_Practical Considerations in Formal Equivalence Checking of
PowerPC1 Microprocessors

Arun Chandra®, Li-Chung Wang*, and Magdy Abadir ¢

*IBM, Somerset Design Center, Austin, TX 78730
¢ Motorola, Somerset Design Center, Austin, TX 78730

Abstract

Recently, formal verification is becoming more a part
of the VLSI design methodology. Formally verifying a
design guarantees 100% coverage and negates the need to
do simulation. Theoretically, 100% coverage is very
appealing and formal verification looks to be the panacea
to solve the coverage problem. However, there are many
practical considerations in deploying formal verification
in real design environments. These considerations if not
evaluated can lead to ineffective and even erroneous
Jformal verification methodologies.

In this paper we show how to make formal verification
a successful part of a design methodology by paying
attention to practical considerations and knowing the
limitations of formal verification. We show the errors that
can result by making over generalized assumptions and
how they can be avoided. We do this in the context of the
design of PowerPC microprocessors. We limit ourselves
to a formal verification technique commonly used in our
design methodology--boolean equivalence checking

1. Introduction

Design Verification is an important problem in the
VLSI design area. Design Verification is checking to see
whether the system performs its intended function. Design
verification techniques can broadly be classified into at
least three distinct areas. The first uses simulation to
functionally verify designs. Simulation involves running a
preselected set of patterns on a VLSI design and
comparing its response with an expected response in order
to verify the correctness of the design. Simulation is
usually done using a high-level (RTL) view of a design.
This type of verification is usually termed functional
verification. Functional verification techniques rely upon
automated random pattern generation techniques. Also,
coverage is never 100% and to achieve high levels of
coverage unreasonable amount of simulation cycles (in the
order of billions) have to be run. Timing verification (or
timing analysis) primarily involves estimating resistances

0-8186-8409-7/98 $10.00 © 1998 IEEE

362

and capacitances and calculating path delays and verifying
that the delay characteristics of a circuit meet prespecified
criteria.

Finally, formal verification is primarily used for
equivalence checking, constraint checking, and model
checking. Equivalence checking is proving the
equivalence of two pieces of logic, or proving the
equivalence between two different views of the same
logic. Constraint checking is proving the satisfiability of a
prespecified constraint. Model checking involves
checking the state transition properties of a design,
Formal techniques have 100% coverage and negate the
need for simulation.

Formal verification techniques are very appealing and
theoretically promise a very short verification time and
100% coverage. However, in real design environments
one must evaluate the practical considerations involved in
deploying formal verification techniques. If formal
verification is deployed naively it can lead to longer
verification times and erroneous situations. In erroneous
situations real design bugs can be masked or long times
are spent chasing false bugs.

2. Formal Verification Methodology

Figure 1 shows the general formal verification
methodology in use. Equivalence checking can prove the
equivalence between the RTL and the schematic for both
custom and synthesized circuits. Checking between the
RTL and the VLSI circuit proves that what is being
simulated is being physically built. Additionally, it can
prove the equivalence between the RTL and the gate-level
view to be fed into an ATPG tool for testing purposes.
Model checking and constraint checking is usually done
on the RTL view of a design.

Equivalence and model checking tools use some form
of Ordered Binary Decision Diagram (OBDD) packages
[Bryant 86] as the core. As a result, the success of formal
verification especially with respect to the size of the
circuit that can be handled depends upon the algorithm
used in the OBDD packages.

Trcutt
Designer

vuly
Designer

To Simulation

Constraint § Check

Model Check

V To Physical Design €7

Figure 1 Formal Verification Methodology

3. Practical Considerations

In this section we show the practical considerations
involved in deploying formal equivalence checking in real
environments. We do this in the context of the design of
PowerPC Microprocessors. The major issues we cover
are: 1) Label Correspondence, 2) Sequential Designs, 3)
Constraints, 4) Circuit Elements, 5) Dynamic Logic, and
6) Capacity.

3.1 Label Correspondence

In general, a well defined and good labeling
mechanism makes debugging designs easier. In the
practical implementation of formal equivalence checking,
label correspondence can become a weak link. Label
correspondence is an issue because often the circuit
designer uses different labels than the logic designer.
Also, some synthesis tools modify labels during
synthesizing a gate-level or transistor-level view.

The label mismatches that cause immediate problems
are the mismatches on primary inputs or outputs.
Equivalence checking with label mismatches is usually
performed using a manual label correspondence
mechanism. There is a possibility of a manual label
correspondence mechanism incorrectly masking true
errors. This is shown in Figure 2. In this figure, the
incorrect correspondence in the correspondence file,
between pin A in the RTL and pin C in the schematic and
vice-versa, leads to the incorrect matching of two
inequivalent functions (A.B + C vs. A + B.C).

Another problem with label mismatches are that they
lead to false bugs which are then tracked to the label
correspondence mechanism. This ultimately leads to long
verification times and designer frustration.

363

...................

RTL CLK -‘

RTL:C=S:A [

..................

RTL:A = §:C . Jﬁ
A
1

Correspondence

Schematic

Figure 2 Incorrect Labels Masking Logic Errors

3.2 Dealing With Sequential Designs

Sequential designs are a challenge for equivalence
checking. Equivalence checking tools are primarily
designed for combinatorial circuits. In modern superscalar
microprocessors like the PowerPC, arrays and latches are
frequently present in critical custom design circuits. As a
result, concentrating on purely the combinatorial circuits
leaves a huge hole in the formal verification methodology.
When latches or arrays are encountered, equivalence
checking tools must be used in a special fashion. In what
follows we will cover the issues involved in formally
verifying circuits with array and latches.

In circuits with laiches or arrays, most tools formally
verify the combinational logic around the latches. The
latches can then functionally verified using simulation.
There are two primary techniques that can be used to
verify circuits with sequential elements. The first common
approach is the blackboxing approach. The latches are
blackboxed and therefore the latch logic (feedback loop) is
ignored. As a result of this blackboxing, the formal
verification problem is actually split into two phases.
Verifying the logic before the latch and verifying the logic
after the latch,

Blackboxing opens up a very important practical
problem of latch correspondence. Latch correspondence is
practically only feasible if the two models follow the same
hierarchy and the names of the internal nets which are the
primary inputs and outputs from the blackboxed circuits
are the same. This is usually not the case. Without this
many false errors are reported by an equivalence checking
mechanism. Also, as latches are blackboxed, false errors

can result between two models if they are equivalent after
two levels of latches. Figure 3 shows an example of this.
The design shown in this figure has nine latches (A.I),
two And gates, and one Or gate. In this figure, equivalence
checking fails because even though both the designs have
the same final function, they are functionally different at
intermediate points (F). As a result, the equivalence
checking mechanism gives false errors in both the
combinatorial cone checking phases.

It is interesting to note that latch correspondence is
generally easier in scan-based designs as many latches can
be identified by following the scan chain. In the absence
of scan logic, the latch correspondence problem is much
harder.

Circuits with latches can also be verified using
cutpoints. A cutpoint is identified in the feedback loop of
the latch. The equivalence checking methodology then
reduces to verifying the combinational logic before the
cutpoint and verifying the combinational logic after the
cutpoint. The most important practical issue here is the
designer must identify, specify, and correspond these
cutpoints in the two models. Incorrect cutpoint
specification or correspondence can lead to false errors
and in some rare cases true error masking.

Even though the cutpeoint approach and the blackbox
approach are semantically equivalent, the cutpoint
approach is easier to implement as it avoids the need to
restructure the design to enable black boxing.

In some cases modifications are made to the RTL-level
model to improve simulation performance. A typical
example is the use of a transparent latch to improve
simulation time. However, with transparent latches, latch
correspondence fails.

For embedded arrays it is impractical to use traditional
static formal equivalence checking tools. - Using plain
simulation or the more powerful formal method of
Symbolic Trajectory Evaluation [Ganguly 96], [Pandey
96], [Seger 95] is a much better and less error prone
approach. If the array is part of a bigger cell to be verified
then the only solution is to blackbox the entire array.

3.3 Constraint Handling

Steering logic implemented with pass transistors is
used abundantly in VLSI circuits. Circuits using pass
transistor logic (e.g. Multiplexers) have incomplete truth
tables. As a result, to avoid reporting false errors, formal
logic verification tools must be provided with constraint
information. An example of a constraint on a Multiplexer
is the orthogonality constraint--exactly one select line
should be on at any one time. If the orthogonality
constraint is not provided false signal collision errors or
floating line errors will be reported.

Constraints are usually provided for by manual
statements. This manual provision of constraints has to be
done with utmost care to specify the correct constraints.
Incorrect constraints can lead to longer verification times

364

and more seriously, can also lead to bugs being masked.
An example of incorrect constraint statements (S1 is
orthogonal to S2, 83 is 0), leading to an inversion error
being masked is shown in Figure 4. In this figure because
S3 is set to 0, the incorrect path will never be checked.

In many complex transistor-level circuits finding the
complex set of constraints to make the behavior of the
circuit formally verifiable is a non-trivial error prone task
which makes it another weak link which must be
addressed by a good formal verification methodology.

A good methodology for equivalence checking with
constrained circuits is to use hierarchy to check with and
test constraints. A circuit can be checked with a set of
constraints. Following that, at a next higher level where
the circuit is used, the set of inputs feeding the circuit can
be tested to see if they obey these constraints. This
methodology does add to the complexity of the formal
verification process. Further, you cannot resolve the
constraints past latch boundaries and more seriously
cannot address the fact of the constraints being correct.

A
L

(=]

O

Model 2

Phase I F=AB
Phase 2: H=(F + C).D.E.
Function: (A.B + C).D.E

Model 1

Phase I: F=AB+C
Phase 2: H=FDE.
Function: (A.B + C).D.E

Figure 3 False Errors in Sequential Circuits

3.4 Handling Transistor Circuit Elements

Formal equivalence checking is very beneficial at the
transistor level because it finds errors introduced by circuit
designers. However, if formal equivalence checking has
to be used successfully at the transistor level, the handling
of transistor circuit elements must be addressed. Without
the above, any formal verification methodology is bound
to fail due to long verification times and error masking.

Circuit elements like tristate buffers and resistive
transistors affect the way a transistor level circuit is
formally verified. Tristate buffers have a valid high

impedance (or Z) state. Most formal verification
techniques cannot deal with any arbitrary state other than 1
and 0. As a result, all the logic downstream from tristate
buffers cannot be validated. This is because there is no
way to propagate the Z value down a piece of combina-
tional logic. A way to get past tristate buffers is to set
them in the enable state. The only problem with this
approach is that it can become tedious for large designs.
Also, it masks errors caused by the tristate buffers in the
disable state.

If S1
OUT=Al
If §2
OUT=A2
If §3 sl
1
OUT=A3 Al L
RTL S ouT
A2 R A
S1 orthogonal S2 $8
A} >C
S3=0
Schematic
Constraints

Figure 4 Incorrect Constraints Masking Errors

Another common circuit element is a resistive
transistor which has low gain. A resistive transistor
prevents floating conditions by pulling up a signal to a
high value or pulling down a signal to a low value if the
signal is not being driven. In the case that the signal is
being driven, the driven signal value overrides the effect of
the resistive transistor. As a result, the resistive transistors
do not interfere with the logical functionality of a circuit.
For formal equivalence checking, usually a resistive
property has to be added onto the transistor to enable the
correct interpretation of the transistor-level circuit.

Finally, a common circuit element is the keeper. A
keeper keeps the previous value of the circuit. Keepers are
also called rail-pullers. Keepers are like half latches and
have loops and introduce sequentiality. As a result, formal
verification mechanisms must be provided with relevant
information if formal verification is to be performed on
circuits which contain keepers. Keeper transistor are
usually ignored because they do not influence the base
functionality of a circuit. However, ignoring keeper
circuits creates a hole and errors in the keeper circuit and
errors caused by the keeper circuit get masked.

365

Explicitly declared properties like the resistive and
keeper property are dangerous because they can override
the actual transistor-level behavior of the circuit. Figure 5
shows an example of this. In this figure, an error is
masked if transistor P1 is not actually resistive. Inferred
properties (e.g. via pattern matching or W/L ratios) are the
right way to go. However, inferring properties is non-
trivial.

If S1

OUT =Al
If 52
OUT = A2
IfAS1 & AS2
ouT =1

RTL

Al

P1: RESTV
A2

Schematic

Properties

Figure 5 Incorrect Circuit Element Representation

3.5 Dealing With Dynamic Logic

Dynamic logic introduces pseudo-sequentiality into a
circuit and has to be handled in a special fashion. As
opposed to static logic, dynamic logic has 2 to 4 phases
each of which need to be checked for full coverage.
Formally verifying dynamic logic then reduces to the
problem of verifying sequentiality in circuits. However, in
practice simplifying assumptions are made to verify
dynamic logic.

A common assumption made is to do an equivalence
check in the evaluate phase only. This can be done by
asserting the precharge clocks to be enabled. However,
this leaves holes in the formal equivalence checking
methodology in that the errors in the precharge phase are
masked. Figure 6 shows how errors (P transistor gated by
B) in dynamic circuits can escape if the precharge phase is
not verified. In this figure, the CLK is a precharge clock.

Another way to deal with dynamic logic is to verify the
precharge phase and the evaluate phase separately. This
methodology makes the equivalence checking complex
especially for 4-phase dynamic circuits. Also, this
methodology does not guarantee that all errors will be
caught and is some rare cases errors can be missed.
Usually, some amount of customization is needed to use
formal checking for dynamic logic.

If CLK
OUT=B+C
...................... B
cLk —(
ouT
RTL o
(LK _|
CLK =
s
Constraints
Schematic

Figure 6 Errors Masked in Dynamic Logic

Finally, dynamic latches cause a problem when used in
conjunction with cutpoints (Section 3.2). The weak
inverters in dynamic latches must be explicitly declared.
However, this leads to the same problem of incorrect
property specification.

3.6 The Capacity Problem

For complex industrial designs formal equivalence
checking is computationally very complex, hence it is
necessary to partition the designs. Partitioning the design
is a non-trivial task. Partitioning designs is usually done
by introducing cutpoints. Cutpoints are nets which break
up the circuit and then formal verification takes place by
verifying the partitions of circuit. However, there is a
possibility that the partitions individually might require
one to check functionality that is never used in the whole
circuit and thus leads to false errors.

Designers have to make the circuit partitionable and
provide a set of cutpoints for complex circuit verification.
The challenging aspect of cutpoint assignment is that the
cutpoints should correspond between the views. Incorrect
cutpoint specification or correspondence leads to long
verification times with many false starts. The need for
cutpointing is alleviated if one uses good hierarchical
verification techniques.

4. Practical Formal Verification Methodology

For formal equivalence checking of PowerPC
microprocessors we use primarily a OBDD-based
approach. Also, we use the equivalence checking

primarily for combinatorial designs. We follow Design

366

for Verifiability guidelines to make certain we avoid the
common pitfalls shown in the previous section. Our
equivalence checking approach is hierarchical and we
make use of blackboxing frequently. This hierarchical
approach alleviates the capacity problem and we can
verify large designs using this approach.

In general, the hierarchical approach is accomplished
using a bottom up approach as follows:

Determine the Equivalence of the Lower-Level Cells
Black Box the Lower-Level Cells

Verify Equivalence of Interconnects in Higher Cells
Verify Constraints Between High Level Cells

A key component of our formal equivalence checking
methodology is keeping a strict audit on the label
correspondence and constraints files. All label
correspondence and respective constraints are audited by
designer and verification engineers by file walkthroughs.
Constraints are especially audited for pass gate logic
circuits.

For sequential designs, we use the cutpoint approach
because of ease of use as compared to the blackbox
approach. In most cases this approach works well.
However, in some cases we get false errors. In these
cases, we use simulation to prove that the errors indicated
by the equivalence checking methodology are not true
errors. For sequential designs, this is the best possible
approach as there is no way to ensure no false errors.
Also, for formal equivalence checking we do not allow
transparent latches in the RTL.

As we formally verify many transistor-level circuits we
have to handle certain circuit elements. Each circuit
element is handled in a special fashion in our formal
verification process. Tristates, resistive transistors, and
keepers are required to be labeled as such. The formal
equivalence checking then proceeds with these pre-
specified transistor properties. Resistive transistors are
interpreted as weak transistors and, using rules, the
functionality of the circuit is derived. In our methodology
we ignore keepers. Keeper circuitry is verified by
simulation. Finally, we use constraints to verify tristated
circuits. Additionally, these special transistor properties
are audited by both designer and verification engineer by
file walkthroughs. Also, the danger of using these
properties is reduced because other tools use these same
properties for different reasons.

We verify both the phases of most 2-phase dynamic
circuits. For very complex dynamic circuits we use
constraints. Also, we appropriately label weak inverters in
dynamic latches and audit the properties. Figure 7 shows
our overall formal equivalence checking methodology.
The additional steps we take makes it a success and
eliminates the holes in the methodology. Also, we
continue to refine our methodology to make it more
robust. This ensures continuous improvement.

Modell Model2

\
Checks

quivalence

Add-Audit
Cutpoints
l Equivalence I l Equivalence I

Figure 7 Overall Formal Verification Methodology

5. Conclusions

In this paper we show how to make formal verification
a successful part of a design methodology by paying
attention to practical considerations and knowing the
limitations of formal verification. We show the errors that
can result by making over generalized assumptions and
how they can be avoided. We do this in the context of the
design of PowerPC microprocessors. We limit ourselves
to formal equivalence checking which is used commonly
in our design flow.

Concluding, there are many practical considerations in
deploying formal verification in real design environments.

These considerations if not evaluated can lead to
ineffective and even erroneous formal verification
methodologies.
References

[Abraham 96} Abraham, J. 1996. "Formal Hardware Verification for
Engineers,” Tutorial Notes.

[Bryant 86] Bryant, R. E. 1986. "Graph-Based Algorithms for Boolean
Function Manipulation," IEEE Transactions on Computers, Vol. C-
35(8), pp. 677 - 691.

[Ganguly 96] Ganguly, N., M. S. Abadir, and M. Pandey. 1996.
"PowerPC Array Verification Using Formal Verification Techniques,”
International Test Conference, pp. 857 - 864.

[Kuehlmann 95] Kuehlmann, A., A. Srinivasan, and D. P. LaPotin. 1995.
"Verity - A Formal Verification Program for Custom CMOS Circuits,"
IBM Journal of Research and Development, Vol. 49, pp. 149 - 166.
{Malley 95] Malley, C., and M. Dieudonne. 1995. "Logic Verification
Methodology for PowerPC Microprocessors," Proceedings 32nd
ACM/IEEE Design Automation Conference, pp. 234 -240.

367

{Pandey 96] Pandey, M., R. Raimi, D. L. Beatty, and R. L. Bryant. 1996.
"Formal Verification of PowerPC Arrays Using Symbolic Trajectory
Evaluation, Proceedings 33rd ACM/IEEE Design Automation
Conference, pp. 649 - 654.

[Seger 95] Seger, C., and R. E. Bryant. 1995. "Formal Verification by
Symbolic Evaluation of Partially-Ordered Trajectories,” Formal Methods
in System Design, Vol. 6, pp. 147 - 189.

[Seger 93] Seger, C. 1993. "Voss - A Formal Hardware Verification
System - Users Guide,” Technical Report 93-45, Department of
Computer Science, University of British Columbia.

Footnotes

1 PowerPC is a Trademark of the IBM Corporation in the United
States, or other countries, or both.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

