HOOVER: Hardware Object-Oriented Verification

Mostafa M. Aref

Information And Computer Science Dept.

aref(@dpc.kfupm.edu.sa

Khaled M. Elleithy
Computer Engineering Department
elleithy@dpc.kfupm.edu.sa

King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

Abstract

In this paper a new formal hardware verification
approach based on object oriented techniques s
presented The HOOVER system (Hardware Object
Oriented VERification) is described A cell library of
different hardware components has been implemented as
classes. Components in the cell library are described at
the transistor level, gate level, and logical level, and
Junctional level. The verification of a CMOS inverter and
1-bit CMOS adder using HOOVER is given in the paper.

1. Introduction

The design process is a transformation between different
specifications (Figure 1). An input algorithm may be
specified using a specific algorithmic specification
language. Architecture may be specified using a
realization specification language. The role of design can
be viewed as a transformation process between the
algorithm specification language and the realization
specification language. The objective of any design
procedure is to produce an architecture that correctly
implements the required behavior subject to a given set of
constraints on area and timing. It is very expensive to
fabricate a design before verifying the functional
correctness of the design. There are two approaches for
verification; simulation and formal verification.
Simulation is efficient for small size architectures where it
is possible to exhaustively run the simulator. Formal
verification is suitable for large size architectures.

A verification methodology is formal if it satisfies the
following characteristics [1]:
* There is a formal framework to describe the

architecture.

0-8186-8409-7/98 $10.00 © 1938 IEEE

351

e There

is a formal technique to prove that
implementation and specifications are equivalent
without physically construct or simulate the design.

e It is possible to manipulate and study the design's

performance without the physical implementation.

A
Specification 1

Implementation 1
Specification 1
Verificgion 4
Implementation N-
Specification N
v
Implementation N

v

Final Product

Pesign

\4

Figure 1: A Hierarchical Representation of Design and
Verification

The heart of any formal verification methodology,
then, is the availability of a formal specification language
where formal proofs can be driven. Logic is one of the
most widely used specification languages for. verification.
First order logic has been used in a number of systems [2-
4]. Higher order logic has been used in a number of
applications [5-8]. Joyce [7-8] used HOL system to verify
a microprocessor. Temporal logic is an appropriate

approach for specifying timing characteristics of a design.
Temporal logic has been successfully used for verification
in [9-10]. Productions systems have been used in formal
verification [11].

Object Oriented Paradigm (OOP) have been proven
successful in software engineering due to its reusability
which increases design productivity. Object oriented
techniques provide a number of features, discussed in
section 2, which fit hardware verification. In [12], Nebel
argued the suitability of object oriented techniques in
hardware systemn design. Several proposals where
introduced to adopt OOP in hardware description
languages such as VHDL [13-15]). In[16], Schumacher
discussed the problems in these approaches.

In this paper we are introducing a novel approach for
hardware verification based on OOP. The HOOVER
(Hardware Object Oriented VERification) system is
introduced. In section two an overview to object oriented
techniques is given. In section 3 the HOOVER system is
discuused. Examples using the HOOVER for verification
are given In section 4. Finally, section 35 offers
conclusions and future extensions.

2. Object Oriented Techniques

The characteristics of an object-oriented language are:

s abstraction: is a higher level, more intuitive
representation for a complex concept;

¢ encapsulation: is the process whereby the
implementation details of an object are masked by
a well-defined external interface;

o inheritance: where classes may be described in
terms of other classes by use of inheritance;

e polymorphism: is the ability of different objects
to respond to the same message in a specialized
manner; and

» dynamic binding: is the ability to defer the
selection of which specific message-handlers will
be called for a message until run-time.

In HOOVER, a Cell Class Library is build based on
the description of hardware components. These
components are organized in a hierarchy that allows
inheritance of common attributes between different
components. The behavior description is the only
accessible attribute of these components (ie.
encapsulation). The hierarchy structure of the Cell Class
Library allows the component of common attributes to be
on the top level (i.e. abstraction). Dealing with these
components description would be only through messages.
The same message may be passed to two different

compenents that results two different responses (j.e.
polymorphism).

3. HOOVER System

HOOVER is a hardware object oriented verification
system. The circuit structural and behavioral descriptions
are HOOVER inputs. The circuit description would be
one or a combination of different hardware descriptions,
These descriptions include transistors, gates, logical,
functional, and module descriptions. HOOVER has a class
hierarchy contains Cell Class Library. The Cell Class
Library contains a predefined set of hardware
components. It consists of five subclass libraries represent
the five level of hardware descriptions. These subclass
libraries are Transistor-level Class Library (TCL), Gate-
level Class Library (GCL), Logic-level Class Library
(LCL), Function-level Class Library (FCL), Module-
level Class Library (MCL). The block diagram of
HOOVER is shown in Figure 2.

Behavioral
Descriptiod] Control Verified/
Circuit Structures Not verified
Description

A

Cell Class Hierarchy

TCL
inputs:
outputs: T
diagram:

methods:

GCL

LCL

FCL

MCL

Figure 2: The Block Diagram of HOOVER

Each cell class contains several properties describe its
inputs, outputs and behavior. The behavior of the cells is
described through methods that may be inherited to (or
override by) the subcells. Some examples of these classes
are shown below.

Examples of Classes

Connection class

inputs: i outputs: o

diagram: i

methods: Comm(i,o)
send 0 =1

\/\.0

Transistor class
inputs: b, s
diagram: s

led

methods: Trans(b,s,d)

outputs: d
s

|
id

send d depends on the logical level of the

base b and s

An n-type transistor is an instance of the transistor class.

The method is overridden by:

NTrans(b,s,d)

send d = s if logical level of the base b is 0

An p-type transistor is an instance of the transistor class.

The method is overridden by:

PTrans(b,s.d)

send d = s if logical level of the base b is |

Inverter class
inputs: i
diagram:
i 0
methods: Inv(i,0)
send o = not i

cutputs: o

OR class
inputs: ipiy, ... i,
diagram: i

outputs: o

methods: Or(iiy, ... 14,0)
sendo =i, vipv..Vv i,

353

| S

AND class
inputs: ipi, ... i, output: ¢
diagram: i

iy —;\

0
in
methods: And(i;,i,, ... i,,0)
sendo=i Al Ao A

The cell class library is a hierarchy structure. The top
class represents a simple hardware component; connection
class. In the same cell library, there exist different
transistor level components. As we move down the
hierarchy, more specific hardware components are
described. These components may inherit some
characteristic from the upper ones.

4. EXAMPLES

Several circuit examples are used as input to
HOOVER. These examples include transistor/gate circuit
(e.g. inverter), transistor/logic circuit (e.g. 1-bit full adder)
and logic/function circuit (n-bit full adder). Here, two
examples are presented. The first one is a CMOS inverter.
The second one is a 1-bit full adder.

Example 1:
A CMOS inverter consists of power. ground, p-transistor

and n-transistor components as shown in Figure 3.

p; power
*

|
n
b L
b,

input i

= o output
=]

)

p2 power

Figure 3: A CMOS Inverter

The circuit description of the inverter is described as a
set of instances from the exiting classes as follows.

Ntransistor,(b,,p;,0) Ptransistor;(by,p,.0)
Connection;{i,b,) Connection,(i,b;)

The behavioral description of the inverter is as follows.
output = invert{input)

For i = 0, HOOVER sends 0 to Connection, and
Connection,. Their methods Comm(i,b;) and Comm(i,b,)
send b, and b, equal 0 to Ntransistor; and Ptransistor,.
The method of Ntransistor;, NTrans(b,,p;,0), sends 0 = p;.
That means the output equals 1.

Similarly, fori= 1, HOOVER sends 1 to Connection;
and Connection,. Their methods Comm(ib,) and
Comm(i,b;) send b, and b, equal 1 to Ntransistor; and

Ptransistor,. The method of Ptransistor;, PTrans(b,,p,,0),

send o = p,. That means the output equals 0.This show
that the circuit description verifies the behavioral
description.
Example 2:

A 1-bit CMOS full adder consists of power, ground,
12 p-type transistors and 12 n-type transistors, as shown in
Figure 4.

i b L p0 L
D - | Ip-cin Ao |r—b o— a
e T [
—p1 r cin _g b [
] L 7 C -
p4 I L sum P11 |- cout
a._ b Lp1 l__ cin — —Db [
6 [
p5 }-r-__l_£p cin Q-0 F—b -
p1— —
-1 N p11 r

lground

Figure 4: A 1-bit CMOS Full Adder

The circuit description of the adder circuit is as follows.

Ptransistor,{(p1,Po,P2) Ptransistory(cn,Po,P3)
Ptransistor;(b,ps,ps) Ptransistory(a,p2,ps)
Ptransistors(p;,ps.Ps) Ptransistors(a,po.p7)
Ptransistors(b,pe,p7) Ptransistorg(ps,pe,sum)
Ptransistors(a,po.Ps) Ptransistor;o(Ci,p7.P1)

Ptransistor; (P 1,Po,Cout)
Ntransistor {p1.pasPs)
Ntransistors(p1,CousP11)
Niransistors(C;n,Pe;P11)
Ntransistors(a,ps,ps)
Nitransistorg(ps,sum,py;)
Ntransistor;;{b,ps,p11)

Ptransistor;(b,ps,p1)
Ntransistor,(b,ps,pe)
Ntransistorg(pi,ps:p11)
Ntransistors(Ci,P1:Ps)
Ntransistorg(b,py,pio)
Ntransistor;o(a,ps,p11)
Ntransistor;,(a,po,P11)

The behavioral description of the adder circuit is given in

a logical level as follows.

sum=a®b®cmn
cou = (an by (ancin)U (b cin)

354

Fora=0,b=0,¢,=0
The following classes receive inputs:

Ntransistors(Cin,Pe,P11),
Ntransistors(Cin,P1:P9)s Ntransistors(a,ps,ps)

Ntransistorg(b,p1,P1o), Ntransistor;o(a,Ps.P11)-
Ntransistory;(b,ps,p11) and Ntransistor5(a,p10.p11)

Ntransistory(b,ps,Ps)s

They send the following:

Ps = Ds» Ps = Pi1, P1 ™ Po, Pa=Ps, P17 Pios
P9 = P11, Ps = P11, and Py = Pu

which means that p, = 0, p; =0, ps = 0. Then the class
Ntransistor;(p1,CousP11) S€nd Couwr = Pui which means Coy
equals 0. The final HOOVER's output indicates that the
behavioral description is equivalent to the circuit
description.

5. Conclusions

The verification of large-scale systems is no more a
straightforward process that can be completely achieved
using traditional approaches of simulation. In this paper
we are describing a novel formal verification approach
based on object-oriented paradigm. A cell class library
that supports the HOOVER has been analyzed at different
specification levels. Examples of the transistor, gate,
logical, functional cell class libraries have been
implemented in HOOVER 1.0 using Java. To illustrate the
idea, a number of small size examples have been
presented in this paper.

Currently, we are working to complete the cell class
library in HOOVER to be able to test complex examples.
A module level class library will be implemented. The
new class library will support specifications at the module
level. Further work will be done for supporting timing
verification.

Acknowle&gments

The authors wish to acknowledge King Fahd University of
Petroleum and Minerals for utilizing the various facilities
in preparation and presentation of this paper.

References

1. Elleithy, K. M. "Formal Hardware Verification of VLSI
Architecture Current Status and Future Directions," Fifth
International Conference on Microelectronics, Dhahran, pp.
197-201, Dec. 1993.

2. Uehara, T., et al, "DDL Verifier and Temporal Logic,"
Proc. CHDL 83: IFIP 6th Int'l Symp. Computer Hardware
Description Languages and their Applications, Pittsburgh,
May 1983, pp. G1.

3. Eveking, "Formal Verification of Synchronous Systems,"
Formal Aspects of VLSI Design: Proc. 1985 Edinburgh
Conf. VLSI. G. J. Milne and P. A. Subrahmanyam, eds.,
North Holland Publishing, Amsterdam, 1986, pp. 137-151.

4. Hunt, W. A, "FMB8501: A verified Microprocessor," IFIP
WG 10.2 Workshop, From HDL Descriptions to Guaranteed
Correct Circuits Design, North Holland Publishing,
Amsterdam, Sept. 1986, pp. 85-114.

355

5. Hanna, F. K. and Daeche, "Specification and Verification of
Digital Systems Using Higher order Logic," IEE proc., Vol.
133, Pt E. No. 5, Sept. 1986, pp. 242-254.

6. Gordon. M. J. C.. "Why High-Order Logic is a Good
Formalism for Specifying and Verifying Hardware," Formal
Aspects of VLSI Design: Proc. 1985 Edinburgh Conf
VLSIL, G. J. Milne and P. A. Subrahmanyam, eds.. North
Holland Publishing, Amsterdam, 1986, pp. 153-177.

7. Joyce, J.. Birtwistle, and Gordon, M. "Proving a Computer
Correct in Higher Order Logic,” Tech. Rept. No. 100,
Computer Laboratory, The Univ. of Cambridge, Cambridge,
England, 1986.

8. Joyce, J., "Formal Verification and Implementation of a
Microprocessor," VLSI Specification, Verification, and
Synthesis, Birtwistle, G. and Subrahmanyam, P.A., eds.,
North Holland, Amsterdam, The Netherlands, 1988, pp.
371-378.

9. Bochmann, G. V., "Hardware Specification with Temporal
Logic: An Example.” IEEE Trans. Computers, Mar. 1982,
pp. 223-231.

Fujita, M., et al, "Logic Design Assistance with Temporal
Logic." Proc. CHDL 85: IFIP 7th Int'l Symp. Computer
Hardware Description Languages and their Applications,
Aug. 1985, pp. 129-137.

.Elleithy, K. M. and Aref. M., "A Production Based System
for Formal Verification of Digital Signal Processing
Architectures," Twenty-Seventh Annual Asilomar
Conference on Signals, Systems and Computers, Pacific
Grove, California, pp. 1618-1622, Nov. 1-3, 1993.

12 Nebel, W. and Schumacher, G., “Object-Oriented Hardware
Modeling - Where to Apply and what are the objects?,”
Proc. of the Euro-Dac 1996 with Euro-VHDL 96, IEEE
Computer Society Press 1996.

13.Glunz, W., et al., "System Level Synthesis " in Michel, P.
and et al. (eds): The Synthesis Approach to Digital System
Design, Kluwer, pp. 221-260, 1992.

14 Zippelius, R. et al. "An Object Oriented Extension to
VHDL," Proceedings of the VHDL-Forum. Spring'92
Meeting, 1992.

15.Wilhs, I, et al."A Proposal for Minimally Extending VHDL
to Achieve Data Encapsulation and Multiple Inheritance. "
Proceedings of the VHDL International User's Forum, 1994.

16.Schumacher, G. and Nebel, W., “Inheritance Concept For
Signals in Object-Oriented Extensions to VHDL.” Proc. of
the Euro-Dac 1995 with Euro-VHDL 95, IEEE Computer
Society Press 1995,

11

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

