Identifying High-Level Components in Combinational Circuits

Travis Doom, Jennifer White, Anthony Wojcik

Department of Computer Science
Michigan State University
East Lansing MI

Abstract

The problem of finding meaningful subcircuits in a
logic layout appears in many contests in computer-
aided design. Ewisting techniques rely upon find-
tng eract matchings of subcircuit structure within the
layout. These syntactic techniques fail to identify
Junctionally equivalent subcircuits which are differ-
ently implemented, optimized, or otherwise obfuscated.
We present a mechanism for identifying functionally
equivalent subcircuits which is capable of overcoming
many of these limitations. Such semantic matching is
particularly useful in the field of design recovery.

1 Introduction

The identification of meaningful subcircuits within
a larger design is of interest in many CAD applica-
tions. Of particular interest is the identification of
a cluster of connected low-level devices which form
a high-level component. Previous approaches to this
problem have relied upon the discovery of subgraph
isomorphisms to identify subcircuits [1-3]. While
useful in applications such as converting a transis-
tor netlist into a gate netlist, techniques which rely
upon exact structural matching (syntactic algorithms)
have limited application to higher levels of design since
high-level components have many valid implementa-
tions,

We present a solution to the problem of identify-
ing meaningful subcircuits which is structure indepen-
dent. By using a semantic technique, we are capable of
identifying subcircuits which are equivalent to a high-
level component in many situations for which syntac-
tic techniques fail [4]. The structural changes imposed
by new implementations, design optimizations for area
and power, and many other complicating factors cause
Purely syntactic techniques to fail, but are amenable

313

0-8186-8409.7/98 $10.00 © 1998 IEEE

Greg Chisholm

Decision and Information Sciences Division

Argonne National Laboratory
Argonne IL

to our semantic technique. Although semantic tech-
niques are not limited to any particular level of cir-
cuit description or application, this paper will consider
only the identification of high-level components from
gate-level netlists.

The results presented in this paper are restricted
to identifying the functionality of synchronous com-
binational components with no loops or other timing
issues. Since combinational circuits are the basis of
various logic circuits, the transformation of combina-
tional netlists to a higher level of design (a netlist of
high-level components and glue-logic) will provide a
future basis for understanding sequential circuit func-
tionality.

2 The equivalence problem

Consider some subcircuit (or cluster) of a com-
Pinational circuit. Such a subcircuit has |;t inputs,
1= (il,---,im), |6] outputs, & = (01,...,04), and
a vector of Boolean functions (the cluster function)
which determines the relationships among them:

F@) = ((@),..., fiz@D) (1)

Likewise, for any high level component with inputs
Z and outputs ¥, there exists a vector of Boolean func-
tions (the pattern function) which describes its behav-
ior:

G(@) = (91(D), ..., 9,5(D)) (2)

Let us also define two bijections, =y, the input per-
mutation function, and 7o, the output permutation
function:

w1 i ig) > (20 2jm) 3)

7!'0:{fl,...,fl(;'}—}{gl,...,g“ﬂ} (4)

Definition 1 Two vectors of Boolean functions F
and G are input-permutation, output-permutation
equivalent (PP-equivalent) if bijections exist such
that:
Vi, 1 <k <81, fie (@) = mo(fi)(m1 (D)) (5)
We can now define semantic equivalence for combi-
national designs.

Deflnition 2 Two combinational designs D, and D,
with corresponding vectors of Boolean functzons F and
G are semantically equivalent iff F and G are PP-
equivalent. The input buectwn I and the output bi-
jection mo under which F and G are PP- equivalent
describe the semantic matching between D; and Dj.

3 Other approaches

We now describe some existing algorithms which
have been used to solve some instances of the equiva-
lence problem.

3.1 Factorial permutation

Although testing the equivalence of two single-
output functions represented as reduced, ordered Bi-
nary Decision Diagrams (BDDs) can be achieved in
constant time [5], such a test requires that the cor-
respondences between the input variables be clearly
identified. Because input and output variable corre-
spondences are not generally available, the straightfor-
ward method for determining if two multiple-output
functions are ’P’P-eqmvalent is to test for equivalence
over the set of []! - |4]! possible pairs of bijection func-
tions (i.e. over all input and output permutations).
For numbers of inputs greater than seven to nine,
the straightforward permutation technique is compu-
tationally intractable.

3.2 Logic verification

In logic verification, a specification describing some
functional behavior is compared to a circuit imple-
mentation of that function to prove equivalence. Ver-
ification techniques exist which are capable of deal-
ing with problems involving large numbers of inputs,
sequential behavior, and with significant numbers of
intermediate gates. Verification techniques, however,
require that correspondences between the implemen-
tation and specification be known [6]. Since we cannot
assume knowledge of such correspondences when at-
tempting to identify high-level components in a flat

314

netlist, verification techniques are generally not appl;.
cable.

3.3 Boolean matching

Technology mapping (also known as cell-library
binding) is part of the synthesis process whereby logic
representations must be transformed into interconnec.
tions of a set of implementation dependent cells. Tech.
nology mapping is used to create cost-optimized im.
plementations for some logic function or Boolean net-
work in a particular implementation style in termsg
of some library of building blocks (cells). Detection
of equivalence of these Boolean functions to cells, re-
ferred to as Boolean matching, is a well studied prob-
lem [7].

In many ways, the problem of determining equiv-
alence between a combinational circuit and a high-
level entity library is similar to the problem of Boolean
matching. Boolean matching algorithms are designed
to efficiently match small (fewer than six inputs)
single-output clusters with a component of their cell
libraries which implements the function at the least
cost.

A general solution to the equivalence problem, on
the other hand, must be capable of efficiently matching
functions with any number of inputs and outputs, but
need only concern itself with a single (although possi-
bly multiple-output) pattern function rather than an
entire library of such functions. The goal of semantic
matching is not to find the “best” implementation of
a function from a set of possible implementations, but
to identify equivalence and variable correspondences
between a particular subcircuit and a particular high-
level component. It appears that no suitable solution
has been proposed in the literature for this problem.

4 Semantic matching

We now describe an algorithm for determining if
a semantic match exists between a subcircuit and a
high-level component. The semantic matching prob-
lem is concerned with the identification of high-level
components more complex then those dealt with in
Boolean matching, but lacking the input/output cor-
respondences between the logic design and the li-
brary components which verification techniques re-
quire. Since the functionality of the high-level com-
ponent may be represented in any number of struc-
tural forms, it is necessary to identify the subcircuit
by proving semantic equivalence.

4.1 Boolean signatures

A signature of a Boolean function is a unique char-
acteristic representation of some property of the func-
tion. Although it is possible for two otherwise un-
related functions to have the same signature, hav-
ing equal signatures is a necessary condition for an
equivalence matching. Boolean signatures have been
used successfully to increase the efficiency of Boolean
matching algorithms [8].

A signature function is a function which takes a
generic function as an input and returns a character-
istic signature for that input function. The value of
a signature function must be determined only by the
behavior of the generic function; variable order, vari-
able labels, and random elements may not be used as
part of the signature determination.

Since sharing a signature is a necessary condition
for equivalence, signature functions can be used to
eliminate functions from equivalence consideration.
The primary limit to the effectiveness of such filter-
ing is the complexity cost of the signature function.

4.2 The vector input signature

We introduce a new signature function which has
proven to be an adequate initial filter for many prob-
lems. This signature takes advantage of the fact that
the vector functions under consideration consist of
multiple functions, each corresponding to a single out-
put.

Definition 3 A positive (negative) Boolean unit vec-
tor is defined as a vector in which ezactly one element
has the value 1 (0) and in which all other elements
have the value 0 (1).

Qeﬁnition 4 For any vector of Boolean functions
F (;) = G we define i; s positive unit vector input sig-
nature to be the sum of the function outputs (i.e. the
cardinality of the on-set) when the positive unit vector
with input i; equal to 1 is applied.

Il
Fiyec(i) = Y fall), where uy =1iff k=3 (6)
n=1
The negative unit vector input signature is defined
similarly.

ge‘ﬁnition 5 For any vector of Boolean functions
F(i) = 5 we define the function’s vector signature to

en ordered set of |;{ (z,y) pairs where each such
Pair corresponds to an input i; of F and where z (y)
Tepresents the positive (negative) unit vector input sig-
Nature,

315

Table 1 shows the results of applying the vector
signature to the vector function of a-4-bit ALU. The
resulting vector signature is: {2 x (1,7),1 % (2,2),1 x
(2,5),6 x(2,7),3x(3,5),1x(6,5)}.

Input Names Vector Input Signature
Positive Negative

sell, Cn’ 1 7

sel3 2 2

a0 2 3

sel0, sel2, b0, bl, b2, b3 2 7
al, a2, a3 3 5

m 6 5

Table 1: Vector Input Signature for the TI
54181 4-bit ALU. The positive and negative unit
vector input signatures are shown for a 4-bit ALU with
selection inputs sel0-3, mode input m, carry input Cn’,
and data inputs a0-3 and b0-3. The vector signature
partitions the function inputs into 5 signature classes.

Vector signatures are an effective signature for
multiple-output functions in which the number of in-
puts is not significantly larger than the number of out-
puts. This is not surprising when we consider that the
number of outputs determines the size of the range of
the signature function (the range of the function is
312).

When any vector input signature uniquely defines
a single input (that is, no other input shares its (x,y)
signature value) then a correspondence is clearly iden-
tified. The vector signature for the 4-bit ALU shown
in Table 1 has three signature classes with only a sin-
gle member (the signature classes for sel3, a0, and
m). Thus, any correspondence between the pattern
function representing the ALU and any cluster func-
tion would have to identify the cluster inputs which
correspond to sel3 and m. Using any one such identi-
fied correspondence allow us to describe an additional
2(n — 1) vectors in which both the input under test
and the input for which correspondence is known have
the opposite value from the rest of the inputs. These
vectors can be applied to create more precise signature
classes and possibly uniquely identify more correspon-
dences. This process can be continued until all unique
correspondences have been exploited.

4.3 The algorithm

Our approach to the semantic matching problem
makes use of signature information to reduce the num-
ber of input correspondences which must be consid-

ered. This is accomplished though the use of suspect
sets, defined below.

Definition 6 The signature values for any input sig-
nature function can be used to partition the function
tnputs into classes corresponding to their signature.
We refer to such a list of inputs as a signature class.

The following result is clear.

Theorem 1 Input correspondences between the pat-
tern and cluster function can only take place be-
tween members of their respective signature classes
with equal signature value.

Let F(3) = & be the vector of Boolean functions
for some subcircuit. Let G(Z) = ¥ be the vector of
Boolean functions for a high-level component. Seman-
tic equivalence and input/output correspondences be-
tween the subcircuit and the high-level component can
be determined as follows;

Semantic Matching Algorithm

e Step 1: Create Binary Decision Diagrams. Cre-
ate BDDs (under some reasonable variable order-
ing) for the outputs of each vector of Boolean
functions.

o Step 2: Determine Signature Classes. Deter-
mine the vector signatures for F and G and parti-
tion each function’s input variables into signature
classes. If the signature classes and partition sizes
are not equivalent, then the functions cannot be
equivalent (this check is the “traditional” way in
which signatures are used in Boolean matching).

o Step 3: Determine Suspect Sets. For each of the

cluster function F’s inputs, i1,---,i|;, create a
suspect set. The suspect set is defined to be the
subset of pattern function Gs inputs, 71, ...,)z,
which have the same signature as the input i;
to which the set corresponds. Initialy, each clus-
ter input i;’s suspect set will contain the parti-
tioned set of pattern function inputs which have
the same vector signature class as the input. Ad-
ditional filtering of the suspect set must be ac-
complished by applying other appropriate input
signature functions. This process can be repeated
until all suspect sets are below some threshold size

(see Section 4.3.1).

¢ Step 4: Iterate though Legal Input Correspon-
dences. Theorem 1 allows us to eliminate from

consideration all matchings which include a cor-
respondence between a cluster function input ¢;
and any pattern function input z; which is not
present in i;’s suspect set. Therefore, we exhaus-
tively search the pruned matching space by ex-
amining every legal correspondence.

For each match, we substitute the decision vari-
ables of the BDD(s) representing the cluster func-
tion inputs with the variables in the BDD(s) rep-
resenting their matched pattern function inputs.
By using this technique we avoid having to “re-
canonicalize” completely because the order for
the matching variables will be identical under the
same BDD manager. Reordering the variables
of a BDD in this way can be performed using
the standard BDD library substitution function
in time proportional to the size of the BDD.

o Step 5: Determine Legal Output Correspon-
dences. Compare each substituted BDD repre-
senting a cluster function output o; with each
BDD representing a pattern function output.
Since each BDD is now represented in terms of
the same decision variables, each such equivalence
check is an O(1) [5] operation. We define the out-
put suspect set for each cluster function output
to be the set of pattern function outputs whose
BDDs are equivalent. If all suspect sets contain
a unique match, then matching under considera-
tion is a legal correspondence and the functions
are equivalent.

4.3.1 Complexity

The technique presented in Section 3.1 requires |3]!|4]!
comparisons. Our algorithm achieves significant im-
provement.

Let n represent the cardinality of the largest input
suspect set determined in Step 3. An upper bound
on the number of legal input correspondences is n!l?.
As long as n is constrained to a reasonably small size
(less than seven to nine), it can be treated as a con-
stant value ¢ and the input correspondence selection is
exponential in complexity: O(cm). Reasonably small
values of n can be achieved through pruning suspect
set sizes by applying multiple signature values until all
suspect set sizes fall below some threshold.

Such pruning is effective in most components save
those with large numbers of symmetric inputs (which
are indistinguishable to Boolean signatures). In such
cases, however, any input matching will succeed for
the symmetric inputs, which actually simplifies the

316

process of proving semantic equivalence as a corre-
spondence will be identified very early in the execution
of the algorithm.

Although BDDs are an efficient mechanism for rep-
resenting the functionality of most components, their
size may become intractably large for certain functions
under some (or all) variable orderings [5]. Since we can
indicate a “good” variable ordering for our pattern
function library, we can eliminate most BDD based
concerns. If the BDD for any cluster function out-
put exceeds the size of the largest BDD representing a
pattern function output, we can immediately discard
that input matching and discontinue BDD generation,
since no legal correspondence can exist between func-
tions which have BDDs of different sizes under the
same variable ordering. Pathological functions (such
as multipliers) which have no efficient BDD represen-
tation remain an open issue.

Since each cluster output BDD is tested against
each pattern output BDD exactly once in Step 5,
the complexity of determining legal output correspon-
dence is only O(|6]?).

Therefore, the overall complexity of this approach
is O(c/f15]2) = O(c/!). This exponential algorithm
is a significant improvement over factorial methods
and makes semantic matching feasible for most com-
ponents of reasonable size.

5 Experimental results

Our algorithm for semantic matching was imple-
mented in C using the University of Colorado’s de-
cision diagram library [9] and executed on a Sun
SPARCstation Ultra.

Table 2 provides a comparison of our procedure
with the factorial approach. For each component,
we report the size of the subcircuit, the size for the
BDD representation of the component’s pattern func-
tion (under some reasonable variable ordering), the
humber of input matchings and the total number of
BDD equivalenice checks made during the program’s
funtime. The runtime shown is the worst-case run-
time (a complete search of the correspondence space).
For non-symmetric circuits, the time to determine a
single correspondence can be considered roughly 50%
of the overall run time. For circuits containing sym-
Metries, the entire time is necessary to identify all le-
gal correspondences, but only a fraction of the time is
Recessary to determine a single correspondence.

The z4ml circuit (a 3-bit adder) shows a case in
which the inputs are indistinguishable from their vec-
tor signature, and thus the number of input match-

ings is 7!. Note that due to the algorithm’s automatic
pruning of the output search space, the number of
comparisons is only 20304, an order of magnitude less
then the number of comparisons necessary in a 120160
(7'4!) non-pruned search.

The alu4 circuit (a 4-bit ALU) is complex enough
to have fairly well distributed vector signatures and
thus is able to take advantage of vector signature in-
formation to recognize that only 8640 of the greater
than 87 billion possible input matchings can possibly
produce a legal correspondence. The use of vector
signatures has made this intractable comparison fea-
sible. Furthermore, note that only 69411 comparisons
are necessary out of the 3.5 million billion total corre-
spondences (14!8!) possible.

Obviously, circuits exist for which a single vector
signature does not adequately prune the matching
space. A single vector signature is capable of reduc-
ing the number of input matchings for the 173 input
LGSynth’93 pair circuit from 173! to approximately
73!. While certainly a significant reduction of search
space, additional signatures need to be applied to per-
mit semantic matching within a reasonable execution
time.

6 Conclusion

To summarize, we have met our goal of achieving
a method for determining a semantic matching be-
tween a subcircuit and a high-level component in a
tractable number of comparisons. We have presented
the underlying equivalence problem and provided a al-
gorithm based on the concept of suspect sets capable
of solving problems of a reasonable size.

Preliminary experiments demonstrate the effective-
ness of the technique using a single vector signature
filter. Future goals include the introduction of addi-
tional filters to decrease the runtime and increase the
capabilities of the program.

In the long term, we will use this technique
as a reengineering tool. Semantic matching tech-
niques allow us to achieve a functional specification
of many digital designs by identifying clusters of logic
which correspond to higher-level functional compo-
nents. By identifying high-level components such as
ALUs, adders, multiplexers, decoders, encoders, and
other common functional entities within the circuit,
we reduce the complexity of producing functional de-
scriptions as well as of identifying data lines, control
lines, and other “additional knowledge” [10] which
may be of use in further specifying the design. Such
an approach requires the implementation of efficient

Circuit | Num. Num. BDD Input Matchings Correspondences Checked | Run Time
Name | Inputs | Outputs | Size | Method 1 | Method 2 | Method 1 Method 2 (sec)
alu2- 10 6 231 3.6e+06 | 2.0e+00 | 2.9e+10 32 0.2
alu4 14 8 1452 | 8.7e+10 | 8.6e+03 | 3.5e+15 6.9e+04 232.4
cc 21 20 57 5.1e+19 1.4e+07 1.2e4-38 1.5e+09 37675.5
f51m 8 8 73 4.0e+04 4.8e+01 1.6e+09 4.3e+02 0.1
pml 16 13 42 2.1e+13 | 2.0e+05 1.3e+23 2.8e+06 273.4
sct 19 15 102 1.2e+17 4.0e4-07 1.6e+29 6.0e+08 75647 .4
t481 16 1 202 2.1e+13 | 2.3e+07 | 2.1e+13 2.3e+07 88354.5
z4ml 7 4 47 5.0e+03 | 5.0e+03 1.2e+05 2.0e+04 4.55

Table 2: Experimental Results.

The circuits included in this table are a subset of the LGSynth‘93 benchmark

suite. The results listed for Method 1 are calculated for the Factorial Permutation approach (Section 3.1). The
results presented for Method 2 are experimental results for a single vector signature implementation of the

algorithm presented in Section 4.3.

partitioning techniques [11] as well as the identifica-
tion and incorporation of don’t care conditions into
the semantic matching algorithm.

Acknowledgements

The authors gratefully acknowledge the contribu-
tions of Steve Eckmann and Ken Dritz of Argonne Na-
tional Laboratory. Their comments and insight have
been invaluable in this research.

References

[1] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather,
“Subgemini: Identifying subcircuits using a fast
subgraph isomorphism algorithm,” in Proceedings
of the ACM/IEEE Design Automation Confer-
ence, pp. 31-37, June 1993.

M. Bochner, “LOGEX - an automatic logic extrac-
tor from transistor to gate level for CMOS tech-
nology,” in Proceedings of the ACM/IEEE Design
Automation Conference, pp. 517 — 522, June 1988.

2]

F. Luellau, T. Hloepken, and E. Barke, “A tech-
nology independent block extraction algorithm,”
in Proceedings of the ACM/IEEE Design Automa-
tion Conference, pp. 610 — 615, June 1984.

[3]

S. Eckmann and G. H. Chisholm, “Assigning func-
tional meaning to digital circuits,” Technical Re-
port ANL/DIS/TM-43, Argonne National Labora-
tory, July 1997.

R. E. Bryant, “Symbolic manipulation of boolean
functions using a graphical representation,” in

318

Proceedings of the 22nd ACM/IEEE Design Au-
tomation Conference, pp. 688 — 694, June 1985.

Y. Lai, S. Sastry, and M. Pedram, “Boolean
matching using binary decision diagrams with ap-
plications to logic synthesis and verification,” in
Proceedings of the IEEE International Conference
on Computer Design, pp. 452-458, Oct. 1992.

[6]

L. Benini and G. D. Micheli, “A survey of boolean

matching techniques for library binding,” in Pro-
ceedings of the ACM TODAES, July 1997.

F. Mailhot and G. D. Micheli, “Algorithms for
technology mapping based on Binary Decision Di-
agrams and on boolean operations,” IEEE Trans-
actions on CAD/ICAS, vol. 12, pp. 599-620, May
1993.

[7]

(8

F. Somenzi, “CUDD: CU decision diagram pack-
age.” Available on the World Wide Web
as URL: www.bessie.colorado.edu/~fabio/CUDD,
1997. Release 2.1.2.

”

[10] M. Ohmura, H. Yasuura, and K. Tamaru, “Ex-
traction of functional information from combina-
tional circuits,” in Proceedings of the IEEE Inter-
national Conference on Computer-Aided Design,
pp. 176 — 179, Nov. 1990.

[11] T. Doom, J. White, and G. Chisholm, “The iden-
tification of functional components in combina-
tional circuits,” Tech. Rep. Submitted for Publi-
cation, Division of Information Science, Argonne
National Laboratory, November 1997.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

