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Abstract

In this paper we present several practical methods for
SJormally verifving an Asynchronous Transfer Mode (ATM)
network switching fabric using the Verification Interacting
with Synthesis (VIS) tool. We produced Verilog RTL
behavioral and netlist structural descriptions of the switch
fabric at different levels of hierarchy and established
several abstracted models of the fabric. Using various
techniques presented in the paper, we provided a number
of relevant liveness and safety properties expressible in
CTL, and accomplished their verification in reasonable
CPU time. Moreover, we performed equivalence checking
between the structural and behavioral descriptions of each
submodule of the implementation hierarchy.

1. Introduction

Verification is increasingly becoming the bottleneck in
the design flow of communication networks systems. Sim-
ulation is very expensive in terms of time and exhaustive
simulation is virtually impossible. As a result, formal veri-
fication of digital systems is gaining interest, as the correct-
ness of a formally verified design implicitly involves all
possible input values.

ATM (Asynchronous Transfer Mode) is a network tech-
nology for addressing the variety of needs for new high-
speed, high-bandwidth applications. It has been hailed as
the most important communication mechanism in the fore-
seeable future. However, there is currently little experience
on the application of formal verification to ATM network
hardware. For instance, Curzon [4] formally verified the 4
by 4 fabric of the Cambridge Fairisle switch using the HOL
theorem prover [6]. Tahar et al. [11]{7] verified the same
switch fabric in an automatic fashion using the MDG (Mul-
tiway Decision Graphs) tools [3] by property checking and
equivalence checking. Another case of formal verification
of an ATM circuit was made by Chen et al. [2] at Fujitsu
Digital Technology Ltd., where the authors identified a de-
sign error in an ATM circuit using the tool SMV (Symbolic
Model Verifier) by verifying some properties expressed in
CTL (Computational Tree Logic)[10].
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In this paper, we present our results of formally verify-
ing an ATM network component using VIS {12]. VIS (Ver-
ification Interacting with Synthesis) is a tool developed at
the University of California, Berkeley, which integrates the
verification, simulation and synthesis of finite-state hard-
ware systems. The device we investigated is the Fairisle 4
by 4 switching fabric. It performs the actual switching of
data cells in the ATM Fairisle communication network [8],
designed and in use at the Computer Laboratory of the Uni-
versity of Cambridge.

We wrote the Verilog RTL behavioral description of the
switch fabric at different levels of abstraction, and translat-
ed the original Qudos HDL [5] netlist structural description
of the switch fabric to Verilog. We achieved property
checking on abstracted models of the switch using several
approaches and performed equivalence checking between
the behavioral and structural descriptions of submodules.
In addition, we succeeded in detecting several injected de-
sign errors using both property checking and equivalence
checking.

The rest of the paper is structured as follows: In Section
2, we describe the switch fabric in terms of behavior and
structure implementation. In Section 3, we investigate
property checking of the switch fabric. In Section 4, we
present novel techniques for model checking enhancement.
In Section 5, we introduce the methodology and results of
the equivalence checking. The error detection using VIS is
presented in Section 6 and Section 7 concludes the paper.

2. The ATM Switch Fabric

The Fairisle ATM switch consists of input port control-
lers, output port controllers and a switch fabric (Figure 1).
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Figure 1. Structure of the Fairisle ATM switch



The port controllers synchronize incoming and outgoing
data cells, appending control information in the front of the
cells in a routing tag (Figure 2).The routing bits in the rout-
ing tag indicated the destined output port of data cells. The
priority bit is used for arbitration, where the high priority
cells are given precedence. For those cells with the same
priority, round-robin arbitration is performed. The output
controllers are informed of whether their cells were suc-
cessful or not through the acknowledgments generated by
the output ports. The port controllers and switch fabric all
use the same clock, and they also use a higher-level cell
frame clock: the frameStart signal (fs).
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Figure 2. Routing tag of a Fairisle ATM ceill
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The behavior of the switch fabric is cyclic. In each
frame, the fabric waits for cells to arrive, reads them in, pro-
cesses them, sends successful ones to the appropriate output
ports and sends acknowledgments. It then waits for the next
round of cells to arrive. The cells from all the input ports
start when a particular bit (the active bit) of any input port
goes high.

Figure 3 shows a block diagram of the switch fabric im-
plementation. It consists of an arbitration unit, an acknowl-
edgment unit and a dataswitch unit. The arbiters make
arbitration decisions for each output port i by setting values
for the corresponding outputDisablefi], xGrant[i], and
yGrant[i] boolean signals, according to which the
dataswitch switches data from input ports to expected out-
put ports. And the acknowledgment unit passes appropriate
acknowledgment signals to the input ports according to
these signals.
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Figure 3. Fairisle switch fabric implementation

3. Property Checking

State space explosion is a well-known problem in FSM-
based verification approaches. Although the number of
states that can be handled has been increased dramatically
since the introduction of BDDs [1] as a symbolic represen-
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tation of a set of states, BDDs still have their limit and can-
not handle designs with a lot of state-holding elements.
There are 210 latches in the switch fabric that we are con-
sidering. In this section, we describe our methodology and
results to deal with the state space explosion we faced in
property checking.

3.1. Environment for the port controllers

Within VIS properties are expressed in CTL. However,
in order to give an explicit value for an input signal in a CTL
expression, we have to declare input signals (variables) as
non-deterministic register variable. Furthermore, in order to
express explicit time points in certain properties, we need to
represent them via explicit states in the corresponding CTL
expressions. Therefore, we established an environment state
machine which imitates the behavior of the port controllers
and also constraints the number of possible inputs to the
switch fabric.

We modeled the port controllers as a finite state ma-
chine. Figure 4 represents an abstracted environment state
machine describing the behavior of the port controliers. Ar-
rows denote state transitions, and f, t; and t, denote start of
a frame, start of an active cell (header arrival) and end of a
frame (which is the start of the next frame), respectively.
States S1 to S7 represent the cyclic behavior of the fabric,
where one cycle corresponds to one frame.
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Figure 4. Abstracted environment state machine
with related timing diagrams

3.2. Properties description

After establishing the environment state machine, we
consider several properties of the fabric including liveness
and safety properties. In following CTL expressions, “!”,
*->7, “*” and “+” denote logical “not”, “imply”, “and”
and “or”, respectively.

Propertyl: At time 1, (state S2), if input port O chooses
output port 0, potentially the data in input port O will be
transferred to output port 0. In CTL, this liveness property
is expressed as follows.



AG (dIn0{0] = 1 * dInO(2) = O * AIn0{3] = 0 * state = S2
-> EF {0 == dout0));
where dIn0>? stores the value of dIn0 in state S3.

Next, we consider several safety properties. In follow-
ing, we present four such properties of the fabric along with
their CTL expressions. An extensive set of further liveness
and safety broperties is reported in [9].

Property 2: The data bytes in a cell are transferred from
input port 0 to output port 0 sequentially with 4 clock cycle
delay.

EG (state = S3 -> AX AX AX AX (dOut0 = dIn053));

Property 3: From time #;,+1 (state S3) to time #,+4 (state

S6), the default value (zero) is put on the data output ports.
AG ((state = S3 + state = S4 + state = S5 + state = S6)
-> dutd = 0 * doutl = 0 * dout2 = 0 * dout3d = 0);

Property 4: If the input port 0 chooses output port 0 with
priority, the data cells of input port 0 will be transferred to
output port 0 with 4 clock cycles delay.
AG (dIn0[3:0]=0011 * dInl[1]=0 * dIn2{1]=0 * dIn3{1]=0 *
state = 52 -> AX AX AX AX AX ( dout0 == dIn0= ));

Property 5: If input port O chooses output port 0 with
priority, acknowledgment signal will be passed from output
port O to input port 0.
AG (dIn0(3:0]=0011 * dInl([1]=0 * dIn2[1]=0 * dIn3([1]=0 *
state = 82 -> AX AX AX ( ackOut0 == ackInO )};

3.3. Abstracted fabric

Due to state space explosion, we did not succeed in checking
the properties on the original fabric. To cope with this problem,
we reduced the datapath of the dataswitch to 1 bit. Because the
behavior and structure of 1-bit datapath is exactly the same as
that of other 7 bits, this abstraction is valid. The arbitration and
acknowledgment unit remained as in the original design. The
abstracted model is shown in Figure 5.

sckOus ] e 1 ockime
ackOut ) ACKNOWLEDGMENT |[+—————— skinl
ackOu2 4 b ackinz
ackOuid 4 oot ackIn)
L ARBITRATION
UM g 2
! 5
j 5 32 WDB:PH.:’I
: i Graatf#:3}
£ ?

TGramie:}

awaey Y
g3} 1
dinzes) i
dhxe3)

4l 8] 1 40uti($]
dini{8} 5 40util®}
3Q: L. - DATASWITCH 40utXe]

d0utys)

Figure 5. Abstracted switch fabric

Based on this abstracted model, we checked the five
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properties described above. The CPU time (elapse time),
memory usage and nodes allocated for property checking
are shown in Table 1. This experiment as well as all the re-
sults in this paper were done on SUN Sparc 20 workstation
(55MHz/256MB).

Table 1. Property checking on abstracted fabric

Properties | CTUIme | VO | alosacad
Property 1 | 3933.9 403 84,199,139
Property 2 | 4550.7 430 90,371,031
Property 3 | 35934 32.4 93,073,140
Property 4 | 3679.7 209 79,687,784
Property 5 | 414.8 53 4,180,124

4. Enhancement of property checking

Although we succeeded in checking all the above prop-
erties on the abstracted fabric, we found that almost all the
properties are checked with unreasonable time (many hours
machine usage time). This would be worse if the circuit un-
der investigation is larger than the current switch fabric.
Here, we discuss several approaches we adopted to speed-
up property checking.

We noticed that most of the properties can be divided
into several sub-properties which are much easier to verify
in model checking. If all the sub-properties pass the model
checking, and we show that the conjunction of these sub-
properties implies the property, then we conclude that the
property passes the model checking too. We call this Prop-
erty Division. In following we propose two approaches to
divide a property: Cascade Property Division and Parallel
Property Division.

4.1. Cascade property division

Cascade property division is to divide a property into
several sequentially related sub-properties. For checking
some sub-properties, new environment machines will even-
tually be required. We use property 5 to explain this ap-
proach. The original CTL expression of property S is:

AG (dIn0{3:0] = 3 * dInl{1l] = 0 * 4In2[1] = 0 =*
dIn3{1}] = 0 * state = S2
-> AX AX AX (ackOut{0] == ackInl0}));

To divide this property, we introduced the intermediate
signals (variables) xGrant[0], yGrant[0] and outputDis-
able[0], yielding the following two sub-properties:

Sub-property 1: AC (dIn0{3:0) = 3 * dIn{1) = 0 * AIn2(1] = 0
* dIn3{l] = 0 * state = S2

-> AX AX AX (state = S5 * xGrant{0] = 0 *
yGrant[0] = 0 * outputDisable{0] = 0}));



Sub-property 2: A (state = S5 * xGrant[0] = 0 * yGrant [0] *
outputDisable{0] = 0

-> ackout0 == ackInO};

For sub-property 2, some input signals (variables) like
xGrant[0], yGrant[0] and outputDisable[0] are not in the
environment state machine of the abstracted fabric. We
hence established a new environment state machine where
the behaviors of the signals xGrant[i], yGrant[i] and out-
putDisable[i] are given.

Table 2 gives the comparison between the property
checking with cascade property division and the property
checking without it. The CPU time for checking property 5
is enhanced by 41 times through cascade property division.

Table 2. Cascade division in property checking

Propery CrUime | Mcners | o
no cascade prop. division 4148 53 4,180,124
cascade | sub-propertyl 5.1 1.9 109,438
property | sub-property2 49 1.7 78,743

division Total 10.0 - -

4.2. Parallel property division

While cascade property division introduces sequentially
related intermediate variables to divide a property, parallel
property division splits a property into several parallel sub-
properties without introducing any intermediate variable. It
checks every sub-property by an abstracted model that is
stripped from a design regularly. In this approach, the de-
sign structure must be disassembled at some specific loca-
tion. We use property 3 to illustrate this approach.

The original CTL expression of property 3is:

AG (state = S3 + state = S4 + state = S5 + state = S6

-> dout0{0] = O * doutl{0] = 0 * dout2[0] = O ~

dout3[0] = 0);

To verify this property, we separated it into four parallel
sub-properties as follows:

Subpropertyl:  AG (state = S3 + state = S4 + state = S5 +
state = S6 -> doat0[0]) = 0);

Subproperty2: G (state = S3 + state = S4 + state = S5 +
state = $6 -> doutl{l] = 0);

Subproperty:  2G (state = S3 + state = S4 + state = S5 +
state = S6 -> dout2(2] = 0);

Subpropartyd:  AG (state = S3 + state = S4 + state = S5 +

state = 86 -> dout3[3] = 0);

For each sub-property, we established from the abstracted
fabric an abstracted fabric unit for each port. Table 3 gives
a comparison between property checking with parallel
division and property checking without it for property 3.
From this table, the CPU time for property checking has

371

been enhanced by 73 times.

Table 3. Parallel division in property checking

property 3 CPUTme TV s
no paratlel prop. division 35934 324 93,073,140
sub-property| 109 2.6 158,652
parallel | sub-property2 13.8 2.5 148,649
property | sub-property3 13.4 2.5 165,660
division | sub-property4 10.8 2.5 153,735
" Total 489 - -

4.3. Latches Reduction

Since latches introduce states, reducing the number of
latches in a model will greatly speed-up the property check-
ing. For instance, the switch fabric uses latches to pause
data for 1 clock cycle in its primary inputs and outputs. Ig-
noring these latches will not influence the state transitions
within the design, but overall timing behavior has to be re-
evaluated. However, just ignoring the latches will speed-up
property checking dramatically. Table 4 shows how the
CPU time of checking property 2 has been enhanced by
nearly 100 times if we use latch reduction. In this example,
the data output latches that are used to delay output data for
1 clock cycle (Figure 3) were ignored in the case of “ab-
stracted fabric with latches reduction”.

Table 4. Latches reduction in property checking

Property 2 CPUtime | Memory Nodes
(sec.) (MB) allocated
no latch reduction 4550.7 4.32 90,371,031
latch reduction 23.1 3.15 235,004

Table 5 collects the number of latches among the origi-
nal fabric, the abstracted fabric and one abstracted fabric
unit (all including few additional latches used for the envi-
ronment state machine). From previous experiments, we
found that property checking is almost impossible using the
original fabric, and it is very slow using the abstracted mod-
el as shown in Table 1. However, using the abstracted fabric
unit, acceptable CPU time of property checking is achieved.
Through more experiments of property checking in VIS, we
found that the model which has around 50 laiches can be
used for a property checking within an acceptable CPU time
in VIS. This experimental result was successfully used to
established the models while using above approaches so
that we were able to check a set of twenty-eight properties
within reasonable CPU time [9].

Table 5. Number of latches in different modeils

Original Abstracted | Abstracted
fabric fabric fabric unit
Number of latches 210 85 54




5. Equivalence Checking

Besides property checking, VIS supports combinational
and sequential equivalence checking of two circuits. We at-
tempted sequential equivalence verification between the
Verilog structural description (which we translated from
the original Qudos HDL implementation), and the Verilog
behavioral description of the fabric based on its FSM spec-
ification. If both descriptions are equivalent, the correction
of the fabric is proved. We first provided a behavior de-
scription of the whole switch fabric as one module and tried
to verify its equivalence against the implementation of the
whole fabric including all connections of submodules.
However, we could not succeed in verifying it in VIS after
three days continuous run on a SUN SPARC 20 workstation
due to state space explosion, even though we used different
techniques of model abstraction, combination with environ-
ment state machine, dynamic ordering, etc. We hence fol-
lowed a second approach that modularizes the fabric to
several parts that are similar to the hierarchical modules of
the structural description, where each module will be, in ad-
dition, described in terms of its behavior specification. This
second approach has the shortcoming that while we are able
to check the correctness of separate submodules of the fab-
ric structure, it is difficult to ensure the correctness of the
network connecting all the submodules. This shortcoming
will be complemented by simulation and property check-
ing. This second approach, however, has the advantage that
the developed behavioral descriptions of the submodules
are close to that used in industry design synthesis, and
hence may fit some kind of on-the-fly verification.

Switch_fabric
|
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Arbitration Acknowledzment In_latches  Out_latches Pause_dataswitch
Timing  Arbiters  Priority_decode Dataswitch Pause

Arbiter0 ... Arbiter3 Dataswitch0 ... Dutaswitch3

Figure 6. Modular structure of the switch fabric

Figure 6 represents the hierarchical structure of the fab-
ric for which we provided behavioral descriptions. For the
Fairisle switch fabric, we verified the sequential equiva-
lence of the modules In_latches, Out_latches, Pause, Tim-
ing, Priority_decode and Arbiters easily. In addition, we
succeeded checking the combinational equivalence of the
Acknowledgment module. After using dynamic ordering,
we checked the equivalence for Dataswitch_i and Arbitra-
tion modules, but they consumed too much CPU time (sce
Table 6). We failed to verify in VIS the modules
Dataswitch, Pause_dataswitch and Switch_fabric. Table 6
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gives the CPU time and number of latches for the modules
investigated by equivalence checking.

Table 6. Equivalence checking of submodules

Component CPU time (sec.)] # of latches
Acknowledgment 14 0
In_latches 42 32
Out_Jlatches 4.2 32
Pause 4.0 32
Arbiter_i 14 3
Arbiters 13.3 12
Priority_decode 26.9 16
Timing 0.3 2
Dataswitch_i 1855.8 16
Arbitration 67860.0 30
Dataswitch - 64
Pause_dataswitch - 96
Switch_fabric - 190

6. Design error detection

No errors were discovered in the above property and
equivalence checking verification. For experimental pur-
poses, however, we injected several design errors into the
implementation: (1) We exchanged the inputs to the JK flip-
flop that produces the outputDisable signal. This prevented
the circuit from resetting. (2) We used the priority informa-
tion of the input port 0 to control the input port 2. (3) We
used an AND gate instead of an OR gate within the ac-
knowledgment unit producing a faulty ackOur0 signal.
These three errors were detected by property checking and
equivalence checking, and VIS generated counterexamples
that exhibit the incorrect behavior of the corresponding sig-
nals. Experimental results are reported in Table 7, where the
CPU tme includes the time for property checking and
counterexample generation. More details on further inject-
ed design errors are reported in [9].

Table 7. Detection of injected errors

Expe- Property checking Equivalence checking
riment | Properties | CPUtime Affected CPUtime
used (sec.) submodules (sec.)
Error 1 | Property 3 825 Arbiters 20.6
Error2 | Property 4 493 Priority_dec. 24.0
Error 3 | Property 5 15.4 Acknowledg. 1.7

An important advantage of formal verification using
VIS is counterexample generation whenever equivalence or
property checking fails. However, some counterexamples
are difficult to analyze directly. In this work, we converted
the counterexamples into Verilog-XL and analyzed them
graphically. Figure 7 represents the procedure we adopted



for verification using VIS in a general digital design flow.
In [9] we report how we applied this design flow to reimple-
ment the switch fabric using automatic synthesis and suc-
ceed in interacting VIS with Synopsys and Verilog-XL in
an automatic fashion.
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[ Property checking in VIS l
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[ Analyze counterexample in XL ’

Simulztion in Verilog-XL I

]Tynthesize in Synopsys l
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|| Property checkingin VIS

[ Seq. equ. checkingin VIS |

Analyze counterexample in XL I [ Analyze counterexample in XL

( EDIF generation in Synopsﬂ

Figure 7. Digital design flow using VIS

7. Conclusions

In this study, we have explored the formal verification
for a real ATM switch fabric. The main contribution of our
work is the establishment of different environment and
component abstraction techniques and the development of
several approaches to avoid the state space explosion occur-
ring in property checking and equivalence checking. The
proposed abstraction and enhancement techniques are tool
independent and can be applied to a wide range of regular
design.

Although the current VIS is limited to circuits of
moderate size whose BDDs can be constructed within the
available memory space, we demonstrated that VIS can
partially verify large circuits properly by using modular
verification and abstract models. In this paper, we presented
several novel methods such as the use of environment
machines to facilitate property checking, property division
and latch reduction which made VIS succeeding in checking
properties on large circuits.

In [4] it is reported that time spent on the simulation of
the Fairisle switch fabric would have been in the order of
several weeks. However, using all the techniques described
in the paper, a verifier is able to perform the verification
within a couple of days.
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In order to check the correctness of large designs by
means of formal verification, the user must modularize and
abstract the design. The design cannot always be viewed as
a black box by the verifier, and so users must have a thor-
ough knowledge of the design in order to verify properties
in model checking. Therefore, it is the designer in person
who is in the best position to verify the design, and formal
verification should be used in the design flow as much as
possible.
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