An Exact Input Encoding Algorithm for BDDs Representing FSMs *

Wilsin Gosti! Tiziano Villa?

Alexander Saldanha®

Alberto L. Sangiovanni-Vincentellj!

! Dept. of EECS, University of California, Berkeley, CA 94720
2 PARADES, Via di S. Pantaleo, 66, 00186 Roma, Italy
3 Cadence Berkeley Labs, 2001 Addison St., 3"¢ Floor, Berkeley, CA 94704

Abstract

We address the problem of encoding the state vari-
ables of a finite state machine such that the BDD
representing its characteristic function has the min-
tmum number of nodes. We present an exact formu-
lation of the problem. Our formulation characterizes
the two BDD reduction rules by deriving conditions
under which these reduction rules can be applied. We
then provide an algorithm that finds these conditions
and solves the problem by formulating it as a 2-CNF
formula and extracting all its prime implicants. In
addition to this, we implemented a simulated anneal-
tng algorithm for this problem and provide a thorough
experiment of the impact of encoding on a BDD rep-
resenting an FSM wnth different orderings.

Introduction

Reduced Ordered Binary Decision Diagrams
(BDDs) are a data structure used to efficiently rep-
resent and manipulate logic functions. Since being
introduced by Bryant [1] in 1986, they have played
a major role in many areas of Computer Aided De-
sign, including logic synthesis, simulation, and formal
verification. :

The size of a BDD depends on the ordering of its
variables. For some functions, the BDD sizes are lin-
ear in the number of variables for one ordering, and
exponential for another [2]. Many heuristics have been
proposed to find good orderings, e.g., the sifting dy-
namic reordering algorithm [8].

BDDs can also be used to represent the character-
istic functions of the transition relations of finite state
machines (FSMs). In this case, the size of the BDDs
depends not only on variable ordering, but also on
state encoding. Meinel and Theobald studied the ef-
fect of state encoding on autonomous counters in {7].
They experimented with 3 different encodings: the
standard minimum-length encoding, which gives the
lower bound of 5n — 3 internal nodes for an n-bit au-
tonomous counter, the Gray encoding, which gives the
lower bound of 10n — 11 internal nodes, and a worst-
case encoding, which gives an exponential number of
nodes in n.

The problem of reducing by state encoding the
BDD size of an FSM representation is motivated by

1

*This research was supported in part by UC Micro 532419

0-8186-8409-7/98 $10.00 © 1998 IEEE

294

applications in logic synthesis and verification. Re-
garding synthesis, BDDs can be used as a starting
point for logic optimization. An example is their use
in Timed Shannon Circuits [5], where the circuits de-
rived are reported to be competitive in area and often
significantly better in power. One would like to de-
rive the smallest BDD with the hope that it leads to a
smaller circuit derived from it. Regarding verification,
re-encoding has been applied successfully to ease the
comparison of “similar” sequential circuits [3].

In this paper, we look into the problem of finding
the optimum state encoding that minimizes the BDD
that represents an FSM. We call this problem the BDD
encoding problem. To the best of our knowledge, this
problem has never been addressed before. The work
related to this paper is from Meinel and Theobald. In
the effort to find a good re-encoding of the state vari-
ables to reduce the number of nodes in BDDs, Meinel
and Theobald proposed in [6] a dynamic re-encoding
algorithm based on XOR-transformations. Although
a %ittle slower than the sifting algorithm, their tech-
nique was able to reduce the number of nodes in BDDs
where sifting algorithm could not.

This paper addresses a restricted version of the
BDD encoding problem, the BDD input encoding
problem.

The remainder of this paper is structured as follows.
In Section 2 the BDD input encoding problem is de-
fined formally. In Section 3 the exact formulation and
algorithm are presented in detail. Section 4 describes
the simulated annealing algorithm experiment on the
impact of encoding on BDD representing the charac-
teristics of FSMs. Finally, we conclude in Section 5.
Due to limited space, all proofs are not included in
this paper but can be found in [4].

2 BDD Input Encoding Problem
The BDD input encoding problem is defined as:
Input: 1) A set of symbolic values, D
{0,1,2,...,|D| -1}, where |D| = 2°, for some s € N.
A symbolic variable, v, taking values in D. 2) A
set of symbolic values, R = {0,1,2,...,|R| — 1}.
3) A set of functions, F = {fo, f1,f2,..., flr1=1
where f; : D — R. 4)A set of s binary variables,
B = {bs—lv 3—QV"~:b0 *
Output: Bijection e : D — B* such that the size of
the BDD representing e(F) is minimum, where e(F) =

)

{e(fo), e(f1), o .,e(f|p|..1)}, and e(f.-) :B’ —~ R. We
call e an encoding of v and of F interchangeably. We
call e,p: an encoding e that minimizes the size of the
BDDs of e%F), i.e., eopt = min.{le(F)|}, where |e(F)|
is the number of nodes of the multi-rooted BDD rep-
resenting e(F).

In other words, the problem is to find an encoding
of a multi-valued variable v such that the multi-rooted
multi-terminal BDD representing a set of multi-valued
functions of v has minimum number of nodes. In this
paper, a multi-valued function f of v is represented
as a single level multi-way tree. The root is labeled
with v. A mapping f(d) = r is represented by an
edge labeled with d going from the root to a leaf node
labeled with ». We call this diagram a single level
multi valued tree {SLM VT). For clarity purposes, the
leaf nodes are replaced by their labels in all figures.

This setting models the problem of encoding the
present state variables of a completely specified finite
state machine (CSFSM) when the characteristic func-
tion of the CSFSM is represented by a BDD. We as-
sume that the state variables are not interleaved in
the variable ordering. In this respect, f;(d;) = r; rep-
resents the state transition from the present state d;
to the next state ; under the proper inputs combi-
nation that causes this transition. Essentially, we cut
across the BDDs representing the characteristic func-
tions of CSFSMs and only look at the present state
variables. Therefore, although the encoded BDDs are
actually multi-terminal BDDs (MTBDDs), we still re-
fer to them as BDDs.

. As an example, we consider the SLMVTs for func-
tions f and g shown in Figure 1. If we encode v
as; 31(0) = 010,e;(1) = 100,e:1(2) = 000,e;(3
001,e,(4) = 011,¢,(5) = 110,e;(6) = 111,¢e,(7
101, with ordering b5, b;, by we get the BDD shown in
Figure 2 with 14 nodes. No reordering will reduce the
number of BDD nodes for this encoding.

But if we encode v as ex(0) = 010,ez(1)

100,e2€2§ = 000,e3(3) = 011,e3(4) = 001,e5(5) =
111,e5(6) = 101,€2(7) = 110, the BDD that we get
has 10 nodes. Figure 3 shows the BDD representing

f and g using this encoding.

f g

1 30 2 06 4 5 I S 8 2 7 4 6 3
Figure 1: Muiti-Valued Functions f and g

We assume that the BDDs are represented by their
é:lue edges. We do not model yet the complemented
ges.

3 Exact Algorithm
3.1 Characterization of BDD Node Re-

ductions
. There are two reduction rules that are applied to a
Inary decision tree representing a logic function to get

295

Figure 3: BDD for f and g Using Encoding e

a binary decision diagram. These rules are: 1) elimi-
nation of nodes with the same then and else children,
and 2) elimination of duplicate isomorphic subgraphs.
For a given SLMVT T, assume that we have an en-
coding of the domain and T is represented as a binary
decision tree T;. Applying Rule 1 to a node n of T}
implies that the leaf nodes of the then and else sub-
trees of n have the same labels. This also means that
for each leaf node of the subtree rooted at n, there are
at least 2 leaf nodes of T that have the same labels.
From T, we can therefore find all pairs of ordered sets
of leaf nodes whose labels are the same. We call such
pairs sibling sets. So a sibling set is a pair of sets of
leaf nodes of an SLMVT which has an implied node
reduction associated with Rule 1. Since Rule 1 is ap-
plied within a single function, sibling sets are defined
within a single function as well. Similarly, applying
Rule 2 to s isomorphic subtrees of T, imples that the
leaf nodes of these isomorphic subtrees have the same
labels. This means that for each leaf node of these
isomorphic subtrees, there are at least s leaf nodes of
T that have the same labels. From T, we can there-
fore find all groups of ordered sets of leaf nodes whose
labéls are the same. We call such groups isomorphic
sets. So an isomorphic set is a set of sets of leaf nodes
of an SLMVT which has an implied node reduction
associated with Rule 2. Since Rule 2 can be applied
across multiple functions, isomorphic sets are defined
across multiple functions as well.

We now formally define sibling and isomorphic sets.

Definition 1 A labeled symbol d; has a symbol d € D
and a label f € F. It is the d-edge of the SLMVT
representing f. The following notations are defined for
dy: sym(ds) =d, fn(dy) = f, and val(dy) = f(d).

Definition 2 A symbolic list | is an ordered set (or
list) of labeled symbols with no duplicate and all labeled
symbols have the same function. The k-th element
of | is denoted as ly. The set of all symbols of | is
Sym(l) = {sym(lx) | 0 < k < |I[= 1}. The function
of l 1s Fn(l) = fn(ly).

P

Definition 3 An isomorphic set [is a set of at least
two symbolic lists. The j-th element of I is denoted as
7. I satisfies the following three conditions: 1) The
sizes of all symbolic lists of I are the same and they are
a power of two. 2) The k-th elements of all symbolic
lists of I have the same value. 8) For any two lists
U 1" € I, either for every index k the symbols of the
k-th elements of I and I" are the same or the symbol
of no element of ' is the same as the symbol of an
element of I".

Definition 4 A sibling set S is an isomorphic set
with 2 symbolic lists, I° and I*, and satisfies the fol-
lowing conditions: 1) The symbol of no element of °
is the same as the symbol of an element of I*. 2) The
functions of I° and I' are the same.

For an instance of the BDD input encoding problem,
the set of all sibling sets is denoted as &, and the set
of all isomorphic sets is denoted as Z.

The motivation of defining sibling and isomorphic
sets is that an encoding exists which takes advantage
of the reductions implied by these sets. This is dis-
cussed by the definition followed by the two proposi-
tions below. The term tree is used to mean the en-
coded binary tree representing a function.

Definition 5 Given an encoding ¢ and a set of sym-
bols D' C D, the tree spanned by the codes of the sym-
bols in D’ is the tree T whose root is the least common
ancestor of the terminal nodes of the codes of the sym-
bols in D’'. Furthermore, every leaf of T' is the code of
a symbol in D’. We say also that I spans T (denoted

by TDI).

For example, given the problem in Figure 1 and the
encoding e, as in page 2, the codes for the symbols 0
and 3 span the tree rooted at T in Figure 3.

Proposition 1 Given a sibling set S = {I°,1'}, there
is an encoding e such that the codes of the symbols in
1°U!! span exactly a tree whose root has a left subtree
spanned ezactly by the symbols in I° and d right subtree
spanned eractly by the symbols in I', and both subtrees
are tsomorphic.

Proposition 2 Given an isomorphic set I = {I'},
0 < i < |I|—1, there is an encoding e such thatVlI' € I
the symbols in I* span ezactly a subtree T, and all Tj:s
are isomorphic.

To illustrate these propositions, we look back to
the example in Figure 1. The § and T of this exam-
ple are: Sy —_-‘{(Qf),(‘lf)}y Io = {(05,3¢),(0g,34) },
Lo o= {(3£,04),(35,00)}, L2 = {(1;,61),(74,54)},
I3 = {(6fv lf)s (59v 79)}v Iy = {(Tf’ 5f)1 (lg’ 69)}7 and
Is = {(54,74),(64,14)}. For now, we focus only on
So, Iy, I», and I4. Each S; or I; justifies why encod-
ing e is better than encoding e; in this example. In
other words, Sp, Iy, I2. and Iy contain requirements
to find an optimum encoding. Sp states that 2 and 4

296

should be encoded such that they differ only in by to
span a subtree and save a node. Iy states that 0 and 3
should be encoded such that they differ only in &g for
symbols in Iy to span a subtree and share a node. [,
states not only that 1 and 6 should be encoded such
that they differ only in by, and similarly for 7 and 5,
but also that the value of by of 1 should be the same
as the value of by of 7 and the value of by of 6 should
be the same as the value of by of 5 for symbols in /5 to
span isomorphic subtrees and share a node. Iy essen-
tially states the same requirements as [o. All of these
requirements are satisfied by encoding ey, but not e,.

Starting from symbolic lists with one symbol, larger
lists can be built recursively. Then from these sym-
bolic lists, the sets § and Z can be constructed.

Having computed S and Z, we can state the follow-
ing theorem.

Theorem 3.1 Using only § and Z, an optimum en-
coding eop; can be obtained.

Theorem 3.1 says that S and Z contain all the infor-
mation that is needed to find an optimum encoding.

3.2 Finding an Optimum Encoding

From here on, the number of nodes that can be
reduced is with respect to the complete binary trees
that represent the encoded F. When not specified, a
set means either a sibling set or an isomorphic set.

Sibling sets and isomorphic sets specify that if their
symbols are encoded to satisfy the reductions implied,
then Rule 1 and Rule 2 can be applied to merge iso-
morphic subgraphs and reduce nodes. Hence, they
implicitly specify the number of nodes that can be re-
duced, which we refer to as gains. The gain of a sibling
set S, denoted as gain(S), is equal to 1. The gain of
an isomorphic set I, denoted as gain([) is equal to
(1] = 1) x (JI° = 1), where I° € I.

and Z contain the information for all possible

reductions. However, not all sets may be selected to-
gether. For example, the sibling set S = {(1y),(2)}
and isomorphic set I = {(2¢,3y),(24,3¢)} of Figure 4
can not be selected together because S says that sym-
bols 1 and 2 should span exactly a subtree while I says
that symbols 2 and 3 should span exactly a subtree.
Hence, an encoding can only benefit from either S or
I. We therefore need to identify which sets can be se-
lected together and which can not. For that we define
the notion of compatibility.

Figure 4: Example of Incompatible Sets

Definition 6 A collection of sets & and I-are com-
patible if there is an encoding e such that all reductions
implied by the sets S € S and I € I can be applied to
the complete binary decision tree yielded by e.

The following definitions and theorems outline an
algorithm for checking compatibility among sets.

Definition 7 Symbolic lists I' and I" are compatible,
denoted as I’ ~ I", if at least one of the following con-
ditions is true: 1) the set of symbols of I’ does not
intersect the set of symbols of I", 2) the symbols of
I' match eractly the symbols of I in the same order
starting at position a x |I'|, and 3) the symbols of 1"
match ezactly the symbols of ' in the same order start-
ing at position a x |I"|.

Definition 7 defines pair-wise compatibility between
symbolic lists. It says that two lists are compatible if
their symbols do not intersect or the symbols of one
list is a subset of the symbols of the other starting at a
power-of-2 position. The next theorem states how the
compatibility among a set of symbolic lists is related
to the pair-wise compatibility.

Theorem 3.2 If a set L of symbolic lists are pair-
wise compatible, then there erists an encoding e such
that the symbols of every symbolic list in L span ezactly
a subtree.

Let the symbolic list created by concatenating [°
and I! of a sibling set S be called the sibling list of S,
denoted by {°. Then the following are corollaries of
Theorem 3.2.

Corlollary 3.1 Sibling sets S' and S” are compatible
if15" is compatible with 15"

Corollary 3.2 Sibling set S and isomorphic set I are
compatible if I° is compatible with every list of I.

Corollary 3.3 Isomorphic sets I' and I" are com-
ﬁ;}t:bﬁ if every list ' € I' is compatible with every list
el

These theorems and corollaries give us an algorithm
to find compatible sets among a collection of sets S
and Z. We call a set of compatible sets a compatible.

Corollary 3.4 Given a compatible C, there exists an
encoding e such that the reductions implied by all its
elements can be applied.

We can compute the encoding of a compatible by
the following: starting with a binary tree, we assign
codes to the symbols of symbolic lists in the order
of non-increasing length of the symbolic lists one by
one. The symbols of each symbolic list are assigned
Lo occupy the largest subtree of codes still available.
For a compatible C, we denote the encoding found by
this algorithm by e44(C).

Since there may exist many compatibles for an in-
stance of the BDD input encoding problem, we would
ike to find a compatible implying the largest reduc-
tion. Hence, we need to calculate the number of nodes
that are reduced by a compatible. We call this quan-
tity the gain of a compatible. The gain of a compat-
ible C is then equal to the difference in the number
of nodes of the binary decision trees representing F
and the number of nodes of the BDDs representing F
encoded by ealg(C).

Theorem 3.3 A compatible of mazimum gain yields
an optimum encoding.

Given a list of compatibles, we therefore need to
calculate the gain of each compatible in order to find
the maximum gain one. However, the compatible gain
calculation is not straight forward. The gain of a com-
patible is not always equal to the sum of the gains of
its elements because the reductions implied by a set
may subsume the reduction implied by another set.
Our gain calculation of a compatible is to find the
sets with largest lists, calculate their gains, remove
all gains of lists that are counted more than once and
remove all sets that are subsumed by other sets.

3.3 Maximal Compatibles

Having found all sibling and isomorphic sets, the
next task is to find a maximum gain compatible. As
shown in the previous section, the gain of a compatible
is not proportional to the size of the compatible. In
other words, the gain of a compatible may be smaller
than the gain of another compatible which contains
fewer sets. Luckily, we do not have to enumerate all
compatibles to find a maximum gain compatible. A
maximal compatible, i.e., a compatible where no set
can be added while still maintaining compatibility, al-
ways has a larger or equal gain as any proper subset
of the compatible. This means that we only need to
find all maximal compatibles. A maximum gain com-
patible is a maximal compatible that has the largest
gain among all maximal compatibles.

We find all maximal compatibles by first building
a compatibility graph. In the following definition, X
denotes either a sibling set or an isomorphic set.

Definition 8 A compatibility graph G = (V,E) is a
labeled undirected graph defined on an instance P of
the BDD input encoding problem. There is a verter x
for each set X of P. No other vertices erist. There
is an edge e = (xq,z2), if and only if X1 and X are
compatible.

As a consequence of this definition, a compatible of
P is a clique in G.

As mentioned above, we need to enumerate all max-
imal compatibles of P and calculate their gains. Enu-
merating all maximal compatibles corresponds to find-
ing all maximal cliques of G.

Our procedure to find all maximal cliques of G is
as follows:

e Formulate the problem into a 2-CNF formula ¢
as follows: for each unconnected pair of vertices,
z; and g, we create a clause (T7 V T3).

e Pass ¢ to a program, which we call a CNF ez-
pander, that takes a unate 2-CNF formula and
outputs the list of all its prime implicants.

¢ For each prime implicant, the variables that do
not appear in it form a maximal clique.

The CNF expander used here is the one developed
by [9] and some modifications. We explain briefly here
how the algorithm works.

The algorithm first simplifies clauses with a com-
mon literal, say a, into a single clause with two terms,
a and the concatenation of other literals in the original
clauses. After-all such clauses have been processed, the
reduced formula is expanded by multiplying out two
clauses at a time. After each multiplication, a single
cube containment operation is performed to eliminate
non-prime cubes. After all multiplications are done,
thel result is a list of all prime implicants of the for-
mula.

Although this algorithm is linear in the number of
prime implicants, the number of clauses that need to
be created for a graph with n vertices is proportional
ton?. If n is large and the graph is sparse, this number
can be very big. We can reguce the amount of memory
that the algorithm needs by partitioning the graph
into multiple subgraphs. The idea is to invoke the
CNF expander k times. A subgraph of size n; is passed
to the i-th invocation, where each n; is much smaller
than n if the graph is sparse. Then the sum of the
squares of all these n; will be much smaller than n?.

As a comparison, we generate an approximation al-
gorithm where not all sibling and isomorphic sets are
generated. For a more detail explanation of this ap-
proximation, we refer the readers to [4]. The approx-
imation algorithm took 165 seconds and 350 seconds
of CPU time to find the optimal solutions for the cir-
cuits ellen and shiftreg respectively using the CNF
expander with partitioning. Without partitioning, the
executions were timed out after some hours of elapsed
time.

Table 1: BDD sizes of CSFSMs using SA, exact and approx-
imation (App.) algorithms.

BDD Size CPU Time
Name SA | Exact | App. SA [Exact | App.
dk15x 19 19 19 11.54 0.17 0.14
dk17x 41 41 41 19.67 | 19.10 4.39
ellen 49 s.0. 46 15.52 s.0. | 165.48
ellen.min 21 21 21 4.47 5.12 0.07
fsync 24 24 24 13.12 0.01 0.01
mc 20 20 20 2.70 0.23 0.09
ofsync 24 24 24 13.11 0.01 0.01
shiftreg4 47 5.0. 45 || 12.57 s.o. | 350.14
shiftreg 21 21 21 3.43 4.98 0.07
tav 9 9 9 || 76.35 0.00 0.00

3.4 Experimental Results

The experiments were performed on a DEC Al-
phaServer 8400 5/300 with 2Gb of memory. Beside
the exact algorithm, an experiment with an approxi-
mation algorithm was also done [4]. For comparison
purposes, the results of these two algorithms and our
simulated annealing runs (which is explained in Sec-
tion 4) are shown in Table 1. CPU times are also
included in this table. Circuits whose executions were
timed out after one hour of CPU time are not listed.
Except for ellen and shiftreg4, the simulated annealing
algorithm finds the optimum solutions.

298

4 Encoding Using Simulated Anneal.
ing

The exact algorithm is useful to evaluate the quality
of heuristic algorithms. We implemented an algorithm
for FSM encodings based on simulated annealing. Ip
Section 3.4, we saw that the exact algorithm confirm
the effectiveness of this algorithm. In addition, we
also perform experiments on the impact of encoding
on variable orderings of BDDs representing FSMs,

4.1 Algorithm

We assume that logarithmic encoding is used for all
states, which means that we use the smallest number
of bits required to encode the states. A code where all
the bits are either 0 or 1 is called a code point, e.g., if
the number of bits used is 3, then 010 is a code point
and 01~ is not. The initial move randomly assigns a
code point to each state. If the number of states 1s not
a power of two, then some code points are not used.
The starting temperature is 100. The temperature is
reduced by a constant factor of 0.8, i.e., T = 0.8T.
The stopping criterion for each temperature is when
the number of consecutively rejected moves is 3. The
next move function is a swap of code points between
two randomly chosen states if the number of states
is a power of two. If it is not, then the next move
function is a swap of the code points between two ran-
domly chosen states or a swap of the code point of a
randomly chosen state and a randomly chosen unused
code point.

We perform our experiment for both the functional
and the relational representations of FSMs. For either
of these representations, we build the BDDs for each
encoding in each move. The number of BDD nodes is
our cost function.

For incompletely specified FSMs, all unspecified
transitions are treated as no change in state. In other
words, for a present state and primary inputs combi-
nation, the next state is the same as the present state
if the transition is not specified.

It is well known that variable ordering affects the
BDD size. In this experiment, we consider several vari-
able orderings for the relational representation. In our
variable orderings, when we say that the present state
and next state variables are interleaved, we mean that
the i-th present state variable is immediately followed
by the ¢-th next state variable in the ordering.

The variable orderings from the lowest level to the
highest level follow (note that the lower the level of a
variable is, the higher its position is in the BDD): 1)
Ordering I: inputs, present states, next states, out-
puts. 2) Ordering II: inputs, present states, next
states, outputs. The present state and next state vari-
ables are interleaved. 3) Ordering ITI: inputs, outputs,
present states, next states. 4) Ordering IV: inputs,
outputs, present states, next states. The present state
and next state variables are interleaved.

4.2 Experimental Results

Here we include a subset of the results, we refer
the readers to [4] for more complete results. Our im-
plementation uses the Long’s BDD package. The test
cases include the MCNC benchmark set. The simu-
lated annealing algorithm is run once for each circuit.

The results of the simulated annealing runs for CSF-
SMs are tabulated in Table 4. Columns 2 through 5
list the minimum numbers of BDD nodes in each or-
dering. Columns 6 through 9 show the average BDD
sizes. The standard deviations are listed from column
10 through 13.

Table 2: SA runs for functional representation of ISFSMs.

Min Ave
Name BDD Size | BDD Size | Std Dev
bbgun 3706 4069 388
cf 324 446 50
cpab 169 278 58
dec 9212 13090 2017
exlinp 491 569 56
kirkman 403 415 3
master 3545 4244 387
p2lstg 8631 9031 317
planet 1374 1452 65
rpss 879 990 159
sla 940 1075 93
sand 2314 2884 328
saucier 412 485 48
scf 68798 84517 22819
slave 823 971 90
str 1042 1333 169
styr 710 751 59
viterbi 2431 3006 309

Our results show that for CSFSMs, interleaving
present state and next state variables increases or de-
creases the BDD sizes by only a small amount. We
see that Ordering I and Il are generally better than

lering I1I and IV. We also found that different en-
codings do not change the BDD size dramatically.

The simulated annealing results for ISFSMs are
tabulated in Table 5. The entry “s.0.” means that
it ran out of memory, and “> 3600” means that it
exceeded 3600 seconds of CPU time.

Our results show that Ordering I and II are bet-
ter in most cases. In some cases like bbgun, dec, and
viterbi, they are substantially better. The large dis-
Crepancy in BDD sizes for these cases is due to the
large BDD needed to represent the primary outputs.
Interestingly, BDD sizes are smaller when state vari-
ables are not interleaved. Different encodings do affect
the BDD sizes of ISFSMs more than those of CSFSMs;

owever, the differences are not substantial.

For functional representations, the results are
shown in Table 3. Our results show that even for

“SFSMs, different encodings affect the BDD size con-
siderably for some circuits. For example, the average
Size for. maincont is 90 with a standard deviation of
12, while the minimum BDD size that the simulated
annealing algorithm found is 43. This also means that
there are not many encodings which would produce
small BDDs for this circuit.

The results for ISFSMs are shown in Table 2. We
See from this table that, similarly to CSFSMs, encod-
Ing plays an important role in determining the BDD

299

size. For example, the minimum BDD size for dec is
9212, while the average size is 13090 with a standard
deviation of 2017 nodes.

5 Conclusions

We presented an exact formulation and an imple-
mentation of the BDD input encoding problem. Al-
though it is practical only for very small examples, it is
useful to evaluate the quality of heuristic algorithms.
In particular we implemented an algorithm for FSM
encoding based on simulated annealing.

We ran the exact algorithm and the simulated an-
nealing algorithm on the MCNC benchmark circuits.
On eight out of ten circuits that we could run the ex-
act algorithm on, the simulated annealing algorithm
found the optimum solutions. We have also run the
simulated annealing algorithm on BDDs representing
the characteristic ?unctions of FSMs and on BDDs
representing the transition functions and output func-
tions with different variable orderings. We have shown
results comparing the impact of encoding on these dif-
ferent orderings.

References

[1] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C(35):677-691, 1986.

[2] R. E. Bryant. Symbolic boolean manipulation with or-
dered binary-decision diagrams. 4ACM Computing Sur-
veys, 24(3):293-318, September 1992.

G. Cabodi, S. Quer, and P. Camurati. Transforming
boolean relations by symbolic encoding. In P. Camurati
and P. Eveking, editors, Proc. of CHARME, Correct
Hardware Design and Verification Conference, volume
987 of LNCS, pages 161-170. Springer Verlag, October
1995.

W. Gosti, T. Villa, A. Saldanha, and A.L. Sangiovanni-
Vincentelli. Input encoding for minimum BDD size:
Theory and experiments. Technical report, UCB/ERL
Mo7/22, 1997.

L. Lavagno, P. McGeer, A. Saldanha, and A.L.
Sangiovanni- Vincentelli. Timed Shannon Circuits: A
Power-Efficient Design Style and Synthes is Tool. In
Proc. of the 32'" DAC, pages 254-260, June 1995.

Ch. Meinel and T. Theobald. Local encoding transfor-
mations for optimizing OBDD-representations of finite
state machines. In Proc. of FMCAD, pages 404-418,
1996.

Ch. Meinel and T. Theobald. State encodings and
OBDD-sizes. Technical Report 96-04, Universitat
Trier, 1996.

[8] R. Rudell. Dynamic variable ordering for ordered bi-
nary decision diagrams. In Proc. of the ICCAD, pages
42-47, 1993.

[9] T. Villa, T. Kam, R. Brayton, and A. Sa;xgiovanm'-

Vincentelli. Synthesis of FSMs: logic optimization.
Kluwer Academic Publishers, 1997.

(3]

(6]

7]

Table 3: SA runs for functional representation of CSFSMs.

Name Min BDD Size [Ave BDD Size | Standard Deviation
dk15x 38 39 1
dk17x 72 79 2
ellen.min 7 15 2
ellen 21 41 2
ex6inp 86 108 8
fstate 44 77 12
fsync 61 62 0
maincont 43 90 19
pkheader 64 76 4
scud 200 254 19
shiftreg 5 14 2
tbk 391 438 15
vmecont 365 398 13

Table 4: SA runs for relational representation of CSFSMs.

Min BDD Size Ave BDD Size Standard Deviation

Name 1 i m 1 v [[7T W T W T nypmipwv

dk15x 80 76 93 95 83 83 96 99 2 4 2 3

dk17x 75 79 81 87 84 91 91 96 3 4 3 3

ellen.min 93 75 77 73 93 87 89 88 0 4 3 3

ellen 113 105 110 90 124 140 144 138 2 8 9 11

ex6inp 167 189 287 297 180 211 297 309 5 7 3 4

fstate 176 177 220 219 189 188 225 226 5 9 2 2

fsync 67 66 92 96 70 71 96 98 2 3 2 2

maincont 108 104 116 115 115 117 123 128 2 5 2 4

pkheader 20305 | 20051 | 12475 | 12473 20670 | 21218 | 12484 | 12485 429 | 954 3 4

scud 303 407 582 600 342 455 598 629 15 18 5 7

shiftreg 45 23 27 27 45 39 40 40] 3 3 3

tbk 493 552 584 668 530 645 633 717 13 24 | 15 | 18

vmecont 4238 3997 4999 5016 4392 4092 5016 5039 66 53 61} 10

Table 5: SA runs for relational representation of ISFSMs.
Min BDD Size Ave BDD Size Standard Deviation

Name { [H J 11 l [\] 1 [IH | v [] 1]] 11 \Y
bbgun 6565 7040 10250 10136 6746 7355 10290 10198 172 387 16 13
cf 783 803 1164 1173 853 882 1178 1201 45 51 5 9
cpab 850 866 1220 1234 884 927 1247 1266 22 37 18 20
dec 8213 9636 32499 32482 8550 9716 32528 32521 228 81 12 16
exlinp 1570 1652 1470 1478 1626 1697 1491 1522 33 50 8 13
kirkman 1164 1082 668 661 1205 1155 678 675 17 40 4 5
master 77247 78600 | 229775 | 229829 78515 80589 | 229815 | 229894 995 | 1719 38 44
p2lstg 5268 7193 5385 6984 5585 7754 5607 7407 253 339 | 169 | 236
planet 2098 2138 3626 3640 2131 2258 3675 3700 32 70 16 19
rpss 3531 3626 9261 9279 3591 3715 9281 9311 64 139 11 15
sla 721 966 1362 1607 780 1047 1421 1688 36 71 36 71
sand 3473 3806 5554 5561 3598 4057 5590 5620 195 290 14 21
saucier 938 1027 2051 2048 993 1090 2073 2090 43 58 10 16
scf 165369 | 165825 s.0. s.0. 165754 | 166314 5.0. 5.0. 519 482 | s.0. | s.0.
slave 1232 1316 5467 5499 1334 1453 5497 5542 41 69 14 24
str 1747 2311 2223 2204 1859 2371 2241 2233 86 59 5 8
styr 805 932 1342 1419 869 956 1417 1499 23 27 33 55
viterbi 10602 10757 | 122902 | 122906 10722 10807 | 122982 | 122995 195 37 43 37

300

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

