register successful

(10) continue to relocate next node v;;i
{11) else

(12) try another available functional unit

stored yet. So, both the LOAD and STORE instructions are in-
serted only when they are necessary. A legal initial schedule table
for Figure 1 generated by INITIALSCHEDULEZ is shown as the
table beside it.

Definition 4.1 If a value A is not referenced within the period of
time (fo, ¢1), this time interval is called idle time of value A. ¢g is
the beginning idle time, and ¢, is the ending idle time of value A.

In our algorithm, the LOAD/STORE instructions are executed
only when the register constraint is violated. In such case, the
algorithm will find out which output values to store in order to re-
duce register requirement. If more than one values are legible, the
decision is made by function STORESELECTION shown in Algo-
rithm 4. STORESELECTION is a greedy algorithm based on the
concept of idle time. We always try to save the register with the
longest idle time starting from the current time.

When the register requirement is much larger than the register
constraint, STORESELECTION function is called repeatedly. We
select a value to save and calculate the register requirement alter-
nately. If all the possible stores are attempted, and the register
constraint is still unsatisfied, the current schedule will not be al-
lowed. We have to move the node back, and try another. By us-
ing LOAD/STORE instructions, Algorithm 2 is modified to Algo-
rithm 5. Comparing with Algorithm 2, we have another method to
move up nodes in the schedule table at Line 9. It is more likely that
we can find a compacted schedule table. The function STORESE-
LECTION is executed inside Line 9. For an example, after function
ROTATEONESTEPSL has performed 7 times, the schedule length
is reduced from 11 time steps down to 9 time steps as shown in
Table 5, in which the register constraint is 2.

Another rotation algorithm is implemented by function ROTA-
TEONESTEPSL2. If we have to save a value into the memory
during the computation, it's wise to save it as early as possible.
After the STORE operation, that register can be reused by other
data. But during the rotation, when a node is rotated down, the
interval between the computation time and its store time can be far
apart. This may increase the register requirement because of the
rotation. Function ROTATEONESTEPSL?2 tries to group the com-
putation with the store operation during a rotation phase. When a
node is relocated, its STORE operation is also rearranged.

Tme Step | Functonal Unit I | Functional Unit 2 Registers
1 LY 2
2 E 2z
3 54 I 3
4 F Ly 2
5 5% A 2
6 Sy B 2
7 S% C 2
3 B 5 i
D B

Table 5. A compacted schedule table for the
initial schedule in Table 4

5 [Experiments

We have experimented with our strategy on five benchmarks:
5-th Order Elliptic Filter (El-Filter), Differential Equation (Diff-
ctrl), 4-stage Lattice Filter (4-lattice), All-pole Lattice Filter (All-
pole) and 2-cascaded Biquad Filter (2IIR). All operations are as-
sumed to take unit time.

Altogether, we have three methods to obtain initial schedule
tables for the benchmarks, and two methods for rotating and com-
pacting the schedule tables. The first way to obtain the initial table
is to schedule under the resource constraints without inserting any
LOAD/STORE. But if the register constraint is too strict, the sec-
ond way of getting an initial table is applied. Basically, a value
is stored as soon as it is computed, and a corresponding LOAD
instruction is inserted when necessary. The third way is to insert
both LOAD and STORE instructions when they are necessary.

The first algorithm for loop rotation treats each computation
as an independent operation. In algorithm two, when we retime a
computation, we also consider the STORE instruction associated
with it. There is a chance that this consideration may shorten the
gap between the computation time and store time.

In the Table 7, the left column contains the benchmark names,
and the number in the parentheses is the method by which the ini-
tial schedule table is reached. The registers columns represent
the register constraint. For each case, we only record the initial
schedule length. and the final schedule length after having applied
our RCRS techniques.

In the experiment, there are four functional units available.
Three of them are of the adder type, the other one is a multiplier.
We take the 5-th Order Elliptic Filter (Ell-Filter) as an example.
When the register constraint is less than 9, we can not have a legal
initial schedule table from initial method one. But we can always
have legal initial schedule tables if we insert LOAD/STORE in-
structions. As the available register increases, the table lengths
become shorter. When the register number is big enough, the
schedule lengths do not change. Table 6 shows the improve-
ment ratio of the compacted schedule length using rotation Al-
gorithm 2 vs. the initial schedule using the initial scheduling al-
gorithm 5. For most of the cases, we can reach more than 20%
improvement ratio. Because we have enough adders, the sched-
ule length with LOAD/STORE is similar to the schedule length
without LOAD/STORE, which will need more registers.

6 Conclusion

In our first approach of this paper, we present algonthms to
obtain initial schedule table and compact it under the constraints

= CT TN | N T A U SO AN TN VR T OO0 O R e
IR Y56 1 187] 167 | 273
T Taitoe D WOY 1 267 | W04 | 308 | e | Ix0 | I 167
Aol D% LT R T
[Bilt-&inx I Ty Ay
[ErFed % T 2] 3 38 pisk] P4

Table 6. Improvement:alg2 vs initial table

regisierymd T ml_u{n-.‘ regalanmt 1 isicrm

a1y gl agl it E) al nit al a init al (Y4

TITREY X X X [X X x x x 15 11 T

TR pis] A 17 1k T3 12 1% 13 TS 1 13 T3

L IR T o o 1S L 1 L L T ¥ ¥
[Thaucd 17 X X X X X X X X X X X 3}
Liatioe(21 37 24 b4l pid IR IR Y 14 43 pid 23 PN}
Tattice! 31 24 P4 1A 13 YEOpO0T 3 18 16 2 T3 154
T X 3 X i ¥ 3 M LR R }
- 3 i i4 13 M 13 i+ H 13 1 04 1
[rpoldyt X 1) o) T 1 T)i T 1%)|
1) X X X X X X ¥ [) &]
[b3] 1§ 7 7 17 LR T2 ¥ v)
(3) 12 |3 ¥ ¥ 1 13 12 7 T 1
-Fert) X X X X) x % X X) x x|
Filier 2] &) 37 7 hid 3% 3 37 34 >4 35 3, i}
Filer(3) 76 3 73 a6 I 44 Lo 43 43 ki 3 a7]

X T T Taerew 11 T TScrm

it 'gﬁ‘l!' ErY it E_ﬂ— a i 1 3 A L | & "

Ll 17) X 3 X 3 X) X 3 17 T 3

LTlance(d) i) 3 as pid 23 3 pid pi] pa) pid pi) Al

Tlmtice 3 21 i i3 pi4 3 3 15 13 b 11 1 3
“Filier 1) [X X & 4 4]
FiHen2) 37 33 33 37 3 K i
Filier 3) pLs v 19 13 TR 1

391

Table 7. Experiment

of both functional units and register. In the second approach,
we have two algorithms to construct the initial table by inserting
new LOAD/STORE instructions. And we present two methods to
shorten the initial schedule table together with the LOAD/STORE
instructions in it. The experiments show our approaches are effi-
cient and robust. The final compacted schedule table is reached
within the first few steps of the RCRS.

References

[1] L. Chao, A. LaPaugh, and Edwin Sha. Rotation scheduling:
A loop pipelining algorithm. /EEE Transactions on Computer
Aided Design, 16(3):229-239, March 1957.

A. Eichenberger and E. Davidson. Stage scheduling: a tech-
nique to reduce the register requirements of a modulo sched-
ule. In Proceedings of the 1995 28th Annual International
Symposium on Microarchitecture, pages 338-349, Ann Arbor,
M1, November 1995.

A. Eichenberger, E. Davidson, and S. Abraham. Optimum
modulo schedules for minimum register requirements. In Pro-
ceedings of the 1995 Conference on Supercomputing, pages
31-40, Barcelona, Spain, July 1995.

A. Eichenberger, E. Davidson, and S. Abraham. Minimizing
register requirements of a modulo schedule via optimum stage
scheduling. International Journal of Parallel Programming,
24(2):103-132, April 1996.

C. E. Leiserson and J. B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6:5-35, 1991.

G. D. Micheli. Synthesis and Opuimization of Digital Circuits.
McGraw-Hill,Inc, 19%4. .

(2]

(3]

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

