Performance Optimization of Self-Timed Circuits

Mark A. Franklin and Prithvi Prabhu!

Computer and Communication Research Center
Washington University
St. Louis, Missouri, 63130-4899
U.S.A.

Abstract

In this paper, we present methods for tmproving the
performance of self-timed computation blocks. The
Hybrid Completion method permits the design of a
spectrum of completion circuits ranging from those
based on pure bounded delays to those based on full
complementary circuit development. This is achieved
by using a subset of the outputs of the computation
block to generate the overall completion signal. Thus,
the ertra circuitry for the completion signals of the
other outputs is eliminated. The computation block’s
delay might also be reduced since fewer signals are re-
quired to generate the overall completion signal. The
approach seeks to incorporate the area efficiency of the
bounded delay approach and the operand based delay
sensitivity of the full complementary approach.

1 Introduction

In recent years, asynchronous design methodologies
have attracted increased attention. The reasons for
this stem from the increasing power dissipation and
clock distribution problems associated with the design
of large clocked microprocessors. In contrast, asyn-
chronous circuits do not require clock routing, have
no associated clock skew, and have the potential for
lower power consumption. In addition, asynchronous
performance is determined (in part) by average ver-
sus worst case time delays, and asynchronous design
methodologies have the potential of leading to a more
modular design style.

However, there are drawbacks associated with asyn-
chronous design. These are due to its increased design
complexity and chip area requirements, and handshak-
ing overhead. Work is progressing at automating the
synthesis of self-timed circuits [8] and at reducing
handshaking overheads due to synchronization [12].
In this paper we present a new approach to developing

! Currently with Intel Corp.

0-8186-8409-7/98 $10.00 © 1998 IEEE

374

completion signals which indicate that a computation
has finished.

We assume in this paper that we are dealing with
bounded delays on wires and circuits, and that a bun-
dled data protocol is employed?. Figure 1 shows
an asynchronous pipeline where two types of blocks
are present: computation blocks and interconnection
blocks [8]. Computation blocks perform processor op-
erations and interconnection blocks control transfers
of data between the computation blocks. Note that
in addition to calculating the required data outputs,
computation blocks also have to generate completion
signals to indicate that valid data outputs are present
and to signal the interconnection blocks to initiate a
data transfer operation.

The completion signal may be derived as a function
of each of the computation block’s outputs as shown
in Figure 2. A simple approach to implementing the
completion circuit is to first determine the maximum
delay associated with each output and create a de-
lay element which is equal to the overall maximum.
By placing this delay in parallel with the computa-
tion block and initiating the delay with the Request
signal, the completion signal can be generated at the
delay output. This is referred to as the bounded delay
approach [11] and is shown in Figure 3.

While this approach is area efficient, the delay asso-
ciated with the computation is fixed at its maximum,
and therefore there is no ability to take advantage of
variations in completion times which may arise due
to operand variations. Another approach, the comple-
mentary circuit approach, develops the complemen-
tary circuits associated with the outputs. Completion
is signalled when either the output or its complement
has been computed. A overall completion signal for

2We are dealing with self-timed but not speed-independent
circuits and assume that the propagation times of the control
signals are greater than or equal to that of the bundled data
signals.

Ack

Ack - Ack -
- Interconnection [Interconnection [
. Block (i) . » Block (i+1)
Completion Completion
Req - Req - Re
Computation Data # Computation Data
— Block (i) Block (i+1) —
Data
Asynchronous Pipeline
Figure 1: An asynchronous pipeline with Computation and Interconnection blocks
Circuit for Output 1 —
> - OUTPUTS
- —
Completion signal circuitry
. — for Output 1 \
N | o Final Completion
p—t I o _.- j0verall Completion Detectcﬂ'—'——" Signal
U :
T . —
S +—s- Completion signal circuitry /
for Qutput m .
Circuit for Output m

Figure 2: A Computation block

the computation block can be obtained by checking
if all the individual completion signals have been as-
serted (using multi-input or a tree of C elements).
Generally, this will require more area than the pure
bounded delay approach with the area increasing di-
rectly with the number of outputs [12]. However,
the completion signal now reflects average rather than
worst case computation delays.

In this paper, we present the Hybrid Completion
(HC) method which implements a spectrum of com-
pletion circuits whose performance ranges from the
fixed delay, low area case of the ”pure bounded delay”
to the average delay, large area case of the " pure com-
plementary circuit” approach. The HC method uses
the completion circuits associated with a subset of the
outputs. This may decrease overall area requirements
since the extra circuitry needed to produce comple-
tion signals for the remaining outputs is not required.
Basically we reduce the number of “completion sig-
nal circuitry” boxes present in Figure 2. Also, since
fewer completion signals are developed, the circuitry
necessary to produce the overall block completion sig-
nal is reduced (i.e., this reduces the complexity of the
“overall completion detector” box in Figure 2).

There are numerous implementation options with
the hybrid approach. Thus, part of this method con-
sists of enumerating and selecting the best hybrid cir-

375

cuit to employ. In this paper we show for several
simple examples that the hybrid approach yields cir-
cuits which are more area efficient than circuits de-
veloped using the pure complemetary approach while
having comparable delays. The approach also yields
circuits having lower delays than those produced by
the pure bounded delay approach, although requiring
sornewhat more area.

1.1 Related Work

Extensive work has been done on formalizing and
designing the various types of asynchronous circuits
[8, 12]. Other distinctive methods of completion de-
tection have also been proposed, including the use of
an internal clock within a computation module {3},
and the use of current sensing techniques for comple-
tion detection [6, 4] etc.

In this paper, circuit delay information available is
used to analyze the design of completion signal gen-
erators. Using delay information in optimization of
asynchronous circuits is not new [9, 7, 5]. In (7,
the design optimization is performed using techniques
which required the addition of delay elements to avoid
circuit hazards. In [9] an Event Rule (ER) system (1]
is used to specify asynchronous circuits and the tim-
ing information available with the ER specification is
used to optimize the design of asynchronous control
circuits. It is shown in [1] that specifications that

: Computation ..
: Logic
Data : max. dela; : Data Data Computation :
: o :) - Data
: =t : Logic R
: comp-max : :
: : Completion :
: Detector : Compi
Req % Completion —=| Complementary :
. : Logi
; Delay Element : Req ogic
delay min>= 'comp—max ...

Pure Bounded Delay Implementation

Pure Complementary Circuit Implementation

Figure 3: Pure Completion Signal Methods

are not data dependent or disjunctive can be trans-
formed into ER systems. Due to these reasons, ER
specifications (such as Signal Transition graphs [2])
can only be used to synthesize asynchronous control
circuits (Finite state machine controllers, Interconnec-
tion blocks etc.). The circuits implemented using the
ER specification include the state holding elements.

In the pipeline model of design, the computation
circuitry is disassociated from the state holding ele-
ments. Request and Completion signals are required
for this implementation with the state holding func-
tion being handled by the interconnection block. The
computation blocks considered in this work are im-
plemented using purely combinatorial elements. Sev-
eral circuits (e.g., adders, multipliers etc.) are im-
plemented as computation blocks which are a part of
a pipeline and not as control circuits. Such circuits
can be analyzed by the method outlined in this paper.
The optimizations made using the ER approach are
not compared with those presented in this paper since
the basic design methodologies used by the two ap-
proaches are different. This research concentrates on
the computation blocks (which are a part of a compu-
tational pipeline) and specifically on how the outputs
and their delays affect the design of the completion
signal generators.

Related work done on optimizing asynchronous cir-
cuit performance of systems following the pipelined
model has been done in the AMULET ALU (5]
project. With this system, the ALU implementation
signalled the end of computation in a manner that
depended on the instruction being executed. If an
add instruction was encountered, the completion was
signalled when a carry signal had been transmitted
to all the bits in the word. If a bitwise instruction
was encountered, then a fixed delay element was used

to produce the completion signal. Thus, this design
approach was similar in spirit to the hybrid design
methodology in that neither the fully complementary
circuit nor the pure bounded delay implementations
were used. However, this design approach was not ex-
tended further to other circuits, nor have we found a
formal description of this method. This work seeks
to extend and formalize this hybrid design approach
for general computation block circuits and also to con-
sider tradeoffs between the different modes of gener-
ating completion signals.

The hybrid method is discussed in Section 2. Sec-
tion 3 presents some experimental results and the final
section gives our conclusions.

2 Hybrid Completion Approach

A completion signal should be generated by a com-
putation block once all of its outputs are valid. How-
ever, instead of using all the outputs to produce the
overall completion signal, a subset of the outputs can
be used, and, along with a fixed delay in series, a valid
overall block completion signal can be produced. The
use of a subset of outputs can improve performance in
a number of ways:

e The overall area requirements are reduced since,
instead of all outputs, only a subset of outputs
require completion circuits.

¢ With fewer inputs to the overall completion de-
tector the area and delay required for generating
the overall completion signal is reduced (8, 12].

» The removal of the completion generators for
some of the outputs can also result in a reduc-
tion of power dissipation.

We begin by introducing the nomenclature used in
the development (see Table 1). A computation block

376

Table 1: Notations used in this Paper

I Input node set
o Output node set
j Output node number
1 Input combination
D; ; Output j delay, Input combination 2
D; Maximum delay, Input combination ¢
D Average delay of the computation block
Teomp Overall Completion generation time

consists of a set of inputs I (with n elements), and a
set of outputs O (with m elements). There are a total
of 2" input combinations and, for each of these, each
output will have a particular delay. D;; denotes the
delay associated with output j for the input operand
combination i. Using this set of delays, the perfor-
mance of different hybrid designs can be obtained.

In the method presented in this paper, for simplic-
ity, we assume that a separate circuit is present for
each output. D denotes the average delay of the com-
putation block and is determined by the sum of the
computation circuit delay and the overall completion
detection delay. Delay for the overall completion de-
tection circuitry (Teomp) will depend, in part, on the
number of computation block outputs used to produce
the overall completion signal.

2.1 Analysis of Qutputs

Consider the set of outputs, ©. The minimum av-
erage delay might be achieved if all of the outputs
in O are used to generate the completion signal for
the computation block (.., full complementary cir-
cuit implementation). The completion circuitry for a
subset of these outputs, O, can be used in series with
a fixed delay element to produce the overall comple-
tion signal (Figure 4).

Consider the set of all 2™ possible subsets of O.
For a particular subset, O*, a partial completion sig-
nal may be generated by using the complementary cir-
cuit approach for this subset. If a fixed delay of ap-
propriate size is NOW added to this partial completion
signal, an overall completion signal can be developed.
Correctness is guaranteed by ensuring that the partial
completion signal derived from the subset O* when
added to the fixed delay goes high only after all other
outputs have been computed. Thus, the value of the
fixed delay depends on the elements of the subset se-
lected.

The pure bounded delay situation corresponds to
the NULL subset of O. In this case the overall com-

377

pletion signal is generated by use of a single fixed de-
lay for the entire computation block. Define D; as the
maximum delay for input combination i. For a pure
bounded delay implementation, the delay is given by:

Dypg = miax (Di) + Tcamp (1)

In this case, Teomp, the overall completion detection
time is 0 and Dypg = max (Di).

At the other extreme consider the case where the
subset consists of all elements in O. In this situation
all the complementary circuits of the elements of O
are used to develop the partial completion signal (i.€.,
the pure complementary circuit implementation) and
the value of the fixed delay in series is 0. Equation 2
gives the average delay for this situation (assume that
all input combinations are equally likely).

1 (2"-1)
Tpcc = ‘2_"‘ ZO D; +Tcomp (2)
=
While one would expect the average delays of
the hybrid implementations to be between the pure
bounded delay and pure complementary cases, this is
not always the case. The overall average delay of some
of the subsets can be lower than Tpec, depending on
their respective overall completion detection times
Consider a subset of O, O (with m* elements). Let
Dy; be the delay for input operand combination i for
the jth output in O (i=1,. ..,m*). Denote D as
the maximum delay for the input combination 1 over
all the outputs in O*. That is:

D; = max (D) (3)
If the outputs in O* with their complements are being
used to develop a partial completion signal then an ad-
ditional delay must be added to ensure that the overall
completion always occurs after that of the outputs in
O — O*. That is, there are some input combinations
where the output which has the maximum delay may
not be an element of O". The value of the additional

delay (T') is given by:

T = max (D; — D;) (4)

where i varies from 0,1,.. ., 2" — 1. Thus, the average
delay, D*, when the outputs of subset O* are used and
all input combinations are equally likely is given by:

(z"-1)
. 1 .
D =T+ S D; + Teomp

=0

(5)

This average delay can be found for each of the subsets
of O and the one with the best, performance would be
chosen for implementation.

Circuits
for Qutputs
. not in O* Outputs

I —
N u
P _"—" Circuits for {faiibobeiainlieiieiuieieie :
u — Outputs in O: \:\ Partial Dela i Overall
T . * L#l Completion Eleme);lt ﬁ—-—’: Completion
s — Completion /:/ Generator X Signal

Circuits for 0: T T T T T T T T T ;

Overall Completion Generator

Figure 4: Computation Block using the Hybrid Completion Method

3 Experimental Results

In this section specific examples are considered and
for each example the HC method is used obtain the
final design. Adders, a 4-bit comparator and two state
machines are used as examples. The computation
blocks analyzed here are assumed to be in a single
stage pipeline (see Figure 1). In all cases, the over-
all boolean functions of the outputs were determined
and used in designing the circuits. For simplicity, all
transistors were taken to be of equal size and there
was no buffering for input signals driving high capac-
itive loads. The designs were thus not optimized for
delays. Similar analysis can be performed for designs
optimized for delays, though the results might differ
since the delays will be different.

The circuits were implemented using DCVSL logic
[8] and circuit layout was done using the MAGIC lay-
out tool. The SPICE parameters were extracted from
the circuit layouts and the timing simulations were
performed by feeding these parameters to the CAzM
timing simulation tool (using a 1.2 pm FET model}.
The delay for each output was taken to be the time for
the completion signal of the output to go high after
Request goes high. The overall completion signal was
produced by using a tree of 2-input C elements. The
delay of the computation block was taken to be the
time for this overall completion signal to go high after
Request goes high. The unoptimized (i.e., full com-
plementary) computation block used all the output
completion signals to produce the overall completion
signal. It was assumed that all input combinations
were equally likely.

While only the results for the 4 bit adder are pre-
sented here, details for the other circuits can be found
in [10]. The choice of the subset of outputs, O is con-
sidered using the HC method. From Table 2 it can
be seen that subset Sum2 has the best performance
in terms of average delay. Note that multiple output
subsets generally have higher delays than single out-

378

Table 2: Performance of some of the subsets of the
4-bit adder

Additional | Area | Av. delay

Subset delay (ns) (A?) | inns (D)
NULL 8.37 95648 8.47
Sum?2 1.72 112800 7.67
Sum3 1.78 118800 8.52
Carry 4.63 124310 9.92
Suml,2 1.72 115995 10.37
Sum?2,3 0.86 123927 9.16
Suml,2,3 0.17 129580 9.73
Unoptimized 0.00 148617 11.01

put subsets. This is due in part to the added delay
of the overall completion signal generator, which ad-
versely affects the performance of those subsets with
more than one element for this case.

Table 3 gives the performance gains achieved by
using the HC method for the different computation
blocks. In all cases the delay and area values were ob-
tained from simulations and the circuit layouts. How-
ever, an exhaustive analysis of all the design choices
and the extraction of delays in each case is not neces-
sary. A heuristic is presented in [10] which reduces
the number of subsets to be considered from 2™ to m?
without a significant sacrifice in performance. Meth-
ods of estimating the area and delay of various design
choices are also presented in [10]. If the estimation
methods are used, then the best design choice can be
identified without the layout and simulation of the un-
optimized block being required. The computational
requirements for implementing the methods and iden-
tifying the design with a good performance can thus
be significantly reduced.

Table 3: Performance improvements for subsets with
least average delay

Adder Computation | Area | Delay
Block (A?) (ns)
2-bit Unoptimized | 67017 | 8.66
Adder HC result 54978 | 4.59
3-bit Unoptimized | 109120 | 9.17
Adder HC result 81048 | 6.71
4-bit Unoptimized | 148617 | 11.01
Adder HC result 112800 | 7.67
5-bit Unoptimized | 209588 | 11.99
Adder HC result 153816 | 7.87
4-bit Unoptimized | 107341 | 8.86
Comparator HC result 76713 | 7.56
DMA Unoptimized | 102201 | 10.45
controller HC result 58786 5.76
Toy CPU Unoptimized | 790485 | 18.31
controller HC result 546744 | 14.38

4 Conclusion

In this paper we have presented a method for im-
proving the performance of asynchronous computation
blocks (which are a part of a pipelined system) by fo-
cusing on the problem of completion detection. The
Hybrid Completion method helps in analyzing com-
pletion generators which use both the complemen-
tary circuit and the bounded delay approach. Us-
ing this method, considerable performance gains with
respect to average delay and area are possible. De-
tailed knowledge of the circuit delays 1s required and
the methods are computationally intensive. However,
using delay and area estimates, the analysis time re-
quired to arrive at a near optimal design can be sig-
nificantly reduced. Since this is a one time operation
done at design time, the investment in time and effort
may be worthwhile.

We have illustrated how this method helps in im-
proving the performance of 2, 3, 4 and 5-bit adders,
a 4-bit comparator and 2 finite state machines. Per-
formance gains in average delay ranging from 14.7%
to 47.0% were achieved with the average improvement
over the 7 computation blocks being 28.2%. Future
work includes improving the estimation methods so
that they can be applied to more circuits. The goal
of finding good and often optimal design choices for
completion signal generation in asynchronous compu-
tation blocks can be achieved by using the methods
presented in this paper.

379

References
[1] Steve Burns. Performance Analysis and Optimaz-
tion of Asynchronous Circuits. PhD thesis, Cali-
fornia Institute of Technology, 1991.

[2] Tam-Anh Chu. Synthesis of Self-Timed VLSI
Circuits from Graph theoretic Specifications. PhD
thesis, Massachusetts Institute of Technology,
1987.

A.L. Davis. The architecture and system method
of DDM-1: A recursively-structured data driven
machine. In Proc. fifth Annual Symposium on
Computer Architecture, 1978.

Mark E. Dean, David L. Dill, and Mark Horowitz.
Self-timed logic using current-sensing completion
detection (CSCD). In Proc. ICCD, pages 187-
191, October 1991.

[5] J.D. Garside. A CMOS VLSI Implementation
of an Asynchronous ALU. In Proc. IFIP Conf.
on Asynchronous Design Methodologies, Manch-
ester, England, March 1993.

E. Grass and S. Jones. Asynchronous cir-
cuits based on multiple localised current-sensing
completion detection. In Asynchronous Design
Methodologies, pages 170-177, May 1995.

(6]

Luciano Lavagno, Kurt Keutzer, and Alberto
Sangiovanni-Vincentelli. Algorithms for syn-
thesis of hazard-free asynchronous circuits. In
Proc. ACM/IEEE Design Automation Confer-
ence, pages 302-308. IEEE Computer Society
Press, 1991.

T.H. Meng. Synchronization Design for Digital
Systems. Kluwer Academic Publishers, Norwell,
MA, 1991.

Chris Myers and Teresa H.-Y. Meng. Synthesis
of timed asynchronous circuits. In Proc. Inter-
national Conference on Computer Design, pages
979-282. IEEE Computer Society Press, October
1992.

7

Prithvi Prabhu. Performance optimization of self-
timed circuits. Master’s thesis, EE, Washington
University, St. Louis, July 1996.

10}

[11] LE. Sutherland. Micropipelines. Commun. ACM,
pages 720-738, June 1989.

[12) B.K.V. Sarma Wuu Tzyh-Yung. Design of fast
and area efficient Multi-input Muller C-elements.
IEEE Trans. VLSI, pages 215-219, June 1993.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

