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Abstract

Impaortant lavout properties of electronic designs in-
clude interconnection length values, clock speed, area re-
quirements, and power dissipation. A reliable estimation of
those properties is essential for improving placement and
routing techniques for digital circuits.

Previous work on estimating design properties failed to
take multi-point nets into account. All nets were assumed
10 be 2-point nets (especially for estimating the number of
nets). In this paper, we aim at characterizing multi-point
nets in electronic designs. We will develop a model for the
behaviour of multi-point nets during the partitioning pro-
cess. The resulting distribution of nets over their net degree
will be validated through comparison with benchmark daa.

1 Introduction

The production of VLSI and ULSI computer chips re-
quires the layout (placement and routing) of the chip design
on a carrier. With the advent of high level description lan-
guages such as VHDL, with the extensive use of component
libraries, and with the standardization of production param-
eters, more and more steps in the design cycle are being au-
tomated. In the early days of chip design, manually design-
ing a chip was still feasible. Nowadays, computer aided de-
sign (CAD) tools are indispensable to cope with the com-
plexity and the limited time resources.

For the very high demands put on system performances
these days, CAD tools often lack enough flexibility. The
helping hand of expert system designers is still needed to
make important design decisions. Especially for the place-
ment and routing phases extremely high demands are set.
For the placement and routing to be good enough, accu-
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rate predictions of system performances are badly needed to
limit the search in the vast solution space. CAD tools there-
fore use estimator tools {1, 4, 8,9, 10, 1], usually based on
partitioning methodologies [2].

The main design parameters that have to be estimated
are the interconnection length within the placed design, area
occupancy, clock frequency, power dissipation, and (espe-
cially for FPGA’s) channel densities. The estimation can
be performed before the design is actually placed and then
used to obtain better layouts [9). The estimates can also be
used for gaining a more fundamental insight in the place-
ment of designs on different carriers. A lot of research per-
formed by Van Marck and Stroobandt is aimed at evaluating
three-dimensional architectures where optical channels are
used for the third dimension interconnections [8, 11, 13].
The possibilities of such architectures can be explored with-
out the need to actually produce the systems.

A lot of effort has already been spent on the estimation
of certain design parameters [1, 4, 8, 9, 10, 11]. However,
none of the currently developed estimation techniques takes
multi-point nets into account in general (although, for spe-
cific nets, a Steiner tree approximation is sometimes used).
The goal of this paper is to characterize these multi-point
nets. After a general overview of the model for the design
and the partitioning process in section 2, we will search for
a way to model the behaviour of multi-point nets during par-
titioning. The obtained distribution of nets over the net de-
gree will be evaluated by comparing them to experimentally
measured distributions.

2 Design and partitioning models

Theoretical estimates that are valid for large classes of
designs require some basic theoretical models. First of all,
the design itself has to be modelled in such a way that the
model is applicable to a large set of realistic designs. Sec-
ondly, we have to model the partitioning process for a de-
sign. Each of these models will be explained in this section.
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Figure 1. Model of a design.

A design can be represented by a set of interconnected
blocks as in figure 1 (the blocks can be the representation
of transistors, gates, or even whole designs). An intercon-
nection between blocks is called a net. A net that is con-
nected to more than two blocks is called a multi-point net.
We will assume that a net cannot have more than one con-
nection to the same block. Some of the nets are also con-
nected to the outside of the design. These nets are called
external nets (as opposed to the internal nets which only
connect blocks within the design). In order to model these
external nets properly, we introduce a new kind of block
which we will call a pin. The other blocks will be called
logic blocks. Every external net will be connected with ex-
actly one pin. Note that the number of pins thus equals the
number of external nets. The ner degree of a (multi-point)
net will be defined as the number of blocks (logic blocks and
pins) the net is connected 1o.

Fartitioning a design means dividing this design into
disjunct sub-designs (called modules), each containing a
subset of the blocks (Fig. 2). This partitioning is done using
some kind of criterion. Generally, the criterion is to mini-
nize the number of net cuts, i.e. the number of nets cross-
ng the borders of modules in the partition. Nets that are
‘ut by module boundaries are shared between two or more
nioduies and are said to be external to the modules. There-
ore the net will be split into a number of sub-nets, one for
‘ach module that shares the net. A new pin will be assigned
0 each sub-net (if the net was already external to the de-

ign then the pin assigned to it can be reused for one of the
ub-nets). Each module can then itself be seen as a design
nd can be partitioned further. A partitioning process where
fie modules themselves are recursively partitioned will be
alled a hierarchical partitioning method.

Designs can be classified on the basis of their inter-
onnection complexity. This interconnection complexity of

design is based on the notion that some designs have a
Mally different structure of interconnections than others.
hese differences in interconnection complexity over all
esigns have been experimentally observed by Rent and
is observations led to the well-known Rent’s rule {5, 12].
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Figure 2. Partitioning the design of figure 1.

This rule is a relationship between the number of elemen-
tary blocks B in a module of a partitioned design, and the
number of the module’s external connections (pins) P:

P=FB, (1)

where F' is the average number of terminals per logic block,
and 7 is called the Rent exponent. This exponent is a mea-
sure of the interconnection complexity of the design. Its
value is bounded by 0 and 1, with increasing values for in-
creasing interconnection complexity. Generally, r ranges
from 0.47 for regular designs (such as RAMs), up to 0.75
for complex designs (such as fast full custom VLSI designs)
[6]. The validity of Rent’s rule is a result of the fact that de-
signers tend to build their designs hierarchically, imposing
the same complexity at each level of hierarchy. This leads
to the observed “self-similarity” of designs.

3 Characterizing the behaviour of multi-
point nets during the partitioning process

Partitioning a design into modules as described in sec-
tion 2 involves the cutting of those nets that cross mod-
ule boundaries. The questions that immediately arise are
“Which interconnections will be cut?” and “How many of
the interconnections will be cut at each partitioning step?”
Let us first try to answer the second question.

If we take the partitioning criterion to be the minimal
number of nets cut (the minimal number of pins). then the
average number of pins at each level of the hierarchy can be
calculated using Rent’s rule [1]. Rent’s rule estimates the
number of pins P(B) of a sub-design containing B logic
blocks as (equation 1)

P(By=FB"  (0<r<]1).

Suppose we have a total of G gates, divided into modules
of size B. The total number of pins for sub-designs of size
B is then given by
r G r—1
Piot(B)=FB E:FGB . (2)
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Figure 3. The number of nets cut at level .

Let us assume that the partitioning process divides the
design into two modules of equal size at each recursion
level of the hierarchical partitioning. Let us number the re-
cursion levels from K — 1 (for the division of the whole
design into two equal modules) down to O (for the division
at the lowest level where each module only contains 1 logic
block). Then the module size B at hierarchical level k is
given by 2* and the total number of logic blocks in the de-
sign G should equal 2% where k is the number of the recur-
sion level in the partitioning scheme and K is the number of
recursion levels (0 < k < K —1). The number of pins that
will be generated by the division of nets at recursion level
k therefore equals

= Piot(2%) = Py (2F)
F2K 21: (r—1) (1 _ 21’—1)

Pa(k)
3

In order to find the number of nets cut at level k we
have to take a closer look at the division process. Con-
sider the partitioning process at level ¥ where a design with
F 2%+ pins is divided into two modules with £ 2% 7 pins
each (figure 3). The number of new pins generated by the
partitioning process is given by P;(k) (equation 3). Con-
sider the number of pins produced by the cutting of nets. An
internal net at level k + 1 does not have any pins connected
to it. After cutting the net, two new pins are generated. An
external net at level k£ + 1, on the other hand, already uses
a pin so only one new pin has to be generated (the other pin
can be reused). With S;(k) and S, (k) the total number of
internal and external nets cut at level k, this implies

25i(k) + S.(k) = Pa(k) 4)
Both S;(k) and S.(k) can be zero (but not at the same
time). The total number of nets cut at level k (ie. S5;(k) +
Se(k)) can thus vary between Py(k)/2 and Py(k) depend-
ing on what kind of nets is cut more. We will take this vari-
ation into consideration by introducing a factor f(k) which
represents the fraction of nets cut at level k that are internal
to level k + 1. Thus

Si(k)

Sk + S.05) ®

f(k) =
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This fraction f(k) ranges between 0 and 1. Due to the self.
similarity of the design at different recursion levels it is ac-
ceptable to assume that both S;(k) and S, (k) scale with kin
the same way as P;(k). This means that ali fractions f(k)

are equal
f(k)=f (6)
for all k. Together with equations 4 and 5 follows
‘ f
Si(k) mpd(k) @)
1-f
. k
Sek) = gg Palh) ®)

The total number of external interconnections at leve}
k always equals the total number of pins at that level

Ne(k) = Py (k) = F 2K k(=1 ©)

The number of external interconnections of the design N,
therefore equals

N, =N, (K)=F2Xr (10)

An internal connection at level k that is cut at leve] k— 1
is external to all levels | < k. Therefore the total number of
internal interconnections at level k (V;(k)) equals

k-1
Ni(k) = Si(l) (11)
=0
- 4 K _ ok(r-1)
= T F? (1 2 ) (12)

As a result from this, the total number of internal intercon-
nections V; of the whole design should equal

f K K
— (F27% - F287Y)
1+f ( )

With 2% = G and N; the total number of nets N mi-
nus the number of external nets (which equals the number
of pins P), we have

N; Ni(K) = (13)

f= N-P (14
 FG-N+P-FGr )
and, with P equalling F G”,
N-FGT
I=Fe—w s

4 The net degree distribution of a design

With the value of f known from the total number of
nets and the number of pins in the design (equation 14)
equation 12 gives the number of internal nets at each recur-
sion level. The number of external nets N, (k) equals the
number of pins at level k (equation 9). In this section we
want to identify the net degree of each of those nets. There-
fore we first need some definitions.



4.1 Definitions

A net degree distribution is a collection of values, in-
dicating, for each net degree n, how many nets have a net
degree equalling n. The sum of these values over all net de-
grees equals the total number of nets. A normalized net de-
gree distribution denotes, for each net degree n, the fraction
of nets that have net degree n.

We will represent the net degree distribution by its mo-
ment-generating polynomial. The generating polynomial
of net degrees is defined as the polynomial in the variable x
for which the coefficients of each of the terms z™ equal the
number of nets with net degree n. The generating polyno-
mial captures the whole collection of values of the net de-
gree distribution in one expression. Each of those values
can be easily accessed by observing one term of the poly-
nomial, Setting r to | in the polynomial immediately pro-
vides us with the total number of nets. Differentiating the
polynomial once and then setting z to 1 gives the average
net degree.

The goal of the next sub-section is to find the gener-
ating polynomial of net degrees at each level of the recur-
sive partitioning process. The net degree distribution of the
whole design is not known in general (we can only measure
it for a certain design). However, we do know the netdegree
distribution at the lowest level (k = 0) since at that level all
modules contain only one logic block. Then, only 2-point
nets exist, connecting a terminal of a logic block to a pin
of the module. For this reason we will generate the net de-
gree distribution of the design bottom-up (by a generating
process instead of a partitioning process). In section 5 we
will then compare the obtained net degree distribution with
measurements on benchmark circuits.

4.2 Recursive equation for the polynomials

Since the internal and external nets behave differently,
we will search a generating polynomial of net degrees for
internal and external nets separately. We will denote the
polynomial of internal net degrees on level k as D; (k), the
one for external nets as D, (k). Their normalized versions
will be denoted as &;(k) for internal nets and £, (k) for ex-
ternal nets. These polynomials represent the probability
that a net at Jevel k has net degree n, for every n, and are
defined by

c € {i,e}. (16)

The generating process is the reverse of the partitioning pro-
cess and can be modelled by combining the nets of two
modules at a level k to one module at level k + 1 (figure 3).
At level 0, two modules containing only one logic block

will be combined. At that level we know there are no inter-
nal nets within the modules. Assume we know both the in-
ternal and external net degree distributions within the mod-
ules at a level k. All nets internal to level k are not visible
anymore at this point and will not be changed. All nets ex-
ternal to level k are only visible through their corresponding
module pins. The two modules at level k can be connected
by internal nets (internal to level k + 1) or by external nets
{external to level k + 1) as in figure 3. Each of those nets
connects one pin of the first module on level k with one pin
of the second module on level k. External nets are also con-
nected to a pin of the module at level k+ 1. Because the two
modules can be considered to be black boxes, the choice of
a pin for connection should be a random process, not influ-
enced by the net degree. Nets that are not chosen for con-
nection remain unchanged and their pins become pins of the
module at level k + 1. All pins at level k that are not a pin
atlevel k + 1 are removed.

The net generating process described above results in
the following changes for the nets at level k:

o N (k+1) -~ S.(k) external nets at level k are left un-
changed and become external nets at level k+ 1. Their
net degree remains, of course, equal. Since the choice
of the nets is a random process, the normalized gener-
ating polynomial for those nets is the same as the one
at level k.

¢ 2S.(k) external nets at level k are combined to result
in S¢ (k) external nets at level k + 1. Their net degree
is the sum of the net degrees of the composing nets mi-
nus one (one pin is removed). Since the choice of pins
for connection is a random process the new normalized
generating polynomial is the multiplication of the two
normalized generating polynomials.

e 2 S,{k) external nets at level k are combined to result
in S;(k) internal nets at level k + 1. Their net degree is
the sum of the net degrees of the composing nets minus
two (two pins are removed).

¢ All internal nets at level k remain unchanged and be-
come internal nets at level k + 1.

The generating process described above is reflected in
the following equations between the generating polynomi-
als:

D(k+1) = (N, (h+1)=S. (k) & (k)
2

LS. & I(k> (17)

Dik+1) = Dk +Sk) S g

T2

We know that, at level 0, there are no internal nets and
only 2-point external nets (since a net cannot have more
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Figure 4. The internal net degree distribution
for a design with Rent exponent r = 0.6 and
fraction f = 0.6.

than one connection to the same logic block). This means

Di(0) = 0 (19)
£(0) = 22 (20)

Solving the recursive equations 17 and 18, together with
equation 16 and the starting values given in equations 19
and 20, results in the net degree distribution at every level
k. These distributions are dependent on both the Rent ex-
ponent r and the fraction f. The general solution of the
recursive equations as a function of k is difficult to obtain
(if not impossible). A numerical analysis for some typical
value for the Rent exponent 7 and for the fraction f (fig-
ure 4) shows that the normalized internal net degree distri-
bution follows approximately a power law for the first val-
ues of n (especially for large designs, k >>) and starts 1o
drop rapidly after a while. The figures for other values of
rand f are similar [7]. For large designs, we can thus ap-
proximate the distribution by a power series (a straight line
in a log-log plot). This distribution is fully characterized by
two of its points. In [7] the recursive equations 17 and 18
are evaluated forn = 2 and n = 3.

We can approximate the net degree distribution at each
level k by a power series of n as dp(n) = ax n where a;
and by can be calculated from d (2) and di(3) as (see [7])

be i (1)
log (3)
di (2) .
S 22
Qg XOE(%) (24)
D Tog(372)
where
1-y%) g(r. f.F K
4 (2) (1-y5)glr.f ) 23)
-y
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di(3) 2  (-wf)d-y)
i@ Ty (1 1~ vh) <1~y3>> =
and
i f K
g(?"f.F,}\) - mFQ (I“R(T)) (25)
Lo 2R -(-f)
YT TOY R0 (26)
2R(r)—(1-f))°
Y2 = B (27)
/ I+ 77 R(r)
QRN -01-1)° R
P Taepen
R(ry = 2L (29)

This approximation is also shown in figure 4 and it
seems to be valid for large designs (the larger the design, the
better the approximation) and for small values of n. Since
we know that, in most cases, more than 75% of the nets are
2- or 3-point nets [3] and also the remaining nets normally
do not have that high a net degree, the approximation should
suffice for the estimations in most cases. For large designs,
the approximation can be easily obtained by taking the limit
for K — oc. Equations 21 and 22 remain with d(2) and
di (3) substituted by do.(2) and d..(3) respectively and

do(2) = ITLEK) (30)
— Y2

dw (3) 2 (y2—ys)

e v (1w Gb

5 Results

In section 3 we developed a new theory on the parti-
tioning behaviour of multi-point nets. From the study of the
reverse partitioning process (the net generating process), we
found a recursive equation to represent the net degree dis-
tribution. In order to evaluate this net degree distribution,
we numerically evaluated the recursive equation and com-
pared the results with measurements on the ISCAS bench-
mark designs. The parameters characterizing these designs
are presented in table 1. The Rent exponent of the bench-
marks has been estimated by performing a partitioning with
the ‘ratiocut’ program described in [14]. The fraction f has
been estimated by using equation 14 and the measurements
of the total number of nets NV and the number of pins P from
the benchmark data. The average number of terminals per
gate F has been computed by counting all terminals and di-
viding the result by the number of gates G.

The second last and last columns of table 1 compare the
measured average net degree 7i,, with the theoretically esti-
mated values for the average net degree 71, for every bench-




Name G F T f Tim Tig

c432 1606 3.10 062 0565 2750 2557
c499 202 3.02 0.55 0.443 23811 2.891]
c1355nr 546 293 050 0.505 2.853 2.86l
¢2670nr 961 271 059 0.579 2525 2.591
¢3540nr 1620 272 057 0.609 2683 2.582
c6288nr 2399 298 046 0506 2966 2943
¢7552 3512 275 0.55 0.567 2.681 2.700
s208.1 112 2.69 0.39 0640 2557 2.493
$298 133 294 042 0527 2941 2.801
s344 175 262 034 0.587 2.603 2.631
s382 179 2.83 034 0.546 2.830 2.775
s832 292 3.65 0.58 0.393 3.558 3.208
$953 424 282 0.68 0.645 2807 2.394
s1196 547 2.88 0.64 0.606 2.856 2525
$1423 731 269 038 0.601 2.662 2640
$5378 2958 248 0.61 0709 2483 2374
$9234.1 5808 2.41 0.53 0.722 2407 2372
s13207.1 8589 2.37 0.54 0.727 2.382 2365
s15850 10369 2.37 054 0.737 2380 2.343
835932 17793 2.69 0.55 0.586 2.701 2.688
$38417 23815 241 048 0.710 2416 2.404

Table 1. Parameters characterizing the ISCAS
benchmark designs and comparison of the
theoretical (7;) versus the measured (7, ) av-
erage net degree.

nark design. The estimated average net degree clearly fol-
ows the measured one. The relative error stays below 5%
f the actual value for most designs.

A plot of the measured internal net degree distribution
gainst the theoretical one learns that both follow the same
chaviour. It is not possible to show all the figures. We
vill confine ourselves to the largest benchmark of the IS-
“AS suite in figure 5. One can see that the theoretical net
enerating process as presented in section 3 really captures
1¢ behaviour of multi-point nets in the partitioning process.
uso the approximation of the power law seems to estimate
1e net degree distribution well. In interpreting the results
ne should not worry too much about the fact that there
2em to be too many points with high net degree compared
> the theory. One must be aware of the fact that the normal
umber of nets with such net degrees is smaller than one.
‘utin the real world the net is present or it is not present.
here Is no way of being partly there. In fact, the number
f those nets should be spread out over all neighbouring net
egrees which do not have a representative in the distribu-
on.

The external net degree distribution is plotted in fig-
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Figure 5. The measured internal net degree
distribution, the theoretical estimation and
a theoretical approximation for the s38417

benchmark design.

ure 6.At first sight, the theoretical distribution seems not to
be as good as the internal one. However, if we look at the
equations 17 and 18, we see that the internal distribution is

highly dependent on the external distributions of all previ-
ous levels. 1f the external distribution would not be mod-
elled correctly, the results for the internal distribution would
be bad too. The reason for the big differences between the-
ory and experiment in some of the external distributions lies
in the fact that designers tend to change the external nets
at the highest level in order to cope with the pin limitation
problem. This 1s the same reason why Rent’s rule does not
hold at the highest level in most cases (see second region in
Rent’s rule [5, 12]). The ISCAS89 benchmark s38417, for
instance, only has 2-point external nets at the highest level
(figure 6). However, once we start partitioning the design,
we begin to recognize the theoretically estimated net degree
distribution almost immediately. Figure 7 shows the exter-
nal net degree distribution for a partition of the benchmark
design (partitioned using the ‘ratiocut’ partitioning program
[14]).1t 1s clear from this figure that the big difference be-
tween the theoretical and experimental net degree distribu-
tions only resides at the highest level(s).

6 Conclusion

In this paper, we presented a new theoretical model to
capture the behaviour of multi-point nets during the parti-
tioning process. This model ts able to estimate the net de-
gree distnbution accurately. To our knowledge, it is the
first attempt to characterize multi-point nets in such a way.
This model opens new perspectives for estimating design
parameters such as interconnection lengths, area require-
ments, channel densities, power usage, ...
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Figure 6. The measured external net degree
distribution and the theoretical estimation for
the s38417 benchmark design.
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Figure 7. The measured external net degree
distribution and the theoretical estimation for
a partition of the s38417 benchmark design.

Further research is planned to estimate interconnection
lengths for multi-point nets based on this theory. These in-
terconnection length estimations should be superior to all
previous estimations since, for the first time, multi-point
nets are modelled adequately.
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