Stochastic Evolution Algorithm For Technology Mapping

Ahmad S. Al-Mulhem Alaaeldin Amin Habib Youssef

Department of Computer Engineering
King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia
FE-mail: {amin,youssef}@ccse.kfupm.edu.sa

Abstract

A new technology mapper (SELF-Map) for Look-
Up Table (LUT) based Field Programmable Gate Ar-
rays (FPGAs) is described. SELF-Mayp is based on
the Stochastic Evolution (SE) algorithm. The state
space model of the problem is defined and suitable cost
function which allows optimization for area, delay, or
area-delay combinations is proposed. Ezperimental re-
sults show that SELF-Map has an overall better per-
formance compared to other algorithms reported in the
Literature.

1 Introduction

In this paper, we present SELF-MAP, a new iter-
ative technology mapping algorithm for K-LUT FP-
GAs. The logic modules of the FPGA are K-input
look-up tables (K-LUTs). Technology mapping of
K-LUT FPGAs maps a combinational Boolean net-
work (BN) into a functionally equivalent network of
K-LUTs. The mapping algorithm is based on the
Stochastic Evolution (SE) algorithm [8]. At each it-
eration, a possible partitioning of the BN into a for-
est of trees is performed, and each tree is then opti-
mally technology mapped. The global solution is con-
structed from the obtained tree-solutions. When some
stopping criteria are met, the iterative search process
is stopped and the best solution reported. SELF-MAP
is designed for mapping LUTs with an arbitrary num-
ber of inputs A" (K-LUT) but only a single output.

2 Terminology and Background

A combinational logic circuit can be represented
as a directed acyclic graph (DAG) G(V, E') where cach
node v € V represents a Boolean function and each di-
rected edge (u, v) € E represents a connection between
the output of u and the input of v. Such DAG rep-
resentation is referred to as a Booleun Network (BN).
A Primary input (PI) is a node with no in-coming
edges, while a Primary output (PO) is a node with no
out-going edges.

For node v € V', dnput(v) is the sct of nodes that
supply inputs to v. In general, given a subset V7 of
V., input(V71) is the set of nodes in V' — V] that supply
inputs to nodes in V. A node u is a predecessor of
node v if there is a directed path from u to v in the

BN.

0-8186-8409-7/98 $10.00 © 1998 IEEE

380

(@

DO
KL

Figure 1: The effect of replicating a fanout node.

Definition 1 A K-feasible cone at a node v, denoted
by C,, is defined as a subgraph consisting of v and
a number of its predecessor nodes such that any path
connecting v to any other node in C, lies entirely in
Cy, and | input(C,) |< K.

Since each K-LUT is a programmable block with A
inputs and one output, a K-LUT can implement (or
cover) any K-feasible cone in a BN.

Definition 2 The depth of a node v is defined as the
mazimum number of LUTs (K-feasible cones) along
any path from any primary input to v. The depth of
a primary tnput 18 taken as zero and the depth of a
BN 13 the largest node depth in the BN.

A node v with one out-going edge is termed a
fanout-free (FF) node. A node v with n > 1 out-
going edges is termed a fanout node. Such node can
be replaced by n FF nodes without affecting the BN
functionality. This is accomplished by replicating the
fanout node n times as illustrated in Figure 1.

In Figure 1.a. node a with 2 outgoing edges (n = 2)
can be replaced (Figure 1.b) by two fanout-free nodes
(a; and a2) by replicating the original node function-
ality and connectivity twice. The replicated nodes
(a1 and a) are fanout free (Figure 1.b). It should
be noted that if a fanout node is replicated n times,
the out-degree of its immediate predecessor nodes will
increase by n — 1. If any of its immediate nodes is FF,
it will turn into a fanout node.

Definition 3 A potential fanout node is ¢ fanout-free
node which feeds a fanout node.

In Figure 1, node a is a fanout node while nodes
b and c are potential fanout nodes. As shown in
Figure 1.b, once node a is replicated into nodes a; and
as, nodes b and ¢ become fanout nodes themselves.

3 SELF-MAP

The work reported here adapts the SE algorithm [8]
to the technology mapping problem of LUT-FPGAs.
The mapper is called SELF-MAP, an acronym for
Stochastic Evolution LUT-FPGA MAPper. SELF-
MAP can be used to optimize either for area, delay,
or a combination of both area and delay.

The SE algorithm is a general strategy which can
be used to solve a wide range of combinatorial op-
timization problems. The algorithm, however, has to
be adapted to the type of problem under investigation.
Specifically, the solution space has to be well defined
and a suitable state representation must be adopted.
Combinatorial optimization problems can be modeled
in a number of ways. SE models the problem as a
finite set of movable objects M and a finite set of lo-
cations L. A state (solution) is defined as a function

8§ : M — L satisfving certain constraints.

The idea of the SE algorithm is to find a suitable
location S(m) for each movable element m € M which
eventually leads to a lower cost of the whole state
S € Q, where Q is the state space. Many of the com-
binatorial optimization problems can be formulated
according to this model FS]

3.1 The Solution Space

In a general BN, nodes are either fanout nodes or
fanout-free nodes. In the special case where all nodes
of the BN are fanout-free, i.e. the BN is actually a
tree, optimal technology mapping of such a network in
linear time has been shown to be possible [2]. General
networks, however, can be technology mapped using
one of two possible approaches. In the first approach,
the BN is decomposed into a forest of fanout-free trees
by partitioning the network at every fanout node. In
essence, breaking the BN at a fanout node implies that
this node is going to be the output of a lookup table
in the final mapping. The resulting trees are then in-
dividually mapped and the final solution is obtained
by re-assembling the individually mapped trees. In
the second approach, the BN is converted into a for-
est of fanout-free trees by replicating fanout nodes and
the cones feeding them. This process is repeated till
all nodes become fanout-free. In essence, a replicated
node, implies that the logic represented by this node
will be implemented more than once in different LUTs.
Again, the resulting trees are individually mapped and
the final solution is obtained by re-assembling the in-
dividually mapped trees. Figure 2 illustrates the two
approaches. In this figure, the original BN (Figure
2.a) consists of one fanout node a and three cones Ci,
Cs. and C3. To map the BN using the first approach,
the BN is partitioned by clipping the multiple fanout
edges out-going from a as shown by the dotted curved
line in Figure 2.b. As a result, the BN is transformed

381

into a forest of three trees as shown by the dotted rect-
angles in Figure 2.b. To map the BN using the second
approach, the fanout node a and the cone that feeds
it (C1) are replicated as shown in Figure 2.c. As a
result, the BN becomes a forest of two trees as shown
by the dotted rectangles in Figure 2.c. Following any
of the above approaches results in a forest of trees
where each tree is optimally mapped, and the overall
solution is obtained by re-assembling the individually
mapped trees.

Figure 2: Mapping networks with fanout nodes.

The above two approaches represent two extremes
which are unlikely to vield good solutions. The search
capability of an iterative algorithm such as SE can
be effectively utilized to obtain better solutions where
only some fanout nodes and part of the cones feed-
ing them are replicated. Thus, the replicated part of
the BN may include some, all, or none of the fanout
nodes and their fanin cones. The mapping algorithm
will partition the resulting BN at all non-replicated
fanout nodes. The resulting network is thus a forest
of trees where each tree is mapped individually and the
final solution is obtained by re-assembling the mapped
trees. With the proper choice of the cost function and
the state model (solution space), the search capability
of the iterative algorithm can be utilized to select the
set of nodes in the BN which should be replicated and
the set of nodes which should be assigired to the out-
puts of LUTs in order to optimize some target criteria.
Obviously, the two approaches mentioned earlier are
ouly special cases of this more general one and both
would miss the larger part of the search space. In this

Pl ={ab.c,d}
PO = {ij}
F ={hf
PF = e}

Figure 3: Example

work, we adopted this general approach which allows
a more thorough investigation of the solution space.

3.1.1 Movable Objects and Locations

In mapping a BN, SELF-MAP assigns LUTs to some
of the fanout nodes and replicates some others. A
replicated fanout node implies that its immediate
fanout-free predecessor nodes (potential fanout nodes)
would turn into fanout nodes themselves and would
thus be either replicated or assigned to the output of
some LUT. Therefore, the set of movable objects M is
chosen to be the set of fanoutg}“) and potential fanout
(PF) nodes, ie. M = FU PF, where F is the set
of fanout nodes and PF is the set of potential fanout
nodes fee Section 2).

In the final mapping, node m € M will either be
a fanout-free node (FF), a fanout node which is not
replicated (NRF), or a fanout node which is replicated
(RF). Accordingly, the set of possible locations L con-
sists of three possible locations: FF, RF, and NRF.

Fanout nodes can arbitrarily move between loca-
tions NRF and RF. A potential fanout node (PF) is
initially assigned to location FF. If, however, its 1m-
mediate successor node is replicated, i.e. moved from
location NRF to RF, the PF node is moved to location
NRF. From there, a potential fanout node can move
back and forth between locations NRF and RF. If, at
any time, its immediate successor is un-replicated, i.e.
moved back from location RF to location NRF, the
PF node is then moved back to location FF.

The above state model allows the SE algorithm to
investigate full, partial, or no replication of the nodes
in cones that feed any fanout node in the network.
The following example illustrates these concepts.

Example: Consider the network shown in Figure 3.
The network has four primary inputs PI =
{a,b,c,d}, two primary outputs PO = {i,j},
two fanout nodes F = {h, f}, and one potential
fanout node PF = {e}. Note that the primary in-
puts are not classified as fanout nodes, e.g. nodes
b and ¢, or as potential fanout nodes, e.g. node d.

According to our state model, the set of movable
objects M is chosen to be the set of fanout and
potential fanout nodes. Therefore, M = {¢,h, f}.

FF | NRF | RF

FF | NRF | AF

e f h

FF | NRF | RF

Figure 4: Example continued

Initially, h and f are in location NRF, and e
is in location FF. As the algorithm proceeds in
searching the solution space, those movable ob-
jects change their locations. Since h and f are
fanout nodes, they can only move between loca-
tions NRF and RF. However, node e is a potential
fanout node and will thus be in location FF unless
h moves to location RF in which case it will be
automatically moved to location NRF from which
it may move to location RF. If A moves back to
location NRF, e automatically moves to location
FF. Figure 4 shows some possible moves and valid
states in the solution space and the locations of
the movable objects in each case.

3.1.2 Ordering of the Movable Objects

The PERTURB function of the SE algorithm [8]
scans the set of movable elements M according to some
apriori ordering and moves every m € M to a new lo-
cation I € L. In this work, the following two orderings
of movable objects have been examined.

¢ Random ordering, where every movable object is
randomly picked and perturbed. Each object is
picked only once. This is a slight departure from
the original SE algorithm, where a deterministic
order is followed [8].

¢ Depth First Search (DFS) ordering, where nodes
closer to primary outputs are perturbed first.

To illustrate, consider the previous example
(Figure 3). The set of movable objects M is {e, h, f}.

ALGORITHM COST(G(V, E),c1,c2);
Perform a topological sort on G(V, E);
FOR every v € V DO
compute d,, 2y, and Dy ;
IF d, > K THEN
(i) Sort ipred(v) in descending order of
their weights, where Vp € ipred(v),
Weight(p) = ¢1 X 2zp — c2 X Dp X -
(ii) Keep assigning LUTs to each p € ipred(v)
till dy, € K;
ENDIF
IF v is a PO or at location NRF THEN
assign a LUT to v;
set z, = 1 and update D;
ENDIF
ENDFOR
RETURN(¢; x No- of LUTs + ¢ax Depth)
END (* of COST *);

Figure 5: The cost algorithm.

For the random ordering, the order of objects can
be any one of the possible six combinations, i.e.
{ehf,hef, hfe, feh,efh, fhe}. For the DFS ordering,
the order of the objects can be one of two possible
combinations, i.e. {hef, hfe}.

The ordering of objects affects the path taken by
the algorithm to reach the desired solution. How-
ever, none of the above two orderings consistently per-
formed better than the other. Furthermore, for the
MCNC benchmark circuits [10], there were no signifi-
cant difference between the cost of the best solutions
reached by the two ordering techniques.

3.2 The Cost Function

To evaluate the fitness of a state (solution), a cost
function is required. Obviously, the cost function
should depend on the target optimization objective.
In this work, the optimization objective can be area,
delay, or both area and delay. The total number of
K-LUTs in the final mapping is used as an estimate
of the required implementation area. Likewise, the
depth of the final mapping is used as a measure for
the resulting circuit delay.

The adopted cost function is a mapping algorithm
based on the Level-Map algorithm reported in 2] It
constructively maps an input BN into a functionally
equivalent network whose nodes represent K-LUTs in
linear time. Unlike Level-Map, the used cost func-
tion incorporates a measure for the input BN’s depth.
Upon completion, the returned cost is a weighted sum
of the number of LUTs and the depth of the result-
ing mapping. The optimization target of the map-
ping is controlled by two user-defined weight factors
¢ and ¢y which determine the desired relative weights
assigned to area optimization and delay optimization
respectively. These optimization weight factors are
chosen such that ¢; + ¢z = 1. Thus, if ¢; = 1 and
¢2 = 0, the algorithm maps targeting area optimiza-
tion only. Conversely, if c; = 0 and ¢2 = 1, the algo-

383

rithm maps targeting delay optimization only. Other
values of ¢; and ¢y provide means for obtaining var-
ious area-delay trade-off solutions. Furthermore, the
adopted cost function doesn’t need the fanout factor
used in Level-Map since, according to our state model,
a fanout node in location NRF must be assigned to the
output of a LUT.

The algorithm accepts a DAG representing the in-
put BN and the parameter A which is the number of
inputs to a LUT. It performs a topological sort of all
nodes starting from the primary inputs. Let ipred(v)
be the set of immediate predecessors of node v. The
algorithm computes for each node v, its dependency
d,, its contribution z,, and its depth D, as follows
(see Figure 5),

e Contribution z,:
a) z, = 1 if v is a primary input or v is assigned
a LUT,
b) z, = ¥ z, Vp € ipred(v), otherwise.

¢ Dependency d,:
a) d, = 1if v is a primary input,
b) dy = Y zp Vp € ipred(v), otherwise.

e Depth D,:
a) D, = 0if v is a primary input,
b) D, = mazx(D,) Vp € ipred(v), if v is not as-
signed a LUT,
¢) D, = maz(D,) + 1 Vp € ipred(v), if v is as-
signed a LUT.

If the dependency d, of any node v is found to
be greater than K, its immediate predecessor nodes
(spred(v)g are sorted in a descending order according
to the following weight function,

Weight(p) = c1 X zp —c2 X Dp X i)

LUTs are assigned to the predecessor nodes of v
with larger weights till d, < K. Once a node is as-
signed to be the output of a LUT, its 2 value is set to
1, and the d and D values of its successor nodes are
accordingly updated.

The choice of the Weight function is justified by
the following argument. If the mapping objective is
area minimization, ie. ¢; = 1 and ¢; = 0, then one
should assign LUTs to nodes with larger contributions
(z values) as this tends to reduce the number of LUTs.
If the objective, however, is delay minimization, i.e.
¢; = 0 and co = 1, then one should assign LUTs to
nodes with smaller depths (D values) as this tends to
reduce the overall depth of the mapped network. The

scale factor T)IL is used to limit the coefficient of ¢z to

a maximum value of K which is also the maximum
value of the contribution term zp.

The cost function algorithm assigns a LUT to every
primary output node and every node at location NRF.
The z values of these nodes are set to 1 and their D
values are updated. Upon completion, the returned
cost value is a weighted sum of the number of LUTs
and the depth of the resulting mapping. This value is

used by the SE algorithm to determine the fitness or
goodness of a given mapping. The control parameters
¢ and ¢ used in the weighted sum (Figure 5) are
scaled versions of ¢; and ¢3. The reason is that the
number of LUTs and depth of the resulting mapping
are not necessarily comparable in value. Therefore,
there is a need to scale the control parameters ¢; and
¢o to reflect the target relative weights for area versus
delay optimization. The scaled factors and the cost
function are computed as follows,

¢ The cost function is invoked once with ¢; = 1 and
¢ = 0 (area optimization), the number of LUTs
and depth of the resulting mapping are denoted
N7 and D respectively.

The cost function is invoked another time but
with ¢; = 0 and ¢, = 1 (delay optimization) and
the resulting number of LUTs and depth are de-
noted Ny and Dy respectively.

Compute the scaled ¢y, ¢; = ¢;/Nyey and the
scaled c3, ¢ = ¢p/Dref, where

. (N + V)

Vo= (D1 + Do)
Npef = 3 — 7

Dref= 9

Compute the total cost of a mapping as,

Cost A X Npvrs+ 62 x D

NLUTs

where, Np7s and D are respectively the number
of LUTs and depth of the resulting solution.

4 Results and Conclusion

SELF-Map has been tested on several MCNC
benchmark circuits [10]. Prior to running SELF-MAP,
the BN is first run through a SIS [9] technology-
independent optimization script, followed by a node
decomposition script which decomposes the BN into a
2-input BN where the number of inputs to each node
does not exceed 2. This is because packing smaller
nodes into K-LUTs generally results in a more effi-
cient mapping.

The resulting BN is then fed to SELF-MAP. ALUT
capacity of K = 5 has been used to allow compari-
son to solutions obtained by other reported technology
mappers.

In case of area optimization, Table 1 compares the
results obtained by Chortle-crf [3], GAFPGA [5], and
mis-pga [6] to those obtained using SELF-Map. Out
of 17 benchmark circuits, SELF-Map gives better re-
sults compared to all other techniques in a total of 6
circuits. SELF-Map results for the other circuits come
somewhere in between. SELF-Map provides an overall
saving in area of 4% over Chortle-c1rf, 4% over GAF-
PGA, and 10% over mis-pga. For two circuits (rd84
and 9sym), SELF-Map produced decisively much bet-
ter mappings than any of the reported algorithms. We
believe that this show of consistently good results is

384

Table 1: Results targeting area optimization

Clircuit Chortle- GA- mis- | SELF-
crf FPGA | pga | MAP
z4dm] 6 9 8 {
misexl 19 15 11 15
vg2 23 22 30 i
5xpl 28 22 31 34
count 31 31 31 39
9symml 35 LYi o6 52
Osym 64 90 2 42
apex’s 64 61 64 67
rd84 45 43 40 25
ebd 31 3T 82 82
C8R0 86 36 103 98
alu? 112 112 129 94
duke2 123 119 128 114
C499 10 64 66 60
rot 203 200 200 214
apexo 213 194 243 200
des 955 1006 | 1016 908
{ Total 2178 T 2174 T 2310] 2081]

attributed to two main reasons: {1) The perturbation
moves of SELF-Map cleverly allow the partial duplica-
tion of parts of any fanout cone, not necessarily entire
fanout cones, thus exploring sub-search spaces that
would have been otherwise missed; and (2) the fact
that the SE algorithm occasionaly accepts higher cost
solutions, thus allowing the search to escape from local
minima.

15 F ®C1=10
13
® Ci=08-05
n ® C1=08-07
£ .
2
9t “. C1«04-05
) Tl 9.51=0.3
7 2120-82
5 . . 5
40 42 4 46 48 50 52 54

Number of LUTs

Figure 6: Depth versus Number of LUTS for various
values of ¢) (¢ =1 — ¢1). (9sym benchmark)

In case of delay optimization, Table 2 compares the
LUTs depth produced by FlowMap (1], mis-pga(delay)
(7], Chortle-d [4], and SELF-Map. As shown in the ta-
ble, SELF-Map overall results are as good as Chortle-

Table 2: Results targeting delay optimization

Trowt || Flow- | mis-pga | Chortle-d SELF-
Map | (delay) MAP
z4m] 3 2 3 3
misexl 2 2 2 3
vgl 4 4 4 4
xpl 3 2 3 3
count 3 4 4 3
Osyminl 5 3] 4
SYIn D 3 5 3
apex/(4 4 4 4
rd84 4 3 4 4
880 8 9 8 8
alu2 8 6 9]
duke? 4 6 4]
C499 5 8 6 6
rot 6 7 6 6
apexb 4 5 4 4
alud 10 11 10 11
es 5 11 6 9
[Total [83 | 90 | 87 87]

d, slightly better than mis-pga(delay), and slightly
worse than FlowMap.

Figure 6 shows an example of area-delay trade-
off for the ‘9sym’ benchmark circuit, where the area
weight factor ¢ is varied from 1 to 0, with a con-
sequent variation of the delay weight factor (c2 =
1.0 — ¢;). Similar results were obtained for other
benchmark circuits. The figure indicates that solu-
tions with a small number of LUTs and a reasonable
depth require that ¢; be in the range of 0.7 -to- 0.8.
That is, one should not igunore the depth criterion
even if the main objective is area optimization, as that
would lead to a solution with unacceptable depth. A
similar argument holds for the case when the main
objective is delay (depth) minimization.

The run-time of SELF-MAP was found to be 25-70
times faster compared to that of the Genetic Algo-
rithm approach (GAFPGA) [5]. This supports the
low run-time claim of the SE algorithm [8].

Acknowledgement

The authors acknowledge the support of King
Abdul-Aziz City of Science and Technology under re-
search grant AR-11-67, and the support of King Fahd
University of Petroleum & Minerals.

385

References
[1] J. Cong and Y. Ding. FlowMap: An Optimal
Technology Mapping Algorithm for Delay Opti-
mization in Lookup-Table Based FPGA Designs.
IEEE Trans. CAD of Integrated and Systems,
13(1):1-12, January 1994.

Amir H. Farrahi and Majid Sarrafzadeh. Com-
plexity of the Lookup-Table Minimization Prob-
lem for FPGA Technology Mapping. IEEE
Transaction of Computer-Aided Design of Inte-
grated Circuits and Systems, 13(11):1319-1332,
November 1994.

R. Francis, J. Rose, and Z. Vranesic. Chortle-
crf: Fast Technology Mapping for Lookup Table-
Based FPGAs. 28th DAC, pages 227-233, 1991.

3]

R. Francis, J. Rose, and Z. Vranesic. Technol-
ogy Mapping of Lookup Table-Based FPGAs for
Performance. ICCAD, pages 568-571, November
1991.

V. Kommu and 1. Pomeranz. GAFPGA: Geunetic
Algorithm for FPGA Technology Mapping. In
JEEE EURO-DAC, pages 300-305, 1993.

R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Bray-
ton, and A. Sangiovanni-V: incentlli. Logic Syn-
thesis for Programmable Gate Arrays. 28th DAC,
pages 620-625, 1991.

R. Murgai, N. Shenoy, R. K. Brayton, and
A. Sangiovanni-Vincentlli. Performance Directed
Synthesis for Look Up Programmable Gate Ar-
rays. ICCAD, pages 572-575, 1991.

Youssef G. Saab and Vasant B. Rao. Combi-
natorial Optimization by Stochastic Evolution.
IEEE Transaction of Computer-Aided Design,
10(4):525-535, April 1991.

E. M. Sentovich, K. J. Singh, L. Lavagno,
C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. S. Vin-
centelli., SIS: A System for Sequential Circuit
Svnthesis. Electronics Research Laboratory Mem-

orandum, (UCB/ERL M92/41), May 1992.
[10] Saeyang Yang. Logic Synthesis and Optimization
Benchmarks User Guide Version 3.0. Microelec-
tronics Center of North Carolina, PO Box 12889,
Research Triangle Park, NC 27709, January 15
1991.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

