VHDL Testability Analysis based on Fault Clustering

and Implicit Fault Injection

F.S.Bietti F.Ferrandi F.Fummi D.Sciuto
Dip. di Elettronica e Informazione

Politecnico di Milano, 20133 Milano. ITALY

Abstract

Testability analysis of VHDL sequential models 1s
the main topic of this paper. We investigate the pos-
sibility to obtain information about the testability of a
sequential VHDL description before its actual synthe-
s1s. The analysis 1s based on an implicit fault model
that injects faults into a BDD based description ex-
tracted from the VHDL representiation. Such an in-
jection 1s related to the original VHDL representation
thus allowing the identification of potential testability
problems before RTL and logic synthesis. Fault injec-
tion 1s performed efficiently by exploiting the concept
of fault clustering. that is, the possibility of grouping
faults and analyzing them concurrently. The proposed
methodology is applied to benchmarks for efficiency
evaluation and to a real VHDIL description.

1 Introduction

Algorithms concerning the testing field are based
on models which abstract the behavior of physical de-
fects. Such models include fault models, error models
or failure models depending on the abstraction level
to which they refer [1]. The use of models sensibly re-
duces the complexity of all testing algorithms since it
decreases the number of different entities which must
be manipulated. For instance, some defects can cor-
respond to few faults which may or may not produce
a single error. Functional fault models belong to this
class and they have been used for two main purposes:

® The identification of testability problems in order
to avoid the RTL and logic synthesis of specifi-
cations which show testability problems indepen-
dently of their actual synthesis [16, 15, 11].

® The generation of fault independent test patterns
which allow the detection of the majority of gate-
level faults and which preserve this property even
considering different implementations of the same
circuit [4, 5, 12].

However, the complexity of testing problems re-
Mmain high even restricting the attention to single fault
Or error. for instance, by adopting the well known
Single stuck-at fault model (1] or single transition
ault model [5]. There is thus the need of using im-
plicit techniques, based on binary decision diagrams
BDDs) [3]. to analyze complex descriptions that can-
ot be explicitly managed by using state transition

0~8186-8409-7/98 $10.00 © 1998 IEEE

tables or graphs [4, 5, 12, 15]. Moreover. hardware de-
scription languages (e.g., VHDL or Verilog) are widely
used for the specification and automatic synthesis of
a device, thus a useful testability measure must be re-
lated to a HDL description of a device. We oriented
this paper to the analysis of sequential VEDL descrip-
tions.

This paper analyzes the problem of testability anal-
ysis by starting from the test pattern generation ap-
proach presented in [8]. Testability measure is based
on the actual fault coverage obtained by generating
test sequences based on a functional fault model that
is related to gate-level {stuck-at) faults. The aim is
the prediction of the actual stuck-at fault coverage be-
fore RTL and logic synthesis. For this purpose, fault
clustering can be used to reduce the number of ana-
lyzed errors by discarding errors which have equiva-
lent behaviors in order to identify a subset of the total
number of modeled errors which ensures a prediction
of the stuck-at fault coverage close to the estimation
obtained by considering all errors. The proposed func-
tional fault model improves the previous work [8] on
the following aspects:

¢ Concurrent analysis of groups of faults (cluster-
ing) has been implemented to make the testability
analysis more efficient.

e Some relations between functional faults and
VHDL faults have been identified to improve the
accuracy of the obtained testability measure.

¢ The set of analyzed functional faults has been ori-
ented to the RTL and logic synthesis tools, since
adopted synthesis algorithms sensibly impact on
the testability of the generated circuits.

The rest of the paper is organized as follows. Sec-
tion 2 presents the basic models adopted in this paper
and in particular the translation algorithm which is
able to convert a VHDL representation into the equiv-
alent BDD based description. Section 3 is devoted to
the description of the adopted functional fault model
based on BDDs and of the identified relations between
VHDL faults. functional faults and stuck-at faults.
The last section presents some experimental results
on the efficiency of faults clustering and some prelimi-
nary results on the effectiveness of the proposed func-
tional fault model for the prediction of stuck-at fault
coverage.

Basic Models

This section introduces the basic concepts to de-
scribe the VHDL-level fault model used in this paper
to implement the proposed testability estimator. The
model is based on a BDD representation of the be-
havior of each device. Thus, we first introduce the
BDD based description of a FSM., then the technique
to extract the BDD representation from a VHDL de-
scription at the register-transfer (RT) level.

2.1 Basic Definitions

Let us restrict our attention to sequential circuits
representing medium and large size controllers. Let a
FSM M be the 5-tuple

M=(X.Z,55R)

where X is the input alphabet, Z is the output al-
phabet. S is the finite set of states, S° is the reset
state, and RC S x X x S x Z — {0, 1} is the global
relation. We have that the characteristic function
R(r.z s, t) =1 if and only if, under input z € X, the
FSM makes a transition from present state s € S to
next state t € S outputting z € Z. We represent this
characteristic function by using a BDD based descrip-
tion. A FSM can be represented by a state transition
graph (STG), whose vertices are elements of s € 5 and
edges are labeled with pairs (r,z) € X xZ. Input sym-
bols X are coded by [input variables 7;, z, and
output symbols Z are coded by O variables 0, - -, 00.

Let M, be the FSM representing the bPhaVIOr of
M aﬁ'ected by fault f. The method for generating My
depends on the abstraction level of fault f and it is
described in the next section.

A lest sequence for fault f is a sequence of input
vectors such that, when applied to machines M and

M (both started in their reset states), produces two

dx erent output vectors for M and M;. By concur-
rently traversmg both M and My starting from their
reset states, it is possible to generate (if any) a test
sequence.

2.2 VHDL to BDD Translation

We propose here to obtain the global relation of the
analyzed circuit through direct translation of a VHDL
source code. There are three main reasons advising
the direct translation of VHDL into BDDs to perform
testability analysis.

2

e Testability information becomes available before
RTL synthesis. The designer can evaluate the
testability problems, concerning the specification
of VHDL entities, before their RTL synthesis. It
is fundamental to modify for testability a design
from the early stages of its specification.

o VHDL synthesis tools infer some memory ele-
ments during RTL synthesis that are not con-
cerned with the actual behavior. Such memory el-
ements increase the number of states of the imple-
mented controller and also the complexity of the
corresponding BDD representation. For instance,
let us consider the simple VHDL code reported in
Figure 1, describing the behavior of a synchronous
controller when it is in state p0. The output sig-
nals end_master, valid pol and start._r are as-
signed into a synchronous process, thus they must

238

be connected to flip-flops. Moreover, end master
is not assigned in the ELSE branch of the condi.
tion, thus it requires a defaull value to be syp.
thesized. Consequently. the synthesis tool inserts
a muzed-flip-flop onto such an output port. [t
is evident that the implemented FSM has higher
number of states with respect to the specification,
and most of them are equivalent. Thus. the globa]
relation extracted from the implementation would
have an unnecessarily high number of state varj.
ables.

o Unspecified transitions are not included in the
global relation. During the extraction of the
lobal relation of a sequential circuit from its im-
plementatxon even transitions outgoing from un-
specified states are included. In fact, all combina-
tions of input and present state variables are im-
plicitly taken into account to identify the FSM's
transitions. On the contrary, the global relation
of a controller includes only specified transitions
if it is directly constructed from a VHDL spec-
ification. A lower number of transitions usually
implies a smaller BDD.

CASE state IS
WHEN pO =>
IF startmaster = ’1’ THER
state <= refresh;
end_master <= ’0’;
valid pol <= ’0’;
start.r <=’17;
ELSE
state <= p0;
valid.pol <= ’17;
start.r <= ’1’;
EED IF;

Figure 1: VHDL Description of a Part of a Controller.

The technique we propose to translate a VHDL de-
scription specifying a controller into the corresponding
relation represented as a BDD starts by analyzing the
VHDL architecture associated with the entity of the
FSM. Two types of analysis are performed. First, a
state identification is carried out. In fact, considering
the execution flow of the sequential process, a signal or
variable belongs to the state of the FSM when it 1s read
before any write or initialization instruction. When
the VHDL description considers both the FSM and
the associated data-path also the data-path registers
are considered as state variable in the global relation.
After state identification, the global relation is com-
puted. The style of the finite state machine considered
presents a process with a conditional structure. De-
tails about the translations of VHDL into BDDs can
be found in {2].

3 Fault Model

The adopted functional fault model is based on the
modification of the global relation R(r, z,s,t) repre-
senting the functional description of the circuit, di-
rectly extracted from its VHDL description.

Figure 2: Simple FSM.

Let us consider, for instance, the simple FSM re-
ported in Figure 2. Its global relation is explicitly
represented in Table 1.

TiZTz | 21 | S182 | taty |l rixp | 21 | 8382 | titp
00 1 00 01 01 o] 00 00
10 1 0o 00 11 0 00 00
00 1 01 01 01 0] o 11
10 1 01 00 11 0 01 8]}
00 1 11 11 01 0 11 11
10 1 11 01 11 1 11 11
Table 1: Global Relation of the simple FSM reported
in Figure 1.
3.1 Functional Fault Model

The global relation R(z, z,s,t) must be partitioned
at first into N single-output n-input Boolean functions
Ri(z,s), where N = |t| +|:] and n = |z| + |s]. A
minimal two-level implementation of R; is composed
of essential primes and primes that together cover the
ON-set of the function with minimum cost. Let pe be
the set of essential primes, |p,| its cardinality, and k.
the total number of its literals. Similarly, let p be one
set of primes required to complete the minimum cost
cover, |p| its cardinality, and k the total number of its
literals.

All the stuck-at faults of the implementation of
function R; are guaranteed to be equivalent to the
faults belonging to the following classes [1].

1. SA-1 faults on all literals of each prime in p, Up
(L.e., they are equivalent to SA-1 faults on the and
and or gates).

2 SA‘O faults on one literal of each prime in p, Up
(i.e., they are equivalent to SA-0 faults on the and
and or gates).

3. SA-0 and SA-1 faults on all input variables (i.e.,
they represent stuck-at faults on the inverter
gates by assuming that all input variables are
In complemented form for at least one prime in

Pe Up).

~ The upperbound U,; on the total number of faults
15 Ug =ke+ k+ [pel + IP"*' 2n.
Clearly, faults corresponding to essential primes
are present in every two-level implementation of the
oolean function, independently of the other primes
selected to complete the cover (i.e., the primes in p).
Necessary condition to test all stuck-at faults of ev-
€Ty two-level implementation of R; is the test of faults
Corresponding to the essential primes.

239

To reduce the number of modeled faults, only faults
on essential primes are considered. This simplifica-
tion extremely reduces the computation time for the
reasons described in the next section. Therefore,
the number L, of faults that will be considered is
Ly =ke+ pe+2n.

The faulty global relation, Rr, is then determined
based on the set of essential primes p., and on the pre-
viously described three classes of faults. The following
three different strategies for fault insertion are applied
in relation to the type of fault.

e SA-1 faults on all literals of each essential prime

in pe..

Let ip(xy, -, 2,81, -, 8m) € pe be an essential
prime, and b; : b; = z;|b; = s;.

Vb, :ip(z,s), # ip(z, s)z (i.e., ip(z,s) depends
on b;) then

the faulty prime ipp(z,s) = ip(z, $)y, and

the faulty relation R;.(z,s) = R;(x, s)-ip(x,s)+
ipr(z, s) ‘ o

(i.e., the fault-free essential prime is replaced by
the corresponding faulty prime).

¢ SA-0 faults on one literal of each essential prime
in pe.
Let b; : b; = :L’,"bg = §;.
3b; :ip(x, s)y, # ip(. s)g then
the faulty prime ipp(z,s) = ip(z, S)E and
the faulty relation R;.(z,s) = Ri(z,s) ip(z,s) +
ipp(z, s).

e SA-0 and SA-1 faults on all input variables.
Let b; : b; = l‘,‘lb,’ =S;.
Vb : Ri(zx,s), # Ri(x,s)b—’- then the faulty rela-
tion
Rip(z,s) = Ri(z. s)g; for SA-0 fault and
R;p(x,8) = Ri(z, s)p, for SA-1 fault.

Finally, the global faulty relation, Rp(z, z. §,1), is re-
constructed by composing all computed faulty relation
Rir (.’l‘, 8).
3.2 Functional Fault Clustering

Even if the proposed functional fault model deals
with essential primes only, their explicit generation is
a CPU intensive task for medium and large size con-
trollers. Thus, a fast implicit method is necessary and
we adopted the algorithm described in [7]. However,
this approach becomes extremely long if the genera-
tion of all implicants would be necessary for the iden-
tification of essential primes. Fortunately, the use of
zero-suppressed BDD (ZDD [10]) allows the implicit
generation of essential primes without the enumera-
tion of all implicants. Furthermore, the number of
essential primes is usually small. Thus, after their
implicit generation, essential primes can be explicitly
enumerated by recursively visiting the ZDD graph.
Moreover, to further speed up the process, a cluster of
faulty primes can be extracted and inserted into the
global relation in one step.

Fault clustering is possible by simply adding f vari-
ables to the faulty global relation (Rp(z,z,s,1t, f))

Figure 3: Faulty FSM with a cluster of two functional
faults.

to discriminate the different faulty behavior of each
fault in the cluster. For instance, consider the essen-
tial prime T7rss, of the simple FSM reported in Fig-
ure 2. The injection of the two functional faults SA-1
on r2 and SA-0 on the entire prime produces the faulty
global relation graphically shown in Figure 3. Dotted
edges are faulty edges with respect to the fault-free
FSM (see Figure 2). The faulty behavior referred to
each fault in the cluster is discriminated by the first bit
of the edge label that represents the added f variable
(F added variables allow the clustering of 2F faults).

3.3 Faults Manipulation

The fault model previously described can produces
a functional fault coverage that can be not sufficiently
related to the stuck-at fault coverage obtained after
synthesis. Some manipulation criteria must be applied
to the faults list in order to obtain an effective testa-
bility estimation. Such criteria can be summarized as
follows.

3.3.1

Some Boolean functions have a cyclic core [9] that rep-
resents a relevant part of the ON-set. In this case the
number of faults modeled by essential primes is a frac-
tion of the total number of faults, thus the testability
estimation can be affected by an unacceptable error.
In this case, the cyclic core is removed by randomly
extracting a prime (non essential) and new essential
primes are identified. Faults are thus injected into es-
sential primes and into so called secondary essential
primes [9].

Cyclic cores

3.3.2 Multiple outputs

Essential primes are computed by independently ana-
lyzing each function R;{x,s). This operation is accept-
able if faults are injected into functions corresponding
to primary outputs, since even a single faulty out-
put is sufficient to detect a fault and the observation
of the fault effect on more outputs does not change
the nature of the fault (testable/untestable). On the
contrary, if function R;(x,s) represents a next state
function, the modification of a single next-state bit,
with respect to the modification of multiple next-state
bits, can sensibly decrease the testability measure. In
fact, faults affecting only one next-state bit are dif-
ficultly propagated to the primary outputs [6]. To
take into account this observation a further analysis is
implemented during the construction of the fault list.
Primes related to next-state functions are injected into
all next-state functions even if they are not essential
for such functions. This operation takes into account

240

the logic sharing of a typical multi-level implemen.
tation and produces a set of functional faults more
related to stuck-at faults.

3.3.3 Don’t care functionalities

A fault must be activated to be detected and the fau]t
effect must be propagated to a primary output. A
Justification sequence must exist allowing to reach the
activation state of the fault. Faults which cannot
be activated are untestable and they are also called
sequentially-non-ercitable faults [6]. All faults which
can be activated from unreachable states only belong
to this group. The don’t care functionality of a cir.
cuit represents the set of behaviors which cannot be
activated since they require to start from unreachable
states. The gate-level description of a device must
ideally not include logic implementing don’t care fune.
tionalities only, since it is a waste. However. commer-
cial VHDL synthesizers (Mentor and Synopsys) are
able to identify unreachable states only if they are er.
plicitly enumerated (e.g., the states of a controller),
but they are not able to identify unreachable states
concerning tmplicit states.

CASE state IS

WHEN iteration =>
IF {(counter < MAX) THEY

counter := {counter + 1);
state <= iteration;

ELSE
state <= operation;

END IF;

Figure 4: VHDL Description with implicit and explicit
states.

For instance, let us consider the small part of VHADL
code reported in Figure 4. Variable state repre-
sents the actual state of the FSM and it is explic-
itly enumerated. It can assume 24 different values
labeled by names (e.g., iteration). On the con-
trary, variable counter is defined as an integer subset
from 0 to MAX-1 and it represents an implicit counter,
that counts from 0 to MAX-1 and returns to 0 when
the reset signal (not shown in Figure 4) is asserted.
After states coding, there are 8 unused state codes
(32 — 24 = 8) corresponding to the don't care part of
the specification. Such states are recognized by the
synthesizer and during RTL synthesis no logic is gen-
erated based on such states, that is, next-state and
output functions are described at the RT level only
for the explicitly enumerated states. For this rea-
son, 1t is extremely likely that unused state codes
are not necessary to detect faults and do not gener-
ate sequentially-non-exrcitable faults. On the contrary,
the behavior of the circuit concerning implicit states
{as the counter of this example) if specified for all
state values even if some states are actually unreach-
able. For instance. the RTL synthesis instantiates a
counter, for the counter variable of this example, that

FV | CPU | BDD [[FV [CPU | BDD [FV | CPU | BDD | EV T CPU | BDD T FV T CPU | BDD)
bbsse 3 0.9 | 065 4 | 072] 048 5 | 067 | 033 6 | 0.66 | 0.27 7] 091 | 033
cse 3 | 087 | 0.34 4 | 0.82 | 023 5 | 133 | 0.16 6 1.1 | 013 T] 089 | 015
dk14 3 1024 | 021 4 | 047 | 018 5 | 054 | 0.15 6 0.5 | 0.12 7 | 0354 | 0.14
dk16 3] 089 | 019 4] 096 | 0.2 5] 104 | o 6 | 0.99 | 0.08 7 09 | 0.08
dk27 3 10863 | 096 4 | 054 | 0.74 5 1075 | 1.02 6 | 0.84 | 1.19 7] 08% | 1.18
dk512 3 1036 | 017 4 0.3 | 0.12 5 1024 | 01 6 | 038 | 013 T 047 | 017
ex1 3 1 1.23 | 0.54 4 | 1.01 | 0.44 5 | 043 | 031 6 | 055 | 03 T 097 | 023
ex2 3 1 053 | 052 4 | 036 | 04 5 | 046 | 0.35 6 | 049 | 0.36 7] 045 | 035
ex5 3 | 098 | 1.82 4 | 087 | 1.33 5 | 102 | 1.49 6 | 082 | 1.47 T 082 1 157
ex6 3 1 105 | 0.67 4 1 109 | 055 5 | 104 | 046 6 | 043 | 045 T 051 | 055
fmaster | 3 | 044 | 016 4 | 028 | 0.11 5 1 036 | 01 6 | 042 | 0.08 71 039 | 0.08
f.math 3 | 085 | 0.26 4 1075 | 04 5 | 069 | 0.2 6 | 074 | 011 T | 046 | 007
fsync 3 | 038 | 043 4 | 041 | 028 5 05 | 0.27 6 | 043 | 036 T | 044 | 046
opus 3 | 051 | 087 4 1052 1 07 5 | 049 | 0.54 6 | 065 | 0.51 T | 063 | 046
planet 3 1025 | 026 4] 015 | 0186 5] 075 | 0.07 6 | 091 | 0.05 7 | 108 | 005
pma 3 {026 | 027 4 | 033 | 007 5 1 052 | 0.08 6 | 064 | 0.07 7 | 097 | o.07
s1 3 | 047 | 0.14 4 | 061 | 016 5 1022 02 6 | 1.02 | 012 Tl 127 01
s1488 3 | or 0.18 4 1033 | 017 5 1031 | 01 6 | 020 | 01 7 1 032 | 0.09
s1494 3 1027 | 019 4 0.3 0.2 5 03 | 016 6 1025 | 013 T 1036 | 01
s27 3 0.5 0.4 4 | 048 | 0.54 5 | 038 | 039 6 | 054 | 0.54 T | 046 | 055
5298 3 {018] 021 4] 011 | 011 5 | 029 | 0.08 6 | 0.11 | 0.08 7 1 014 | 0.05
$510 3 | 024 | 029 4 | 087 | 0.11 5 | 086 | 0.09 6 | 1.21 | 0.08 7 1131 | o.08
% sav. 42.7 | 558 44.3 | 655 40.0] 687 365 | 69.4 | 31.0 | 686 |
Table 2: Effectiveness of faults clustering.

is able to perform a transition from state MAX-1 to
state MAX even if the so specified VHDL description
does not allow this transition. Thus, it is extremely
likely that this description will produce sequentially-
non-ezxcilable faults.

The adopted functional fault model considers the
previously described situations by distinguishing be-
tween erplicit and implicit states. The translation of
VHDL to BDDs identifies also a set of explicit states
and the set of unused state codes, thus partitioning
bresent-state variables (s) into:

® explicit state variables, s,.
® implicit state variables. Si.

A functional fault is not considered if the corre-
sponding faulty function Rp{x, 2,51, f) differs from
the fault-free function for transitions outgoing from
explicit unused state codes only. This is equivalent to
avoiding the consideration of stuck-at faults on gates
Whlc}_l are not included into the synthesized gate-level

escription of the device. On the contrary, functional
{aultg affecting transitions outgoing from unreachable
Implicit state variables (s:) are considered since com-
mercial RTL and logic synthesis tools are not able to
\dentify unreachable implicit states. Untested faults
activated from such states are likely included into the
S¥nthesized gate-level description thus decreasing the
lestabi}ity of such circuits. In conclusion, the proposed
Unctional fault model is able to identify potentially
Untestable faults before the actual synthesis.

4 Experimental Results

The proposed testability analysis has been imple-
ented by using the commercial tool LEDA LVS for
parsing, the CUDD binary decision diagrams
[14] for BDD manipulation and the Berke.
S [13] environment for interface and utilities.

241

The current implementation is composed of more than
120K C code lines. Preliminary experiments have been
carried out on academic controllers {(MCNC bench-
marks) and on industrial VHDL circuits.

Fist of all we investigated the impact of the fault
clustering strategy on test pattern generation. Results
are reported in Table 2. Two performance indices are
reported for increasing cluster size (FV . added faulty
variablesj: the total CPU time and total memory oc-
cupation (# BDD nodes). Such values are normalized
to the application of the TPG algorithm to a cluster
composed by an unique fault. The concurrent analysis
of faults is an attractive strategy since it sensibly de-
creases the required CPU time up to more than 40%
on average. Moreover, the total memory occupation
decreases. since the same BDD structures are shared
between faults. Moreover, it is possible to observe
that there is a limit in the number of faults mcluded
in a cluster after that the TPG performance begins
to decrease. For this class of circuits this limit seems
to be between 4 and 6 faulty variables {(FV), that is
between 16 and 64 concurrently analyzed faults.

Moreover, the gate-level fault simulation of fune-
tional test sequences generates, in all examined cases,
the full stuck-at fault coverage. Such a result is really

promising.
{ name [VHDL Lines [#In [#0Out [#FF I #Gates |
[TX T 335 [10 7770116 | 316]

Table 3: VHDL description examined

About testability measure. we examined an indus-
trial controller part of a telcom device. Its charac-
teristics are reported in Table 3 as pumber of VHDL
instructions, input and output bits, flip-flops (#F .F.)
and gates (#Gates). The total number of flip-flops is
partitioned into 6 flip-flops used to represent the ac-
tual state of the controller and 10 flip-flops represent-
ing implicit states. The gate-level implementation of

the circuit has been obtained by using Mentor Auto-
logic.

Results reported in Table 4 compare the testability
measure obtained by applying a structural fault model
(Structural) and two different functional fault models.
Fault coverage (#F.C.) for the Structural fault model
is expressed as number of tested stuck-at faults, while
fault coverage for the functional fault models is ex-
pressed as number of tested errors. The second func-
tional fault model { Functional-Exp.) differs from the
first one (Functional) since it considers all criteria re-
ported in Section 3.3.

{ fault-model [#Faults | #Untested Faults | #F C]
Functional 487 95 30.5%
Functional-Exp. 413 21 94.9%
Structural 502 74 95 6%

Table 4: Effectiveness of the testability measure

The relevant results concern the testability estima-
tion obtained with the second functional fault model.
This measure is higher than the estimation obtained
by using the first functional fault model, and it is
really close to the structural testability level. Note
also that the simulation of functional test sequences
on the gate-level representation of the circuit reaches
the same fault coverage (95.6%) achieved by directly
generating test sequences for stuck-at faults. On the
contrary, random test generation applied at the gate
level does not cover more than 65% of stuck-at faults.

5 Concluding Remarks

This paper has described a methodology for testa-
bility estimation of VHDL descriptions of sequential
controllers. The overall methodology is based on bi-
nary decision diagrams that allow the analysis of com-
plex descriptions and extend methodologies based on
manipulation of state transition graphs. The deter-
ministic sequential test generation algorithm is able to
analyze large set of faults by injecting groups of single
faults in the BDD based description. As show in the
experimental results section fault clustering sensibly
reduces analysis time. Moreover, the fault model pre-
sented in [8] is here improved by taking into account
faults on non-essential primes, faults on shared logic
and on don't care functionalities. Such a further clas-
sification allows high correlation between testability of
RT and logic level descriptions. Therefore, testability
problems can be eventually identified and removed be-
fore synthesis. Experimental results have shown the
effectiveness of the fault clustering approach and the
high correlation between testability estimation at the
functional and logic level.

Future work concerns the further improvement of
the proposed fault model and of the BDD based al-
gorithms. Moreover, we will apply our approach to
a large set of industrial examples in order to further
evaluate the effectiveness of this approach.

References

[1] M. Abramovici, A.D. Breuer, and A.D. Friedman.
Digital systems testing and testable design. Com-
puter Science Press, 1990.

242

(2]

C. Bolchini, G. Buonanno, F. Ferrandj,
F. Fummi, D. Sciuto, M. Bombana, P. Cavallorg
and PM. Borrego. Definition of methodology for
testability analysis at the RTL and CDFG levels
requirement specs for functional pattern qualjt

evaluator. Technical Report of Deliverable 2.3.4,
Espril project n.20616 - REQUEST, 1996.

R. Bryant. Graph-based algorithms for boolean
function manipulation. JEEE Trans. on Comput.
ers, C-35(8):79-85, August 1986.

G. Buonanno, F. Fummi, D. Sciuto, and F. Lom-
bardi. FsmTest: Functional test generation for
sequential circuits. INTEGRATION: the VLS]
Journal, 20:303-325, 1996.

K.T. Cheng and J.Y. Jou. A singlestate.
transition fault model for sequential machines.
Proc. I[EEE [CCAD, pages 226-229, 1990.

H. Cho, G.D. Hachtel, and F. Somenzi. Redun-
dancy identification/removal and test generation
for sequential circuits using implicit state enumer-
ation. [EEE Trans. on Computers, 12(7):935~
945, July 1993.

O. Coudert and J.C. Madre. Implicit and in-
cremental computation of primes and essential
primes of boolean functions. Proc. ACM/IEEE
DAC, pages 36-39, 1992.

F. Ferrandi, F. Fummi, E. Macii, M. Poncino,
and D. Sciuto. BDD-based testability estimation
of VHDL designs. Proc. EuroDAC/EuroVHDI,
pages 444-449, 1996.

G.D. Hachtel and F. Somenzi. Logic synthesis and
verification algorithms. Kluwer Academic Pub-
lishers, 1996.

S.I. Minato. Zero-suppressed BDDs for set ma-
nipulation in combinational problems. Proc.
ACM/IEEE DAC, 1988.

V. Pla, J.F. Santucci, and N. Giambiasi. On the
modelling and testing of vhdl behavioral descrip-
tions of sequential circuits. Proc. Euro VHDL,
pages 228-235, 1993.

[. Pomeranz and S.M. Reddy. On achieving
a complete fault coverage for sequential ma-
chines. [EEE Trans. on CAD/ICAS, 13(3):378-
386, March 1994.

SIS: A system for sequential circuit synthe-
sis. Electronics Research Lab. Mem. UCB/ERL
M92/41 University of California, Berkeley, 1992.
F. Somenzi. CUDD: CU decision diagram pack-
age, version 2.1.2. Department of Electrical and
Computer Engineering, University of Colorado at
Boulder, 1997.

M.K. Srinivas, J. Jacob, and V.D. Agrawal. Func-
tional test generation for synchronous sequential
circuits. JEEE Trans. on CAD/ICAS, 15(7):831-
843, 1996.

Z. Peng X. Gu, K. Kuchcinski. Testability anal-
ysis and improvement from VHDL behavioral
specifications. Proc. Euro VHDL, pages 644-649,
1994.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

