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Abstract

Local Optimality paradigm is applicable to all
combinatorial optimization problems. Its direct field of
application are the constructive solution algorithm; its main
advantage is the low computational cost for multiple high
quality initial solutions for iterative improvement
algorithms. The application of the paradigm to the VLSI
channel routing has necessitated the creation of new
knowledge represented by the theory of locally optimal
breaking (LOB) of directed circuits (DC) in the vertical
constraint graph. Existing theory has supported
deterministic polynomial time algorithms for LOB of two
classes of directed circuits, the classes of vertex disjoint
DC'’s, and of couples of connected DC's. The new LOB
theory supports algorithms for more complex classes of any
number of DC's sharing a single vertex and of a uniform
lattices of DC's. It is significant that the new theory relies on
theory for couples of connected DC's for breaking more
complex structures of connected DC's

1. Introduction

Channel routing is the most important detailed routing
technique in VLSI design. While many researchers consider
its algorithmic aspect to be an overworked field, the
theoretical aspect is covered by a comparatively modest
number of fundamental results, which mainly concern NP-
completeness of the problem and the bounds on channel
width; some results applicable to routing decisions can be
found in [1,2,3]. This paper presents contributions to the
theory of locally optimal breaking of cyclic vertical
constraints (CVC) [4.5,6,7,8].

Vertical constraints are the main obstacle to achieving
optimal results in channel routing. The original Left Edge
algorithm of Hashimoto and Stevens was proven
conditionally optimal for channels without vertical
constraints; while the problem has been proven NP-
complete in the presence of vertical constraints. Directed
circuits and directed paths in the vertical constraint graph
(VCG) may cause an increase in channel width over the
channel density bound. Directed circuits, often referred to as
¢yclic vertical constraints, present a more difficult problem
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to channel routers than the directed paths. Altogether,
breaking CVC's is the toughest problem in channel routing,
for which little theory has been developed, and no
deterministic algorithmic techniques have been published
that guarantee a degree of optimality.

Due to the NP-completeness of the problem, globally
optimal channel routing is not likely to be guaranteed by any
algorithm. The local optimality concept has been introduced
to support what can be achieved deterministically towards
the goal of optimality. The concept relies on theory which is
based on a new VCG augmented by geometric concepts[4].
The new VCG has been proven to be a complete description
of the vertical constraint structure, as opposed to the
classical VCG.

The basic theory of locally optimal breaking of cyclic
vertical constraints is the necessary knowledge base for
appling the Local Optimality Paradigm. The basic theory of
LOB was developed for vertex disjoint DC's [4], and
followed by the theory for couples of DC's which share a
single common vertex, or a single common path [S]. The
LOB theory for sets of n DC’s which share a single common
path was presented in [6] along with the theory for a class of
outer planar DC structures. The contribution of this paper is
the LOB theory for sets of n DC’s which share a single
common vertex, and for a class of outer planar directed
circuit structures which was not treated in [6].

2. Definitions

The weighted VCG Gw(Vw,Ew,Ww) has been defined
in [4] as an extension of the classical VCG: its edge set Ew
contains a distinct edge for every column that induces a
vertical constraint, and it includes a set of edge weights Wy
which are equal to the order numbers of the channel grid
columns that induce the edges. Graphical representations of
Gw in this paper have the edge weights indicated next to the
edges. Secondary vertical constraints were first recognized
in [1,3], but were not conceptually differentiated from the
commonly known, primary vertical constraints. They are
induced by the geometry of terminals and the geometry of
routing: at a column that contains signal net terminals, but



does not contain a terminal of the net whose vertical wire
segment is placed at the column. A terminal column of a
signal net is a column that contains a terminal of the net.
Terminal column track switching, often referred to as
terminal dogleging, places the switching jog in a terminal
column of the switching net; its virtue, that it does not
induce secondary vertical constraints, and therefore can not
create secondary directed circuits has been recognized in
[1.3] The net set NCi of a DC Ci(VCi’ECivWCi)‘_:GW is the
set of nets represented by the vertices in V. The column
interval Q¢; of a DC C; is the set of columns Qci={qk!
minw;e WCiquSmaije Wci}. The tight set of DC’s is a
set of DC's whose column interval contains only columns
that induce vertical constraints represented by the edges of
the DC's. A tight channel is one whose every column
belongs to the column intervals of tight sets of DC's. The
tightness concept for DC's was introduced in [2]. Breaking
a cyclic vertical constraint is the ensemble of all routing
decisions that must be taken in the process of avoiding a
violation of a set of CVC's.

3. The Local Optimality Paradigm applied to
channel routing

The idea of the Local Optimality Paradigm is to
construct global solutions of NP-complete combinatorial
optimization problems by combining locally optimal partial
solutions which can be.in turn constructed and combined in
polynomial time. Implementation of the idea puts a
collection of design automation tools into the hands of
designers of complex technical systems, enabling them to
construct in polynomial time near optimal global solutions
to NP-complete combinatorial optimization problems. End
benefits of the application of the paradigm are shorter time
to market and improved quality of designed products.

The paradigm is implemented by first identifying non
trivial subsets of design elements for which provably
optimal designs can be constructed in polynomial time.
Construction of such partial solutions is followed by a final
heuristic step, which combines the design solutions for
elements which are, with the design solutions for elements
which are not included in the locally optimal partial
solutions. In particular, in the VLSI channel routing
problem the locally optimal partial solutions are complete
routings of selected groups of signal nets. The merit of the
Local Optimality Paradigm stems from the fact that it is
highly unlikely that a globally optimal solution of a problem
will be composed entirely of non optimal partial solutions;
more likely, locally optimal partial solutions will be
essential ingredients of globally optimal solutions.

In the notion of the local optimality paradigm, the word
local does not apply to the search space. Rather it applies to
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the collection of elements (features) of the design problem
that the algorithm has to manipulate so that they assume
some mutual relations which are considered optimal by the
definition of the problem. The locality refers to the fact thay
the optimal mutual relations are local to independently
selected individual subsets of features of a problem
instance.

For the local optimality paradigm to be effective, the
selection of subsets which are treated separately must be
tailored to the particular characteristics of each individuaj
combinatorial optimization problem. The mutual relations
derived by a locally optimal algorithm are made optimaj
with respect to a set of problem specific characteristics,
which we shall call the criteria of local optimality.

Consequently, the application of the local optimality
paradigm to a specific combinatorial optimization problem
requires that two sets of criteria be derived in a problem
specific manner,

- the criteria for selecting the subsets of problem
features to which the local optimization will be
applied,

- the conditions of local optimality that must be
fulfilled by the mutual relations between the
problem features of selected subsets.

Those criteria tailor the paradigm to an individual
problem by using either already available, or newly created
problem specific knowledge in a provably best way. In the
case of the VLSI Channel Routing, new problem specific
knowledge had to be created, and a part of it is reported in
this paper.

The set of features manipulated in the VLSI Channel
Routing problem is the set of wire segments of signal nets in
the channel. Based on the current state of the research, the
best criteria for selecting the subsets of signal nets whose
routing will be locally optimized are defined by relying on
the vertical and horizontal constraint structures of the
channel. In the domain of vertical constraints, the so far
identified criteria for selecting the subsets of signal nets are
the following two

- the set of nets involved in a set of cyclic vertical
constraints,

- the set of nets involved in a long directed path in the
vertical constraint graph,

The local optimality conditions need to be defined
separately for each of the selection criterions. This is under
investigation for the second of the above two selection
criteria, and has been completed for the first of them by the
following definition of the Locally Optimal Breaking
(LOB) of cyclic vertical constraints, which are represented
by directed circuits in the vertical constraint graph.

Locally optimal breaking of a set of directed circuits
Cn={C1,Cy,....Cn}, CncGy, is the ensemble of routing
decisions that specify the horizontal and vertical routing of



the nets involved in all DC's C;e Cy, in such a way that:

(a) the total number of track-switching used in the process
of breaking all DC's in Cy;, and all secondary DC’s cre-
ated in the process is minimized,

(b) the observable negative effect of the routing of the nets
in Ny on the flexibility of routing of the nets not in Ny
is minimized;

(c) all nets involved in Cy are routed without violations of
vertical and horizontal constraints.

Conditions (a) and (c) are self explanatory. Condition
(b) implies that when two breaking patterns exist that use the
same minimum number of track switching, and pattern A
creates a secondary vertical constraint, while pattern B does
not create a secondary vertical constraint, pattern A is not a
LOB pattern. A more detailed explanation follows.

When a breaking of a set of DC’s creates a secondary
vertical constraint, the increase in the number of vertical
constraints makes the routing of the remaining nets less
flexible than it was before the breaking. Consequently, such
a breaking can not be considered a locally optimal breaking
if there exists another breaking which uses the same number
of track switching but does not reduce the remaining
flexibility by creating additional vertical constraints.

The argument in favor of the condition (b) is illustrated
by the example of a channel whose VCG contains a couple
of directed circuits which share a single vertex. Figure 1(a)
shows a routing of the channel obtained by applying the
double switching breaking pattern to the couple of DC’s. In
that routing, the common net N=3 has been switched twice
in its terminal columns 2 and 5, having not created any
secondary vertical constraints. Figure 1(c) shows a routing
of the channel in which the single switching breaking
pattern has been applied. The placement of the switching jog
at column 7 has induced a secondary vertical constraint
which in turn closes a secondary directed circuit. The
Secondary directed circuit had to be broken by an additional
switching of the net N =3, whereby the total number of track

switching has been brought up to two, equalling eventually
the number of track switching in the routing of Figure 1(a).

In the routing of Figure 1(a), where a secondary vertical
constraint has not been induced, the horizontal wire segment
of net 6 could have been placed on any track above the track
Wwhich carries the segment of net 2. In the routing of Figure
I(c), where a secondary vertical constraint has been created,
the horizontal wire segment of net 6 is additionally
restricted to being placed on a track located below the track
which carries the lower placed segment of the switching net;
Wwhich leaves no options - net 6 must be placed on a track

een the tracks which carry nets 2 and 3. In the latter
r&se, the flexibility in placing net 6 has been completely
ost.

With regard to the total number of track switching both
foutings in Figure 1 are equal. The crucial disadvantage of
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Figure 1 Hiustration in support of the condition (b)
of the definition of LOB of a set of directed cir-
cuits (a)The double switching breaking pattern applies two
track switchings and does not create a secondary vertical
constraint. (b)Gw of the channel. (c)The single switching
breaking pattern applies one track switchings and creates
a secondary directed circuit which must be broken by a
second track switching (d)Gyyg of the channel as routed in

(c).

the routing in Figure 1(c) is that the induced secondary
vertical constraint forces net 6 to be placed on a track
located below the track which carries the lower horizontal
segment of the switching net 3. In the channel of Figure 1
that loss of flexibility has not made a difference because
there do not exist other nets with which net 6 is horizontally
or vertically constrained. But in the case of a channel which
contains more nets, and whose VCG contains the VCG of
Figure 1(b) as a subgraph, the secondary vertical constraint
between the nets 3 and 6 could prevent a globally optimal
placement of net 6, which would be otherwise possible if the
routing pattern of Figure 1(a) had been applied.

Deterministic, polynomial time methods for locally
optimal breaking of DC's allow a shift in the level of
heuristic decision making, from the low level routing
decisions concerning a single signal net, or a geometrically
not clearly related group of nets, to a higher level where



groups of locally optimally routed nets involved in
composite vertical constraints are combined. The
deterministic nature of the LOB procedures provides the
important low cost quality to the locally optimal partial
solutions.

LOB of directed circuits and long directed paths in the
VCG has potential in automatic and interactive DA systems.
In interactive systems, designers can be presented with
graphical representations of available locally optimal
routings, allowing them to use human intuition for selecting
the most promising combinations. For automatic routers, a
bounded search space of available alternative locally
optimal partial routings lends itself to efficient search using
parallel computer architecture. As a demonstration of that
kind of application, LOB theory has already been
successfully implemented in the first of their kind Genetic,
and Neural Network channel routers which allow the
existence of directed circuits in the VCG of the channel
[7,8]. All iterative improvement algorithms for solving
combinatorial optimization problems shoud benefit from
initial solutions created by the application of the local
optimality paradigm. This includes the inherently sequential
simulated annealing, which produces good quality solutions
but critically depends on high quality initial solutions for
shortening its long run times.

4. New LOB theory

To demonstrate that a locally optimal breaking of sets
of connected DC's always exists, we consider in the sequel
the worst case scenarios characterized by channels being
tight, which requires application of the double switching
breaking pattern. In non tight channels, the single switching
breaking pattern may require one track switching less than
the double switching pattern.

4.1 Breaking any number of directed circuits
which share a single common vertex

It will be shown that LOB of a set of n DC's which share
a common vertex relies on already developed results for
couples of connected DC's, and that it does so in such a way
that the corresponding DA tools are reusable.

Theorem 1 establishes the rules for LOB of a set of n
DC's which share a common vertex.

Theorem 1: When the vertical constraint graph Gw of a tight
channel contains a set of n DC's Cy={C,,C3,....Cn} which
share a single common vertex vs, C;NCyN..NCy =
({v:},2.,9), all n DC's will be locally optimally broken if:
- the algorithm for LOB of two DC's with a single
common vertex is applied to an arbitrary couple of
DC's Cj,Cke CN’

322

- nets belonging to the remaining n-2 DC's in Cy are
placed on tracks observing horizontal constraints,
and following the order of their vertices within the
paths which are left when vertex vs is deleted from
those DC's; they must be placed on any of the
existing tracks in the track set Tjx which carries the
nets in C; and Cy, or on tracks additionally inserted
into Tjx anywhere between its outermost tracks.

Proof: For n<2 the proof is given in [4,5]; for n>2, the

application of rules of Theorem 1 results in:

(a) C;and Cy have been broken in a locally optimal way by
routing the common net N on the topmost and the bot-
tom most track in Tjx; this breaks any DC Cje Cy whose
nets are placed on tracks between the outermost tracks
of Tjx; so no more switching is needed for breaking the
rest of the DC's in Cy;

(b) breaking C; and Cx has not placed a switching jog into
any of the columns that induce the rest of n-2 DC's of
CN, so no secondary vertical constraints could have
been created between the nets in C; and Cy and the nets
in other DC's of Cy;

(c) except for the common net Ng, nets involved in any DC
CijeCy are not in 2 vertical constraint relation with the
nets in other DC's of Cy;

(d) by the virtue of (b) and (c) no vertical constraint viola-
tions are possible between two nets from two different
DC's of Cy, ergo the freedom in selecting the tracks for
placing the nets involved in remaining n-2 DC's.QED

The problem of minimizing the number of tracks used
for placing the nets in the remaining n-2 DC's is likely to
stay NP-complete due to the freedom referred to under (),
although a part of their routing has already been decided by
the LOB procedure: the ordering of nets on tracks is
determined within DC’s, and the nets in all DC’s must be
routed within the contiguous set of tracks Tik.

|66656543
EI(LLI’-IQ

L

-

L
[ s @ Il

D= NNBWOOND

:

by,
(>
o
|

L\V]
L WpH
» b
oy
o D
~
xn O
& O

[=2]

l

S

153

()

a)

Figure 2: Tight channel with five DC's sharing a
common vertex. (a)One of LOB's. (b)Gyy of the channel.



Application of the LOB procedure of Theorem 1 is
illustrated in Figure 2 on a case of a tight channel with five
DC's in its VCG Gy, which share a common vertex v=6.
The LOB algorithm for a couple of DC's sharing a common
vertex [5] has been applied to DC's containing vertices vi=3
and vg=5. It should be observed that horizontal routing of

nets 1,2, and 4 could have been alternatively placed onto any
of the tracks located between the two outermost tracks that
carry the horizontal segments of the switching net 6.

4.2 Breaking directed circuits of a uniform ladder
VCG

We call a uniform ladder graph a digraph G
characterized by the following:

() the underlying undirected graph of G is an outer planar
graph,

(b) in the planar embedding of G in which the longest face
is represented by the external contour, all faces of G, ex-
cept the longest one, are of the same length.

The faces of the planar imbedding defined under (b),
except for the longest face, will be called internal faces.
Ladder graphs are partitioned into two classes by the
property that they do, or do not, contain a DC whose edges
coincide with the longest face. We call the former I-class
and the latter n-class ladder graphs. The theory of LOB of /-
class ladder graphs has been presented in [6]; we consider
here the i-class to which those n-class ladder graphs belong
in which the edges of every internal face form a DC.
A maximal i-class subgraph of a ladder graph G is one
which:
- is not a proper subgraph of another i-class subgraph
of G, and
- does not contain a face which belongs to a maximal
l-class subgraph of G,

where a maximal I-class subgraph of G is an l-class ladder
subgraph which is not a proper subgraph of another I-class
subgraph of G.

Since maximal 1- and i-class subgraphs consist of
Sequences of adjacent internal faces they are ladder graphs
themselves. A ladder graph G isomorphic with its maximal
I-class/i-class subgraph, will be called L-ladder/I-ladder
graph. Precedence of the I-class over the i-class maximality
Property, established by the second property of the maximal
I-class subgraphs, is arbitrary but seems to be justified by
the greater power of LOB procedures for L-ladder DC's. For
an I-ladder graph with n¢ internal faces LOB can at best
reduce the number of necessary track switching to one half
of ng, while for L-ladder graphs one half of nf is the worst
Case [6).

Itis obvious that every DC of a ladder graph G belongs
' a single L-class or I-class subgraph of G, and that all

edges of those subgraphs belong to a DC. It, therefore,
follows that all DC's of a ladder VCG can be broken by
breaking separately DC’s of each of its L-ladder and I-
ladder subgraphs. Consequently, what is needed for LOB of
DC's in a ladder subgraph of a VCG G is, to know how to
break all DC's of L-ladder and I-ladder subgraphs of Gy.
The theory of LOB of DC’s of L-ladder subgraphs of G, has
been presented in [6]; this paper completes the theory of
LOB of DC’s of uniform ladder subgraphs of G, by
discussing the I-ladder subgraphs.

Consistent with Section 4.1, we consider tight channels
whose VCG is a uniform I-ladder graph with internal faces
of length three.

Theorem 2 details how all DC's of an I-ladder VCG
containing four or three DC's can be broken by an extension
of the LOB theory for a couple of connected DC's. When an
I-ladder block of a VCG contains more than four DC's, it
requires separate treatment of I-ladder subgraphs which
contain four or less DC's. When such a procedure results in
a subgraph with less than three DC’s, the existing LOB
theory for those cases applies [4,5].

Theorem 2 In a tight channel whose I-ladder VCG Gy
contains four DC's of length-three, C;,C;j,.Cx,C in that order
of adjacency, all four DC's will be LO broken by only two
nets switching tracks, each net one time, if:

(a) two directed Euler trails, E; and E,, of C;Cy are deter-
mined by the procedure for LOB of a couple of DC's
which share a common path [5];

(b) that one of E; and Ej becomes the selected trail Eg
whose second vertex has in its incidence set an out-di-
rected edge that belongs to C; or C; but does not belong
to C; or Cy [in Fig.2(b), vertex 2 has edge (2,1) in G;, so
the selected Euler trail's vertex sequence is
VEs=(3,2,4,3,5,4)];

(c) a new vertex sequence Vgy is constructed by augment-
ing Vs by the two vertices of Gw which are not covered
by the trail Eg, as follows:

- the vertex that belongs to that one of C; and C
which contains the first edge of the trail is inserted
after the second vertex of the trail and before the
second occurrence of the first vertex of the trail [in
Fig.2, vertex 1 is inserted after vertex 2 and before
the second occurrence of vertex 3],

- the other vertex is inserted between the third and the
fifth vertex of the trail;

(d) nets are placed on a contiguous set of tracks Tk in the
order of appearance of their vertices in the sequence Vga
[vertex sequence Vga is shown next to the routing of
Fig.2(a)).

Proof: Two centrally located DC's of a four-DC ladder

VCG, Cj and Cy, are locally optimally broken because



application of the LOB procedure for a couple of DC's
produces the vertex sequence Vgs whose mutual order of
vertices is kept unchanged in Vga. The nets switched to
break Cj and Ci belong to both C; and Cj, so their switching
provides for breaking of Cj and Cj. Part (c) determines the
placement of two remaining nets on tracks so that violation
of vertical constraints is avoided. In the case of a three-DC
I-ladder block, steps involving the DC C, do not apply.
QED

Figure 3 illustrates Theorem 2. All four DC's are
broken by only two nets switching tracks. Applying the
LOB for a couple of DC’s with a single common path
produces the selected Euler trail Eg=(3,2,4,3,5,4) [5]. Nets
1 and 6 must be inserted on tracks between the nets 2 and 3,
and 4 and 5 respectively. The lower segment of net 3 and the
upper segment of net 4 can swap tracks with nets 6 and 1
respectively; so a total of four different LOB's exist for the
four-DC I-ladder VCG.
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Figure 3: Tight channel with a four-DC l-ladder
VCG. (a) One of the channel’'s LOB routing solutions. (b)
Gy of the channel showing in bold lines two DC's to which

the two directed circuits with a common path LOB has been
applied.

5. Conclusion

The theory of locally optimal breaking of directed circuits
in the vertical constraint graph has been developed to
provide new knowledge requited for the application of the
local optimality paradigm to the channel routing problem.
Other results of the theory of locally optimal breaking have
been previously published, but the local optimality
paradigm is first time described in this paper. The paradigm
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is applicable to all combinatorial optimization problems, Its
direct field of application is in the constructive solutiop
algorithms, which are used to provide initial solutions for
iterative improvement algorithms. Its main advantage is in
the low computational cost for high quality initial sol utions,

Applying known results of the theory of locally optimaj
breaking of directed circuits in the vertical constraint graph,
extensions of the theory have been developed which cover
two new general classes of sets Cy of directed circuits in the
vertical constraint graph. The class of single-row lattice
connected sets is a breakthrough result into sets of
connected directed circuits which greatly increases the
versatility of the cyclic vertical constraint structures to
which the LOB theory has been successfully applied. The
low computational cost, and the high quality of the locally
optimal partial solutions make them attractive ingredients of
the initial solutions for all iterative improvement approaches
to VLSI channel routing.
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