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Abstract

We present an ezact algorithm to find an optimal
linear transformation for the variables of a Boolean
function to minimize its corresponding ordered Binary
Decision Diagram (BDD). To prune the huge search
space, techniques known from algerithms for finding
the optimal variable ordering are used. This BDD
minimization finds direct application in FPGA design.
We give ezperimental results for a large variety of cir-
cuits to show the efficiency of our approach.

1 Introduction

Spectral methods have been suggested as an effi-
cient tool for circuit design in the early 1960s. Re-
cently, they are of growing interest, since methods
have been proposed that allow to efficiently identify
good solutions {13, 9]. Spectral transformations are
based on a transformation of the whole function ta-
ble, which has 2" elements.

Linear transformations can be seen as a restriction
of this, as only n variables are transformed. Instead
of operating with 2" x 2"-matrices, we only have to
deal with n x n-matrices. An application of linear
transformations to BDD minimization is presented in
(10], where linear combinations of single variables are
dynamically applied. This is integrated in the widely
used sifting algorithm [15] for BDD minimization. The
resulting BDDs are often much smaller than sifting
alone. This gain can be up to 98%. The influence
of this approach on the resulting area of the FPGA
design has been described in [11]. Nevertheless, the
approaches presented so far are purely heuristical and
¢annot give any guarantees on the quality of the result.

Several design methods based on BDDs have been
proposed, and recently, first promising results on
transforming BDDs directly to pass transistor logic
_have been reported [5, 1]. There, the size of the result-
Ing circuit directly depends on the size of the BDD. It
18 therefore desirable to minimize the size of the BDD.
‘Notice that in these applications a small gain counted
In the number of nodes can tremendously simplify the
Mapping to FPGAs or a target architecture [2, 14].

In this paper, we present the first algorithm to ex-
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actly find the optimal linear transformation, i.e. a lin-
ear transformation for which the size of the BDD is
minimal with respect to the number of nodes. As re-
ordering can be seen as a subset of linear transforma-
tions, our approach is more powerful than reordering
alone. However, we make use of reordering techniques,
since they allow us to prune large parts of the search
space without loss of exactness. The linear transfor-
mations can easily be realized by EXOR gates. For
FPGA synthesis the number of necessary EXOR gates
for the transformation is also of importance, since they
have to be mapped, too. Qur algorithm is also appli-
cable when we give a “penalty” for each EXOR gate
used in the transformation.

We carried out experiments that show that we are
able to succeed with all benchmarks from LGSynth93
with up to 6 input variables. If we make use of the
penalty function we are even able to compute the ex-
act result for functions with up to 7 input variables,
since the branch&bound argument becomes stronger.
So for most FPGA applications our algorithm can suc-
cessfully calculate the exact solution, since often cells
in FPGAs have less inputs.

2 Preliminaries
2.1 Binary Decision Diagrams

Boolean variables can assume values from B :=
{0,1}. In the following, we consider Boolean functions
f:B™ — B™ over the variable set X, = {z1,...,z,}.

As well-known, each Boolean function f : B™ —
B can be represented by a Binary Decision Diagram
(BDD) i.e. a directed acyclic graph where a Shannon
decomposition

f=Tifomo+ Tife,i=1 (1<i<n)
is carried out in each node.

A BDD is called ordered if each variable is encoun-
tered at most once on each path from the root to a
terminal node and if the variables are encountered in
the same order on all such paths. A BDD is called
reduced if it does not contain vertices either with iso-
morphic sub-graphs or with both edges pointing to the
same node.



Figure 1: BDDs of the function f =Zjz2 + 21T

BDDs are defined analogously for multi-output
functions f : B® — B™ as for the case of single-output
functions: A BDD G for each component function f;
(1 € j £ m) is used for the shared BDD representa-
tion G for f. The order of the variables is fixed over
all G j8.

For functions represented by reduced, ordered
BDDs efficient manipulations are possible [3]. In the
following, only reduced, ordered BDDs are considered
and for briefness these graphs are called BDDs.

2.2 Transformations

Definition 1 A re-encoding of a set of input vari-
ables X,, = {z1,...,Z,} is an automorphism T :
B" — B", i.e. a mapping for which the inverse map-
ping ezxists. The re-encoded input variables are denoted
by T(z1,...,Zn).

Example 1 For function f = T122 + 2172, the trans-
formation T(zy,z2) = (21 ® z2,Z2) i3 an automor-
phism. The BDDs for f with and without transforma-
tion T are given in Figure 1.

As described above, we restrict ourselves to linear
transformations, which will be defined in the following,.

Definition 2 For i # j, an elementary transforma-
tion o;; : B™ = B™ is an automorphism of type

Gij(T1,. .., Tn) = (T1,...,Li—1,%Ti ® T, Tig1,--->Tn)-

An elementary transformation can be written as an
n x n-matriz over the Galois field (B, ®,):

J
1 0 I
U,’j(Il, . ,:z:n) = i
0 1 Tn
(All non-given matriz elements are 0.)

Linear transformations are those automorphisms
obtained by a sequence of elementary transformations
[10]. This is analogously done to the generation of
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regular matrices out of elementary matrices. In the
following we do not distinguish between linear trans-
formations and regular matrices.

As shown in [12], the number of possible linear
transformations is

n—1

H(2n _ 2i),

=0

which is much larger than n!, the number of possi-
ble variable orderings, but much smaller than 2"!, the
number of all possible automorphisms. Similar estima-
tions hold for the space requirements: permutations
require O(n) space, linear transformations O(n?) and
general automorphisms O(2").

In this paper, we denote a permutation of the vari-
ables with . If z; = (k) for a variable z;, then z; is
the kth element of the variable ordering =, i.e. z; is in
the kth level of the BDD. For a set of variables I C X,
let TI(I) be the set of permutations = that map the
variables from I to I. (We also write n(I) = I.)

For linear transformations m; and 73, let 72 o 71 de-
note the concatenation of m, and 73, i.e. the linear
transformation {13 o 71 )(Z1,..,Zn) = Te{n1 (21, .., T5)).
Identifying linear transformations and regular matri-
ces, this can be seen as a multiplication of two regular
matrices. '

The number of nodes in a BDD for function f and
linear transformation 7 is given by #nodes(f, 7). The
nodes in level k marked with variable z; under linear
transformation 7 are given by #nodes_ (f, 7).

We now consider the following problem:

How can we determine an optimal linear transforma-
tion such that the number of BDD nodes is minimal?

As mentioned in the introduction it is straightfor-
ward to realize the linear transformations by EXOR
gates. For this, these gates have also to be considered
during the minimization process. Depending on the
design style or FPGA type a different penalty should
be given. (For simplicity of the presentation we do
not consider this penealty during the description of
our algorithm. But notice that it can be incorporated
without any problems.) In our experiments we show
how the choice of the penalty influences the result (see
Section 6).

3 Optimal Variable Ordering

Our algorithm is based on techniques of exact min-
imization by finding the optimal variable ordering. In
[7] an exact algorithm has been presented where the
number of variable orderings which have to be consid-
ered could be reduced significantly in comparison with
the trivial idea of constructing BDDs for all n! vari-
able orderings. The main idea behind that algorithm
is the following lemma:



Lemmal Let f : B" - B™, I C X,,, k = |1},
and z; € I. Then there exists a constant ¢ such that
#nodes, (f,7) = c for each 7 € II(I) with n(k) = z;.

More informally the lemma states that the number of
nodes in a level is constant, if the ordering of the vari-
ables above that level or below that level is changed.

The lemma can be used for variable reordering as
follows: for I C X,,, let

[
min.cost; = min nodes, (f,«
I WGH(I)Z;# z,(f )9

and let m; denote some permutation leading to that
minimum. Assume for a fixed I C X, with |[I| = k
that we know min_costp for all I' C I with |I'| = k-1.
Then we get

min_cost; = ;r‘_x‘igx}(min-costj\{z‘.} + #nodes,, ),

with #nodes,, being the number of nodes in level k
under some permutation 7 with 7 (I \ {z;}) =T\ {z:}
and 7(k) = z;. So the optimal ordering can be com-
puted iteratively by computing min_costy for each k-
element subset I for increasing ks, until k = n.

Remark 1 For increasing k the considered level k
moves down. Likewise, one can start al the top level
and consider the levels upwards. AsTI(I) = II(X,\I),
Lemma I can be used the same way in that case. Actu-
ally, this is done by all previously presented algorithms
except (6] (for a discussion see [6] and Subsection 5.2).

4 Linear Transformations

As in the case of permutations, the first approach
to exact minimization would be to construct BDDs for
all linear transformations. Obviously, this approach is
only applicable to “tiny” functions. In the following
we will prove that some parts of the search space do
not have to be considered.

To keep this paper self-contained, we give some the-
ory about linear transformations.

Lemma 2 For any linear transformation 7, there ex-
i8ts a permutation ™ and a linear transformation p so
that T = 7 o ¢ and for matriz R = (rij)i; of o holds
rii=1for1<1i,j <n. Wecall p a normalized linear
transformation.

Proof: Let T = (t;):; be the n x n-matrix of T over
B. As T is regular, there exists p; such that t,,; = 1
(otherwise, the first column of T would be the vector
0, in contradiction to T being a regular matrix). In
other words, there exists a permutation 7(!) such that

T = ). RW for some RV = (rf;)),-,j with r{) = 1,
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As RW is regular, by induction we get 73, ...,
7" and R(M = (rg-'))i,,- such that rg,-") = 1 for all
1<i<n. Forrm:=7x. . .7 and R:= R™, the
postulated conditions hoid. O

As a consequence, instead of constructing BDDs
for all linear transformations, we can also construct
the BDDs for all permutations and for all normalized
linear transformations. A combination of Lemma 1
and the following theorem is the key to our approach.

Theorem 1 Let f : B® = B™. Then there exists
a constant ¢ such that #nodes, (f,g) = ¢ for each
normalized linear transformation g with corresponding
matriz (ri;)i ; and

lLry=1foralll<i<n,

2. rij=0foralli<kandj2>k,

3. rij=0foralli >k andj <k,

4. 1ij=0foralli>k andj <k,
i.e. a matriz of type
1o |0 e 0
*'.‘ 1 . .
0---0
C0
Gerr e

Proof: A similar technique can be used as in the
proof of Lemma 1. Elementary transformations within
the levels k41, ..., n do not affect the number of nodes
in level k, as these nodes represent the cofactors of the
BDD’s functions with respect to zx41,...,Z,. Chang-
ing the encoding of zg41,...,Z, does not change the
number of different cofactors.

Additionally, applying elementary transformations
ok; with ¢ > k does not change the number of nodes
in level k, as their number is independent of their en-
coding.

Elementary transformations within levels 1,...,k—
1 do not affect the number of nodes in level k, which
can be proved similar to Lemma 1. o

This means that we can apply elementary transfor-
mations o;; with ¢ < k and j < k or with ¢ > k and
J > k without changing the number of nodes in level
k.

Furthermore, we have to proof that by this method
we traverse the whole search space.

Theorem 2 Any normalized regular n x n-matriz R
can be written in the form .

R=Un'Dn'Un_1'Dn..l'...'Ul'Dl

with



E k+1

(k)

(k)
uk+1 e w n

Uk

and

k "1

k+1 d)

Dy B4l

d®) 1
(All non-given matriz elements are 0.)

The proof makes only use of well known properties
of matrix theory. (We leave it out here; it can be found
in (8].)

It can easily be seen that all intermediate matrices
Ui-D;-...-Up-Dpand D; - Uiy - Digy-...-Up - Dy
are normalized. So we can prune the search space
whenever we get an “un-normalized” matrix. We do
not mention this further, as it would complicate the
algorithm unnecessarily.

5 Finding the Optimal Linear Trans-
formation

Algorithms for finding the optimal variable order-
ing are based on iteratively considering all levels of the
BDD [7, 6]. Considering one level means calculating
the minimum number of nodes for this level using the
calculation of the step before. In case of reordering,
this has to be done for all k-element subsets I C X,
with increasing k. Furthermore, in our more complex
case this additionally has to consider linear transfor-
mations, as shown in the previous section. In this
regard, our algorithm can be seen as an'extension to
reordering algorithms.

The implementation aspects of linear transforma-
tions are similar to [10].

5.1 Algorithm

A sketch of the exact algorithm is given in Figure
2. For increasing k, we consider all subsets I of size &
and all linear transformations ¢ based on elementary
transformations oy; with i < k < jor j < k <i. For
each such combination, we store the number of nodes
in levels 1 to k (min_cost), the best permutation, and
the best linear transformation for these levels in a ta-
ble. We use (I, ) as a hash key for our tables.

The table is initialized with I = @, min_cost = 0,
some initial ordering 7= and linear transformation p.
For any BDD level k (for increasing k) we consider all
entries in table. Without pruning, this would be all
subsets I C X, of size k and all linear transformations
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compute_optimal_linear_transformation (f) {
init table with linear transformation;
for all BDD levels k (top—down) {
next_table := 0;
for each entry ¢t in table {
set t’s permutation and linear transformation;
prune if lower bound is large enough;
for each variable z; in lower levels {
for each linear transformation of z;
and lower levels {
¢ := actual cost;
key := key of new permutation /
linear transformation;
if (key ¢ next_table or ¢ < next_table[key])
add to next_table;
}

}
}

set best permutation and linear transformation;

}

Figure 2: Sketch of the algorithm

o based on elementary transformations o;; with i < k
and j > korwithi >k and j <k.

Then the remaining variables z; which are not in
Xn \I are shifted to level k. Notice that this does not
change the number of nodes in levels 1,...,k — 1. For
each variable z; in level k, all linear transformations
of lower variables z; with z; and all linear transforma-
tions of z; with lower variables r; are set (see Theorem
2). We store the result in nezt_table either if no such
element is in it or if the number of nodes in levels
1,...,k is less than before.

In the last iteration, i.e. ¥ = n, the minimum BDD
size over all variable orderings and normalized linear
transformations is computed.

5.2 Lower Bound Technique

The lower bound is the smallest number of nodes
possible with that permutation and linear transfor-
mation in levels 1,..., k. Obviously, we can not deter-
mine the optimal number within reasonable time, so
we have to give a lower estimation for that number,
which can be computed efficiently.

Lower bounds for the size of BDDs have been
proven in [4] using lower bound techniques from VLSI
design. These techniques were applicated in an auto-
mated way for the first time in [6], giving good estima-
tions for the lower bound in case of “pure” reordering.
We do not repeat the exact method here, but it can
be easily seen that the same technique can be used in
case of linear transformations, too. (For more details
see [6].)



name ifo ord | Isift | ex | time | MB
cmd2a 4/10 1 201 20| 20 1 1
cm82a 5/3 12 8 7 18 1
cl17 5/2 71 9| 7] 15] 1
decod 5/16 | 32 32| 32 56 1
majority | 5/1 8 6 6 32 1
rd53-hdl | 5/3 171 15 10 32 1
cml138a 6/8 18 18 18 | 2416 26
bed.divd | 4/4 4] 151 12 1 1
del 4/7 221 23| 21 1 1
dekoder | 4/7 | 19| 19| 17 1| 1
newcwp | 4/5 9 9 8 1 1
wim 4/7 20| 21| 18 1 1
bw 5/28 | 101 | 108 | 95 47 1
rd53 5/3 17 15 10 32 1
xor5 5/1 6 4 2 36 1
newbyte | 5/8 17 17} 17 43 1
p82 5/14 | 56 a8 | 50 31 1
bench 6/8 89| 8) | 78| 7846 | 46
fout 6/10 | 119 | 118 | 108 | 9606 | 46
ml 6/12 | 44 44 | 42 | 1207 11
newapla2 | 6/7 17 17| 17| 2344 26
pope.rom | 6/48 | 203 | 222 | 197 | 5276 16
sqr6 6/12 | 63| 63| 61| 6181 | 26

Table 1: Experimental results

6 Experimental Results

In this section we describe experimental results that
have been carried out on a SUN Ultra 1-167. For all
our experiments we used an upper memory limit of
100 MBytes. Our algorithm has been integrated in
the CUDD package [16].

In a first series of experiments, all EXOR gates that
are needed for the realization of the linear transforma-
tions are counted as zero. Results for all LGSynth93
benchmarks with less than 7 inputs are given in Table
L. In column “i/o” the number of inputs and outputs
i given, respectively. In column “ord”, the minimum
number of BDD nodes under all variable orderings is
given. Results for linear sifting [10] are given in col-
umn “Isift”, measured for a fixed set of parameters.
The minimum number of nodes for all linear transfor-
mations is given in column “ex”. Columns “time” and
“MB” refer to runtime in seconds and memory usage
in MB of our exact algorithm, respectively. All times
ire given in CPU seconds.

It can be seen that in about half of the cases, the
"esulting BDD sizes for the best linear transformation
ire sometimes significantly smaller than with exact
variable reordering. Linear sifting takes an intermedi-
ite place.

‘In a second series of experiments we compared the
ninimum number of nodes when giving a “penalty”
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p for each elementary linear transformation, i.e. each
elementary linear transformation costs as much as p
additional BDD nodes. The results are given in Ta-
ble 2. In columns p =0, p =1 and p = 2, the sum of
BDD size and p times the number of elementary linear
transformations is given, respectively. Sharing EXOR
gates between the transformations has not been con-
sidered.

It can be seen that even with penalties (which is
more realistic for synthesis) linear transformations can
improve the costs. The higher the penalties the less
linear transformations have to be considered during
the minimization process. Thus, our algorithm be-
comes even more efficient with respect to runtime in
this case, and larger functions can be handled within
our space limitations. In most practical examples
where Boolean functions are mapped to FPGA cells,
our algorithm finds the optimal result.

7 Conclusions

Linear transformations can be used for minimizing
BDDs. In this paper we presented the first exact al-
gorithm for determining the optimal linear transfor-
mation for finding the BDD of minimal size. As the
search space is much larger than in case of variable
reordering alone, it succeeds only for small circuits.
We studied the problem from a theoretical and prac-
tical point of view. Using a clever pruning technique
we are able to compute exact results for all problem
instances with less than 6 variables and for several
with 7 variables. For most cell oriented synthesis ap-
plications, e.g. FPGAs, this is already sufficient. The
resulting BDD sizes using linear transformations are
often much smaller, as a comparison to a heuristic
greedy algorithm has shown.
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