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Abstract

Programmable logic array (PLA) is a circuit realization for
the two-level sum of products representation of a multi-output
Boolean function. The current drawn by a PLA is input de-
pendent and it makes the problem of estimating the marimum
current intractable. Integrated circuit reliability and signal in-
tegrity are related to the rmarimum current drawn by the cir-
cuit. Hence, an estimate of the mazimum current is required
for the design of a reliable VLSI circuit. In this paper, we
present an input pattern-independent algorithm to obtain the
estimate of mazimum and minimum currents drawn by o PLA
over all possible input vectors. Ezperimental results on several
benchmark circuits and comparisons with erhaustive simula-
tions are also included in this paper.

1 Introduction

With the demand for high reliability in present day VLSI de-
sign, it is essential to estimate the maximum current and the
maximum instantaneous energy dissipation for a VLSI circuit
early in the design cycle. Large instantaneous energy dissi-
pation causes overheating of devices and degrades circuit per-
formance. Every 10°C increase in the operating temperature
roughly doubles the failure rate for the IC [1]. With higher lev-
s of integration, higher clock rates, and shrinking line width,
the power bus interconnects are more susceptible to electro-
nigration (EM) induced failure. The Mean-Time-To-Failure
MTTF) of an interconnect due to EM depends on the current
lensity through the interconnect [2]. The minimum and max-
mum current estimates can be used to determine the severity
i these problems early in the design cycle. In this work, our
ocus is on two-level circuits implemented as a programmable
ogic array.

Programmable logic array (PLA) is a circuit realization for
he two-level sum of products representation of a multi-output
loolean function. A PLA provides a regular structure for
nplementing combinational and sequential functions. There
re several advantages of using PLA for implementing a multi-
utput Boolean function. The structure of a PLA is regular
nd it can be generated using an automated process. The
fogramming of the PLA can be modified at later stages of
2e design process without having to re-do the whole layout.
LA based implementation of complex Boolean functions is
0 option to the designer to reduce the design time, design
Tort and meet the cost or time-to-market goals [3].

The current drawn by a PLA is dependent on the applied
‘put vector. This input pattern dependence makes the prob-
m of estimating maximum or minimum current extremely
ficult. The number of input vectors that have te be sim-
ated to find the maximum or minimum current drawn by
PLA is exponential in the number of inputs to the PLA.
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Figure 1: Programmable Logic Array
In [4], Devadas et al. transform the problem of estimating
maximum power dissipation in a static or dynamic CMOS
circuit (two-level or multi-level circuit) to a weighted max-
satisfiability problem on a set of multi-output Boolean func-
tions obtained from the circuit logic description. Then they
use either a disjoint cover enumeration algorithm or a branch-
and-bound algorithm to solve the weighted max-satisfiability
problem, which is an NP-complete problem. The complexity
of their algorithm is exponential in the number of primary in-
puts and the analysis is slow even for small circuits. In this
work, we present an input pattern-independent algorithm to
obtain the estimate of maximum and minimum current drawn
by a PLA over all possible input vectors. The maximum cur-
rent estimate can be used to find the peak instantaneous en-
ergy dissipation. The minimum current is a lower bound on
the average current. This can be used to find a lower bound on
the width of a power bus interconnect and find interconnects
that are guaranteed to be susceptible toc EM induced failure.

This paper is organized as follows. In the next section,
we formulate the problem. In section 3, we describe different
implementation styles and the method to construct the con-
straint graph. We also present the duality relationship used
to find the maximum and minimum currents for a NOR-NOR
implementation of the PLA. In section 4, we describe the al-
gorithms used to obtain the maximum and minimum currents
drawn by a PLA. In section 5, experimental results and com-
parisons with exhaustive simulations are presented. Finally,
in section 6 we give the conclusions.

2 Problem Formulation

A typical PLA uses an AND-OR structure as shown in Fig. 1.
The basis for a PLA is the sum of products representation
of Boolean functions. The AND plane takes in the PLA in-
puts and generates the product terms. Each product term
consists of a set of literals that correspond to the PLA in-
puts. The OR plane takes in the product terms and generates
the PLA outputs. Each row of the AND plane evaluates a
product term and each column of the OR plane evaluates a
PLA output. Each of these functions are usually implemented
using a pseudo-NMOS design style. Fig. 2 shows a dynamic
pseudo-NMOS circuit.

Definition - Logic block: It denotes a pseudo-NMOS circuit
implementing a row (column) of the AND (OR) plane.
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Figure 2: Dynamic pseudo-NMOS circuit

The number of logic blocks in a PLA circuit is equal to the
sum of the number of rows in the AND plane and the number
of columns in the OR plane. The term output node is used
to refer to the output of a logic block. The NMOS network
shown in Fig. 2 implements either an AND or OR function of
the inputs. A output node can take two logic values, logic high
denoted by HI and logic low denoted by LO. OFF-SET (ON-
SET) of the output node is defined as the set of input vectors
for which the output node is LO (HI). When an input vector
is applied, the output node is pulled LO if the NMOS network
turns ON. The NMOS network is ON when the input vector
applied belongs to the OFF-SET of the output node. In a
static pseudo-NMOS circuit, current is drawn from the power
bus through the PMOS transistor when the output node is
LO. When the output node is HI, no current is drawn from the
power bus (ignore leakage current). In a dynamic CMOS cir-
cuit, the output node is precharged to HI, and during the eval-
uate phase the output node is pulled LO if the NMOS network
turns ON. In the next precharge phase, all the output nodes
that were discharged draw simultaneous charging current. If
we assume that all the logic blocks draw the same current,
the maximum current drawn from the power bus corresponds
to the maximum number of output nodes that are LO. This
argument is valid for both the static and dynamic implemen-
tations of the logic blocks. To determine an input vector that
sets maximum number of output nodes to LO, one has to find
an input vector that is in the OFF-SET of maximum number
of output nodes. This problem is the max-satisfiability prob-
lem. If the current drawn by the logic blocks is different, then
the current values can be used as weights and the problem be-
comes a weighted max-satisfiability problem. The problem of
determining the minimum current corresponds to finding an
input vector that is in the ON-SET of the maximum number
of output nodes. This minimizes the number of nodes that are
LO and hence, minimizes the current drawn from the power
bus. If a weight is associated with each node then this prob-
lem also becomes a weighted max-satisfiability problem. The
weighted max-satisfiability problem is a NP-Complete prob-
lem [5]. Hence, the problem of finding the minimum and max-
imum currents drawn by a PLA is a hard problem. In [4],
Devadas et al. use exact or approximate methods to solve the
weighted max-satisfiability problem. The resulting algorithms
are complex and the analysis is slow even for small circuits.

In our approach, we transform the problem of estimating
maximum or minimum current in a PLA to a graph problem.
We create a graph called the constraint graph and use graph-
theoretic algorithms to find a solution to the graph problem.
The description of the graph problems and the algorithms is
presented in the subsequent sections. The number of vertices
in the constraint graph is equal to the number of logic blocks
in the circuit. There is a one-to-one correspondence between a
vertex in the constraint graph and a logic block in the circuit.
If two output nodes cannot simultaneously be set to LO for
any input vector, then there exists an edge between the corre-
sponding two vertices in the constraint graph. The weight as-
sociated with each vertex is related to the peak current drawn
by the corresponding logic block. Although the weights associ-
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Figure 3: Clock signals for dynamic implementation of PLAs

ated with the vertices could be different, the constraint graphs
for both the static and the dynamic pseudo-NMOS implemep.
tations of a circuit is the same. This is because the Booleap
function of both the static and dynamic pseudo-NMOS imple-
mentations is the same. Hence, in this paper we present the
analysis of dynamic pseudo-NMOS implementations. These
methods are also valid for static pseudo-NMOS implements.
tions. In a dynamic pseudo-NMOS implementation, the peak
current is dependent on the conductance of the PMOS trap.
sistor and the total output node capacitance. Hence, if the
peak current is not specified, then the weight of a vertex w;
corresponding to logic block i is computed using the following
equation,

w.'=ki*{Cl*Lz+C-z*Ni+Cs*Oi} 1)

k; is related to the conductance of the PMOS transistor of the
logic block. C1,C3,Cs are nominal capacitance values that
are dependent on the technology parameters. Ci,C,,C; are
related to the interconnect capacitance, source/drain capaci-
tance, and gate capacitance respectively. L; denotes the inter-
connect length and hence (C; * L.) denotes the contribution
of interconnect capacitance to the total capacitance of a logic
block. N; denotes the number of inputs to the logic block ¢
and hence (C> * N;) denotes the contribution of drain/source
capacitance to the total capacitance of a logic block. O; cor-
responds to the fanout count of the output node of the logic
block and hence (Cj3 * O;) denotes the contribution of fanout
gate capacitance to the total capacitance of a logic block.

3

Single level logic functions implemented using PMOS or
NMOS networks are always inverting functions. Hence, there
are only two possible implementations of the AND plane, using
NAND or NOR functions. For the pseudo-NMOS implemen-
tation as shown in Fig. 2, the NMOS network consists of series
connected NMOS transistors for NAND functions and parallel
connected NMOS transistors for NOR functions. Each imple-
mentation has its advantages and disadvantages. The NAND
implementation is slow, but it dissipates less power compared
to a NOR implementation. The OR plane can also be im-
plemented as a NAND or a NOR function. This results in
four different implementations of an AND-OR PLA: NAND-
NAND, NAND-NOR, NOR-NAND, NOR-NOR. In this pa-
per, we analyze NAND-NAND and NOR-NOR implementa-
tions of AND-OR functions. The methodology we present is
very general and it can be extended to the NAND-NOR or
NOR-NAND implementations of an AND-OR PLA.

In the NAND-NAND or NOR-NOR dynamic pseudo-
NMOS implementations the two planes cannot be directly cas-
caded. The AND plane and the OR plane must have different
clock signals. We use the multiple clocking scheme presented
in [6]. The clock signals for a dynamic pseudo-NMOS imple-
mentation are shown in Fig. 3. t,.. and t.,q represent the
worst-case precharge and evaluation times of an AND row. In
the precharge phase, panp and por are LO and in the eval-
uate phase ¢ 1vp and ¢or are HI. In the precharge phase, all

Implementation Styles
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the logic blocks with the output node discharged due to the
previous input vector draw simultaneous charging current. If
two logic blocks cannot draw simultaneous charging current
over all possible input vectors, then an edge is added between
the corresponding vertices in the constraint graph. The con-
struction of the constraint graph for a NAND-NAND imple-
mentation of a PLA is described in the next subsection.

8.1 NAND-NAND Implementation

In a NAND-NAND implementation, the product terms are
generated by performing a NAND operation on a sub-set of
PLA inputs and the complements of PLA inputs. The PLA
outputs are generated by performing a NAND operation on
& sub-set of the product terms. The product terms for the
NAND-NAND implementation are complements of the. cor-
responding product terms in the AND-OR sum of products
representation. Consider the two level AND-OR representa-
tion of a two input XOR function shown in Fig. 4. The two
level sum of products expression for the output f of the XOR
function is given by f = XY + X - Y. Using a few Boolean
manipuiations, f can be rewritten in the NAND-NAND format

a8f=X-Y X Y. The NAND-NAND dynamic implemen-
tation of XOR function is shown in Fig. 5. Observe that the
product terms are complements of the corresponding product
terms in the AND-OR representation. When a NAND logic
block corresponding to a product term evaluates to LO, it im-
Plies that all the input literals of the product term are HI.
The complement input nodes of these input literals would be
LO. Hence, all the product terms containing at least one of
the complement input nodes cannot be LO. This is because
the output of a NAND gate with at least one LO input node
evaluates to a HI. Each product term and PLA output node
corresponds to a vertex in the constraint graph. Since an edge
18 added between two vertices in the constraint graph if the
corresponding logic block output nodes cannot be discharged
(LO) simultaneously, the edges in the constraint graph are
Created using the following rules:

* If a product term P is LO, then a product term Q with
at least one literal that is a complement of the literals
present in P cannot be LO. Hence, there exists an edge
between the vertices that correspond to (P, Q).

* If a product term P is LO, then a PLA output node O
that contains the product term P as an input cannot be
LO. Hence, there exists an edge between the vertices that
correspond to (P, O).
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Figure 6: Constraint graph for NAND-NAND impl. of XOR
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Figure 7: NOR-NOR dynamic implementation of XOR function

In Fig. 5 the nodes P and Q correspond to the product terms

X .Y and X - Y respectively. The output node of the XOR
function is denoted by f and it corresponds to P - Q. It can be
seen that if any one of the terms (P, @, f) is LO, then the other
two terms cannot be LO. Fig. 6 shows the constraint graph for
the NAND-NAND implementation of XOR function. Using
the methodology presented in this section, it is possible to
construct the constraint graph for a dynamic NAND-NAND
implementation of any AND-OR PLA. In the next subsection
we formulate the problem for a dynamic NOR-NOR imple-
mentation of an AND-OR PLA.

3.2 NOR-NOR Implementation

In a NOR-NOR implementation, the product terms are gen-
erated by performing a NOR operation on a sub-set of PLA
inputs and the complements of PLA inputs. The PLA outputs
are generated by performing a NOR operation on a sub-set of
the product terms. The product terms for the NOR-NOR im-
plementation are the same as the corresponding product terms
in the AND-OR sum of products representation. Consider the
two level AND-OR representation of a two input XOR func-
tion shown in Fig. 4. Using a few Boolean manipulations,
the output f of the XOR function can be rewritten in the

NOR-NOR format as f =X - Y+X Y=X+Y+X+Y.
The NOR-NOR dynamic implementation of XOR function is
shown in Fig. 7. Observe that the product terms are the same
as the corresponding product terms in the AND-OR repre-
sentation. The PLA outputs of the NOR-NOR implementa-
tion are complemented and hence, an additional inverter is
required for each PLA output. If the output of a NOR logic
block is LO, it does not imply any value at the inputs. If
the input to a NOR logic block is LO, it does not imply any
value at the output. Hence, it is not possible to construct a
constraint graph by the method used for the NAND-NAND
implementation. We now present the duality relationship be-
tween the NAND-NAND and NOR-NOR implementations of
an AND-OR PLA. Observe that the product terms (and PLA
outputs) in the NAND-NAND implementation and the NOR-
NOR implementation are complements of each other. Hence,
it can be seen that when an input vector sets the output of
a logic block LO in the NAND-NAND implementation, the
same input vector sets the output of the corresponding logic
block HI in the NOR-NOR implementation. An input vector
that mazimizes the number of logic blocks set to LO in the
NAND-NAND implementation also mazimizes the number of



logic blocks set to HI in the NOR-NOR implementation. The
output node of a logic block can take only two logic values,
either HI or LO. If an input vector sets the maximum num-
ber of logic blocks to HI in the NOR-NOR implementation
then it implies that the same vector sets the minimum num-
ber of logic blocks to LO in the same circuit. Hence, the input
vector that mazimizes the number of logic blocks set to LO
in the NAND-NAND implementation, minimizes the number
of logic blocks set to LO in the NOR-NOR implementation.
Similarly, the input vector that minimizes the number of logic
blocks set to LO in the NAND-NAND implementation, mazi-
mizes the number of logic blocks set to LO in the NOR-NOR
implementation. This duality relationship is used to find the
maximum and minimum currents drawn by the NOR-NOR
implementation of the PLA. The sequence of operations to
compute the maximum and minimum currents for the NOR-
NOR implementation are given below.

o Given a NOR-NOR PLA, construct the constraint graph
for the corresponding NAND-NAND implementation and
set the weights of the vertices as the peak current drawn
by the logic blocks in the NOR-NOR implementation.

» Using the methodology presented in the next section find
an estimate of the maximum and minimum current in the
NAND-NAND implementation. Use the duality relation-
ship to obtain the maximum and minimum currents for
the NOR-NOR implementation.

In the next section, we present the algorithms that use the
constraint graph to find a group of nodes that can be set to LO
so that the current drawn is either the maximum or minimum.

4 Constraint Graph

In the constraint graph the weight associated with a vertex
is related to the peak current drawn by the corresponding
logic block in the circuit. In a pseudo-NMOS dynamic imple-
mentation, the node is pulled LO by discharging the output
node capacitance. In the next cycle; current is drawn in the
precharge phase to charge all the discharged output node ca-
pacitances. An edge between two vertices in the constraint
graph implies that the two logic blocks corresponding to the
vertices cannot draw simultaneous charging current over all
possible input vectors. Finding a group of logic blocks that
can draw simultaneous charging current is equivalent to find-
ing a group of vertices in the constraint graph with no edges
between any pair of vertices. A group of vertices for which
there are no edges between any pair of vertices and the sum
of the vertex weights is maximum gives the maximum current
drawn by the PLA over all possible input vectors. This prob-
lem is exactly the problem of finding the maximum weight
independent set in the comstraint graph, where the weights
correspond to current drawn by each logic block. An inde-
pendent set in a graph is defined as a set of vertices with no
edges between any pair of the vertices. A maximal indepen-
dent set is an independent set for which none of the vertices
in the remaining graph can be appended to increase the size
of the independent set. A maximum weight independent set
in a graph is a maximal independent set for which the sum of
weights on the vertices is maximum over all maximal indepen-
dent sets. The problem of determining the maximum weight
independent set in an arbitrary graph is NP-Complete [3}.
There exists some classes of graphs like perfect graphs, claw-
free graphs for which the problem can be solved in polynomial
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time. Since the constraint graph does not belong to any of
these special classes of graphs, it is not known if the maximum
weight independent set problem can be solved in polynomial
time for the constraint graph. We use two algorithms to esti.
mate the maximum weight independent set in the graph. The
first algorithm is a Greedy algorithm for MAXimum weight
independent set (GMAX) in the constraint graph. It is an
iterative algorithm that picks the vertex of maximum gain in
the graph. The gain for each vertex is the value obtained by
subtracting the sum of the weight of the vertices adjacent to
the vertex from the weight of the vertex. The selected vertex
and the vertices adjacent to it are then deleted to obtain the
new subgraph. The iterative algorithm is applied on the new
subgraph till all the vertices in the graph are deleted. The
sum of the weights of the selected vertices gives an estimate of
the maximum weight independent set in the constraint graph.
The second algorithm is an Exact algorithm for MAXimum
weight independent set (EMAX) in the constraint graph. We
have implemented the recursive backtracking algorithm pre-
sented in [8] for finding the maximum weight independent set
in a graph.

In pseudo-NMOS dynamic implementation of a PLA, logic
blocks draw the charging current in the precharge phase oniy
if the output node is LO (discharged). An input vector sets
the output node of a group of logic blocks to LO and the other
output nodes to HI. The minimum current drawn by a PLA
corresponds to the minimum value of the sum of the peak cur-
rent values of the logic blocks set to LO. This corresponds to
a set of vertices in the constraint graph that form a maximal
independent set such that the sum of the vertex weights is
minimum. This is the problem of finding the minimum weight
maximal independent set or the minimum weight dominating
independent set in the constraint graph. In an unweighted
graph, the problem of finding the minimum maximal inde-
pendence number or the minimum dominating independence
number for arbitrary graph is NP-Complete [7]. In this work,
we use a Greedy algorithm for MINimum weight maximal
independent set (GMIN) in the constraint graph. It is an
iterative algorithm that picks the vertex of maximum gain in
the graph. The gain for each vertex is the value obtained
by subtracting the weight of the vertex from the sum of the
weight of the vertices adjacent to it in the graph . The se-
lected vertex and the vertices adjacent to it are then deleted
to obtain the new subgraph. The iterative algorithm is ap-
plied on the new subgraph till all the vertices in the graph are
deleted. The sum of the weights of the selected vertices gives
an estimate of the minimum weight maximal independent set
in the constraint graph.

5 Experimental Results

The experimental results were obtained on the MCNC two-
level benchmark circuits [9]. These two-level circuits were
minimized using ESPRESSO [10]. The two-level benchmark
circuits are in the AND-OR format. We create the constraint
graph for the corresponding NAND-NAND implementation.
The weight associated with each vertex in the constraint graph
is related to the peak current drawn by the corresponding logic
block and it is computed using Equation 1. The default val-
ues for Ci,Ca2,Ca were chosen as 0.1, 3, 10 units respectively.
The default value of L; which denotes the length of the inter-
connect is taken as the number of PLA inputs for the logic
blocks in the AND plane and the number of product terms for



the logic blocks in the OR plane of the AND-OR PLA. The
values of N;, O; were taken as the number of inputs and the
fanout count of the logic blocks. We use the same weights for
both the NAND-NAND and NOR-NOR implementations of
the PLA.

We use the following notation for presenting the results.
Wiotat denotes the sum of the weights on all the vertices in the
graph. Wyma- denotes the sum of the weights on the vertices
obtained as the maximum weight independent set using the
GMAX algorithm. Wem.. denotes the sum of the weights on
the vertices obtained as the maximum weight independent set
using the EMAX algorithm. Wymi, denotes the sum of the
weights on the vertices obtained as the minimum weight max-
imal independent set using the GMIN algorithm. Imae: and
Inin denote the maximum and minimum currents obtained
using exhaustive simulation. In the exhaustive simulation, for
each input vector we determine the sum of weights on vertices
that were set LO. Imaz, Imin are the maximum and mini-
mum values of the sum over all input vectors. For circuits
with large number of inputs, we report the Imaz and Imin
values obtained by simulation for 2'° random input vectors.
For these circuits, the I;mez and I'min values are a lower bound
and upper bound estimates of the maximum and minimum
currents respectively. The run-time is in CPU seconds on a
Sun-Sparc20 workstation.

For a NAND-NAND implementation, Wymer and Wemez
are estimates of the maximum current. Wynmi» is an estimate
of minimum current. gz, Imin are obtained either by ex-
haustive simulation or by simulation for 2'® random input
vectors. Table 1 and Table 2 show the results for the maxi-
mum and minimum current drawn by the NAND-NAND im-
plementation of a PLA. It can be seen that the algorithms are
fast and generate accurate results. GMAX algorithm is fast
and within a small amount of time it generates Wyma: which
is a lower bound on the maximum current. EMAX algorithm
generates W4, which is equal to the maximum current value
obtained by exhaustive simulation. For benchmark circuits
with large number of primary inputs the EMAX algorithm
generates Wenmo; value greater than the I,,q. value obtained
by a simulation for 2'® random input vectors. This clearly
shows that the graph based algorithm EMAX is superior to
the simulation based methods. The CPU-time requirements
of the EMAX algorithm are nominal. The GMIN algorithm
generates Wy,in which is an upper bound on the minimum
¢urrent. For some benchmark circuits this method generates
f-ight upper bound results and for other benchmarks it results
n a loose upper bound. The CPU-time requirements of the
GMIN algorithm are extremely small.

We now present the results for the NOR-NOR implemen-
tation of the AND-OR PLA. We use the duality relationship
between the NAND-NAND and the NOR-NOR implementa-
tion to obtain the estimates of the maximum and minimum
current for a NOR-NOR implementation. If Wym:n denotes
t%“3 estimate of minimum current obtained using the NAND-
NAND implementation then, (Wiotai — Womin) is an estimate
O_f the maximum current for the NOR-NOR implementation.
Slmilarly. if Woymaz, Wemaz are estimates of maximum current
for a NAND-NAND implementation then (Wistat — Womaz)
and (W,,,0; — Wepma2) are estimates of the minimum current
for the NOR-NOR implementation. Table 3 and Table 4 show
the results for the maximum and minimum current drawn by
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the NOR-NOR implementation of a PLA. The GMIN al-
gorithm generates (Wiotal — Wymin) which is a lower bound
on the maximum current in a small amount of time. The
results generated by this algorithm are close to the Imq, val-
ues. GMAX algorithm is fast and within a small amount
of time it generates (Wiotat — Wymaz) which is an upper
bound on the minimum current. EMAX algorithm gener-
ates (Wiotat — Wemaz ) which is equal to the minimum current
value obtained by exhaustive simulation. For benchmark cir-
cuits with large number of primary inputs the EMAX algo-
rithm generates (Wiotat — Wemaz) value lesser than the Imin
value obtained by simulation for 2'® random input vectors.
This clearly shows that the graph based algorithm EMAX
is superior to the simulation based methods. The CPU-time
requirements of the EMAX algorithm are nominal and the
maximum run-time over all the benchmark circuits is less than
5 minutes. Hence, the methods presented in this paper gen-
erate good estimates of the maximum and minimum currents
drawn by a PLA in a small amount of time.

6 Conclusion

In this paper, we presented efficient methods for finding the
maximum and minimum current drawn by a PLA. We trans-
form the problem of finding maximum and minimum current
to a graph problem and use graph-theoretic algorithms to find
the solution. We also presented the duality relationship be-
tween the NAND-NAND implementation and the NOR-NOR
implementation of the PLA. We exploit this duality relation-
ship to find the maximum and minimum currents drawn by
a NOR-NOR PLA. Comparisons with exhaustive simulation
show that the methods are accurate and fast.
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Table 1: NAND-NAND Maximum Current Results

Using GMAX Using EMAX
Circuit gmaz | 1iMe | Wemaz | Lime Imax
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clip 589.3 0.16 709.6 5.29 709.6
conl 72.8 0.07 72.8 0.07 72.8
cps 4614.7 5.73 4752.6 23.59 4728.97
duke?2 985.0 0.42 1032.4 1.81 1026.27
e64 829.5 0.28 829.5 0.82 682.57
ex1010 2394.0 1.15 2394.0 33.02 2394.0
ex5s 1648.4 0.73 1648.4 2.69 1648.4
in¢ 248.1 0.07 251.8 0.08 251.8
misex] 144.4 0.04 157.8 0.06 157.8

misex2 210.6 0.07 293.0 0.11 253.37
misexdc 1023.1 1.52 1025.5 54.99 1025.5

pdc 2140.0 1.56 2234.9 16.06 2234.9
rd53 114.3 0.06 183.1 0.11 183.1
rd73 492.9 0.19 492.9 0.71 492.9
rd84 938.4 0.52 938.4 3.71 938.4
5802 227.8 0.07 227.8 0.10 227.8
seq 6804.0 12.01 7222.2 110.54 | 6884.7"
spla 3443.0 8.09 3473.6 77.26 3473.6
squard 157.0 0.06 164.0 0.08 164.0
t481 1491.1 2.52 2662.4 282.72 2662.4

table3 2174.0 0.85 2174.0 9.89 2174.0

tableb 2055.0 0.79 2055.0 6.24 2055.07
vg2 543.0 0.19 698.0 5.74 644.0"
X0r5 49.6 0.05 49.6 0.07 49.8

* Not an exhaustive simulation (2'® random vector simulation)

Table 2: NAND-NAND Minimum Current Results

Using GMIN
Circuit gmin ime Imin

Z5xpl 307.7 0.06 175.7

79sym 578 0.08 380
apexl 1959.3 0.28 1570.17
apex2 673.9 0.45 336.9%

apex3 2121.8 0.64 2121.87
apexd4 1894.3 1.91 1787.2

bi2 232.8 0.07 118.3
bw 380.7 0.05 380.7
clip 103.7 0.08 103.7
conl 66.0 0.06 28.8
cps 3180.4 0.19 3028.3F
duke? 739.2 0.07 684.2°
efd 630.5 0.07 617.5°
ex1010 1246.5 0.54 276.0
exb 926.0 0.09 700.2
inc 182.7 0.06 154.7
misexl 83.2 0.06 83.2

misex2 157.3 0.05 150.17
misex3c 827.3 0.20 437.8

pdc 1412.6 0.07 1151.6
rd53 53.6 0.06 53.6
rd73 51.7 0.09 51.7
rd84 76.4 0.23 76.4
sao?2 71.0 0.06 71.0
seq 3461.1 1.96 3461.17
spla 2682.6 0.49 2322.6
squard 106.5 0.05 106.5
t481 214.4 1.36 23.0

table3 550.9 0.24 510.4

tableb 501.5 0.17 407.87
vg2 370.0 0.09 226.07
xord 25.5 0.07 25.5

* Not an exhaustive simulation (2!® random vector simulation)
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Table 3: NOR-NOR Maximum Current Results

Using GMIN
Circuit Wiotal -~ | Lime Inax
Wymin)
75xpl 2145.8 0.06 2277.8
Z9sym 2694.2 0.08 2723.1
apexl 19450.7 0.28 19839.97
apex2 15448.5 0.45 16085.67
apexd 20886.2 0.64 20886.27
apex4 32893.6 1.91 33000.7
b12 705.2 0.07 727.3
bw 3208.9 0.05 3208.9
clip 4063.3 0.08 4063.3
conl 128.1 0.06 165.3
cps 16955.5 0.19 17105.87
duke?2 5137.4 0.07 5192.4"
ebd 7494.5 0.07 7507.5"
ex1010 14245.5 0.54 15216.0
ex5 19898.4 0.09 20124.2
inc 1079.3 0.06 1107.3
misex1 672.8 0.06 672.8
misex2 1013.1 0.05 1020.3%
misex3c 6945.9 0.20 7335.4
pdc 8895.4 0.07 9156.4
rd53 846.2 0.06 846.2
rd73 3916.3 0.09 3916.3
rd84 8177.8 0.23 8177.8
5202 1887.8 0.06 1887.8
seq 36587.5 1.96 36587.5"
spla 16610.8 0.49 16970.4
squard 603.0 0.05 603.0
t481 21112.2 1.36 21302.9
table3 14301.1 0.24 14341.6
tables 13567.1 0.17 13660.87
vg2 3835.0 0.09 3979.07
x0r5 432.1 0.07 432.1

* Not an exhaustive simulation (2'® random vector simulation)

Table 4: NOR-NOR Minimum Current Results

Using GMAX Using EMAX
Circuit {(Wiotat - | Time (Wiotal - Time IneIn
gmazx W;ma:
Z5xpl 2046.5 0.09 1955.1 0.82 1955.1
Z9sym 2485.4 0.09 2485.4 0.82 2485.4
apexl 17174.0 4.34 17055.6 26.23 17121.6"
apex2 9786.5 4.50 9783.6 91.57 13786.4
apex3 18542.0 16.63 18527.6 68.89 18542.0°
apex4 28910.2 14.36 28910.2 23.32 28910.2
b12 612.8 0.07 585.6 0.09 585.6
bw 2787.0 0.07 2787.0 0.09 2787.0
clip 3577.7 0.16 3457.4 5.29 3457.4
conl 121.3 0.07 121.3 0.07 121.3
cps 15521.2 5.73 15383.3 23.59 15406.07
duke? 4891.6 0.42 4848.2 1.81 4850.47
e64 7295.5 0.28 7295.5 0.82 7436.5"
ex1010 13098.0 1.15 13098.0 33.02 13098.0
ex5 19176.0 0.73 19176.0 2.69 19176.0
inc 1013.9 0.07 1010.2 0.08 1010.2
misex1l 611.6 0.04 598.2 0.06 598.2
misex2 959.8 0.07 877.4 0.11 017.1%
misex3c 6750.1 1.52 6747.7 54.99 6747.7
pdc 8168.0 1.56 8073.1 16.06 8073.1
rd53 785.5 0.06 716.7 0.11 716.7
rd73 3475.1 0.19 3475.1 0.71 3475.1
rd84 7315.8 0.52 7315.8 3.71 7315.8
sa02 1731.0 0.07 1731.0 0.10 1731.0
seq 33244.6 12.01 32826.4 110.54 33163.87
spla 15850.0 8.09 15819.4 77.26 15819.4
squard 552.5 0.06 545.5 0.08 545.5
t481 19835.5 2.52 18664.2 282.72 18664.2
table3 12698.0 0.85 12698.0 9.89 12698.0
table5 12013.6 0.79 12013.6 6.24 12013.6
vg2 3507.0 0.19 3507.7 5.74 3558.5"
xord 408.0 0.05 408.0 0.07 408.0

* Not an exhaustive simulation (2'® random vector simulation)
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