Random Self-Test Method
Applications on PowerPC™ Microprocessor Caches

Rajesh Raina
Motorola Inc.
raina@ibmoto.com

Robert Molyneaux
IBM Corporation
bobmoly @ibmoto.com

Somerset Design Center
6200, Bridgepoint Pkwy#4
Austin, TX 78730

Abstract

This paper describes a novel method for generating test
stimuli for digital svstems. By taking advantage of certain
properties of the Design Under Validation, the method can
be used to generate test stimuli that is random as well as
self-testing. We discuss the requirements and limitations of
this method on practical designs. The use of this.method for
High-Level Design Validation of caches in PowerPC™
microprocessors is also described. The paper concludes by
identifying areas where further work is needed.

Topic Areas: High-Level Design Validation, Silicon

Validation, Pseudo-Random Testing, Microprocessor
Testing.
1. Introduction

Generation, Application & Response-Evaluation of Test
Stimuli, are important issues in the effective functional
validation of today’s complex designs. This paper introduces
a novel method for generating test stimuli for a general class
of Digital Systems. The method takes advantage of certain
properties of the Design being Validated, towards generating
test stimuli that is random as well as self-testing.

The most popular form of Design Validation uses Directed
Pseudo-Random Test Stimuli [1-4]. This method, as
practiced, is summarized in Section 2 along with its strengths
and limitations. The most serious limitation - the difficulty in
determining the expected response to random stimuli - is
discussed.

Random Self-Test principle and method are described in
Section 3. This is followed by a discussion on the
advantages, applications and limitations of this method.

In Section 4, the Random Self-Test method is applied to
PowerPC Microprocessor Caches. The overall utility and
potential of Random Self-Test technique is discussed in
Section 5, including a comparison with Directed Random
Testing method.

Motorola is a trademark of Motorola Inc.
IBM, PowerPC, PowerPC 604e are trademarks of International
Business Machines Corporation.

0-8186-8409-7/98 $10.00 © 1998 IEEE

2. Directed Pseudo-Random Testing

Digital Systems are tested (for manufacturing defects) and
verified (for design flaws) in three primary ways, two of
which are shown in Figure 1:

DESIGN UNDER[l R
VALIDATION

Expected f Pass/
Response | Fail

(a) Self-Test Stimuli
Inpu DESIGN UNDERL $ |
B VALIDATION |

Gold Model

(b) Pseudo-Random Stimuli

Figure 1: Test Stimuli Generation

(a) With the use of self-test stimuli:

The test/verification engineer manually creates the stimuius
and its expected response. The advantage is that the resulting
tests are compact and targeted precisely to the areas
requiring testing. The disadvantage is that this manual
process is very slow; and for large designs, is prohibitively
slow.

(b) With the use of pseudo-random stimuli:

The input stimuli is automatically generated, in large
volume, from a Pseudo-Random Pattern Generator [5]. The
expected response from the design being tested (or validated)
is compared with the response, to the same stimulus, of a
design known to be good - or the gold model. This may be
done cycle-by-cycle or after fixed time intervals (signature
comparison). The advantage is that the design can be tested
with stimuli that is "several orders of magnitude larger” than
what many engineers could ever generate manually. The
disadvantage is that a "gold" model is required.

For certain combinational designs, pseudo-random testing
can be effective, perhaps as a supplement to self-test stimuli
or by biasing the input stimulus [6]. However, most large
designs - such as Microprocessors, DSPs & Multi-Media

Hardware - are sequential machines. For sequential designs,
pseudo-random testing can be hopelessly inadequate and
inefficient. It could test certain portions of a design
repeatedly while leaving large portions of the design
untested. Directed pseudo-random testing is able to solve
this problem and is described next.

(c) With the use of directed pseudo-random stimuli:

Figure 2 shows the composition of a typical large sequential
machine.

Huge State Space # 2

State
Space # 1

Figure 2: A typical sequential machine

Starting from the Power-ON state, it takes an extremely
directed sequence (states 1 through 5) of state transitions to
reach the interesting portion of the design marked as “Huge
State Space # 17. More direction is needed (states 6 & 7) to
enter another portion of the state space. These state spaces
could account for 98% of the design functionality. A
pseudo-random pattern stimulus, applied at Power-ON, will
burn in the start-up states most of the cycles- exercising
these states repeatedly - while missing out on the huge state
spaces. Not a good investment of test time. Biasing the input
§timuli, as- described in BIST techniques [6], can help
improve the odds of entering the huge state space. For
design validation purposes, BIST restrictions are not
applicable - consequently - optimized directed sequences
(homing sequence) can be used to enter the desired state
Spaces wherein random testing can be applied.

In practice, a small test will be used to validate the
peripheral states of the machine shown in Figure 1. This
Cquld even be a manually written self-test. Next, a template
will be written where the input stimuli are fixed for the first
five cycles after Power-ON. After the fifth cycle, the input
would be randomized. The test cases generated from such a
template will always land in the huge state space in the
QUlc?kesl possible time after which random testing would
begin. Finally, templates will be written to traverse states 1

ough 7 in the shortest possible time for each test case, in
order to randomly test the huge state space # 2.

Validation and Test engineers spend considerable
development time on creating templates for directed random

223

tests. The development effort pays off as the test time is
reduced considerably. Imagine testing a microprocessor
with purely random test stimuli - 99% of the time, the
microprocessor will quickly end up in the machine halt state
due to an illegal instruction or an improper instruction
sequence! Of course, for comparing the output response, a
gold model is required for generating the expected stimuli.

The computer industry has embraced the gold model
requirement so strongly that it is almost second nature to
invest in gold model development for new digital designs.
Furthermore, many new designs are only incremental
improvements to existing designs - whereby the tried and
tested existing design effectively serves as the gold model.

Despite the advances, and apparent ease of procurement of
the gold model, in certain cases - an accurate gold model is
hard to get. Sometimes, the effort to develop an accurate
gold model begins to reach similar complexities as the
development of the real design itself. If the design needs to
be tested and verified on real hardware, a gold model is very
costly and invariably orders of magnitude slower than the
real design. Even when a gold model! is available, engineers
spend considerable time debugging false fails due to gold
model inaccuracies & limitations early during the design
phase.

Random Self-Test method is based on a careful study of the
particulars of a broad range of digital designs. It identifies a
class of designs where testing and design validation can be
performed with tests that are random as well as self-testing;
thereby obviating the need for a gold model while allowing
automatic & hence large volume of test stimulus generation.
The class of designs that will benefit from this method
include Microprocessors, Microcontrollers & Multi-Media
Chips.

In the remainder of the paper, we refer to pseudo-random
testing simply as random testing.

3. Random Self-Test Method:

In Section 2, it was explained that when testing/validation is
done with random stimuli, a gold model is required to
validate the response obtained from the part being tested.
The following describes a method by which random stimuli
can be applied to parts fulfilling certain conditions, where
the response is self-tested without requiring the use of a gold
model. This section concludes with a discussion on the
limitations of this technique.

Random Self-Test Principle: Let T represent the
functionality of the module being tested and let x be a
random input stimulus.

If
y = T(x)
and
x =T(y))

then if x = x’ module T or T} is malfunctional.

We establish functionality for module T exactly the same
way as is done with directed random testing. That is, if x =
x’ for sufficiently large number of random input values
(analytically determined), then module T is functional with
a certain confidence level [6]. The Random Self-Test
principle is illustrated with a block diagram shown in Figure
3.

DESIGN UNDER
VALIDATION

-
Pseudo ‘ Pass/

Inverse Function X

Figure 3: Self-Test with Pseudo-Random stimuli

The two main advantages of this technique are:

(a) Allows powerful random testing without gold
model.

(b) Can be used on actual hardware (prototype/emula-
tor).
The drawbacks of this technique are:

(a) Identical errors in T and T! are masked - Aliasing.
(b) Longer test stimulus is required.

(c¢) Limited application - every function being tested
requires an inverse,

The aliasing problem needs to be studied further in a
rigorous fashion. However, a preliminary study indicates
that the aliasing problem, in most cases, is comparable to
that found in the popular BIST method of Signature
Analysis - which itself has been found to be acceptably low
[7]. Furthermore, it has been observed that many high
performance designs, in order to maximize parallel
operation, invariably use separate hardware to implement
functions and their inverses [8]. For example, the load data-

path and the store data-path in PowerPC 604e™
microprocessor do not share any hardware between them.
This allows stores to occur simultaneous to loads. In such
designs, the occurrence of identical design errors is reduced
and hence the aliasing problem is mitigated even further.

In general, longer test stimulus is required because for every
operation the test also needs to use its inverse operation to
complete the self-test portion of the test. In most cases
though, it would be possible to test an operation and its
inverse mutually, in a single test.

224

For random self-test technique to work, every function
being tested must have an inverse - direct or indirect,
Therefore, this technique cannot be used effectively op
designs with functions having no direct or indirect inverses,
Fortunately, for Microprocessors and Microcontrollers .
most of the functions are also accompanied with their
inverses. For example, the add function has the subtract
function as its inverse. A rotate-left function has rotate.
right as its inverse. A load-word has a store-word as its
inverse. Due to the balanced nature of Microprocessor &
Microcontroller designs (there is an undo for everything yoy
do), for many functions, - the inverse function is either
directly available or can be indirectly created with 2
sequence of sub-functions.

The same is true for a new class of designs - the Multimedia
chips. In many of these designs a function is accompanied
by its inverse. A compress is accompanied by an
uncompress. A buffer with a debuffer... and so on. This ig
especially true when testing is performed at the high-leve]
(i.e., System Level). Nonetheless, it is important to be aware
of the limitations of this technique.

The following is a simple illustrative example of how the
adder function in a Microprocessor can be tested using this
technique:

Let T=addq andT!= subq

1da r2, const(r31) ; operand B, a constant, is loaded in r2
get_rv rl ; operand A, a random variable Joaded in r|
addq rl,r2,r3

stq r3, 0(r4) ; store result of A+B in memory

Idg r3, 0(rd)

subq r3,ri,r6 ; (13-l =16)

Xxor o, r2, r7 ; compare actual (r6) with expected (r2) ...
bne r7, error ; and branch on error

Through each pass of the above sequence, the add function
is tested with a new random variable (loaded in rl) as
operand A. For every value of the random stimuli for
operand A that is added to a constant (operand B), the
inverse function will always return back the constant value
for comparison. This sequence can be repeated millions of
times. A subsequent test sequence could randomize operand
B and hold operand A as constant.

It is clear that this technique - when applicable - can be used
effectively with relatively low development costs for
automatic validation of designs using random stimulus
without requiring a gold model. Furthermore, this technique
can also be used on actual hardware - where a comparable
gold model is harder to develop.

Functions with indirect inverses:

A given design may not provide direct inverses for all its
functions. Fortunately, in most such cases, the actions
performed by a given function can be undone with a

sequence of functions. The sequence of functions thus
serves as an indirect inverse to the function being tested.

An example of a function with an indirect inverse is the
Cache Load. This function is associated with Cache
memories used in processor-class designs. A Cache Load
moves data requested by the CPU from main-memory
location r, into the cache location s, so that subsequent
accesses to this location are faster.

This function typically has no direct inverse such as a Cache
Unload that would move data back from cache location s, to
main-memory location r. However, by performing another
Cache Load to a different memory location q, that maps to
the same cache location s, one is able to initiate the Victim
Allocate operation (a.k.a. Castout [9]) that simply moves
existing data from cache location s back to main-memory
location r before moving new data into s.

Therefore, in the above example, the sequence of functions
that serves as an indirect inverse to the “Cache Load
address-r” function is -

Compute memory location q
. .such that ¢ =/=r and g maps to s.
Initiate Cache Load q

Functions with no direct or indirect inverse:

Certain functions or operations do not support a
deterministic inverse for all input stimulus values. As an
example, a Saturated Add function - used in DSP
applications - does not have a deterministic inverse for all its
input values [10].

A saturated add function adds two or more operands like a
regular add function, upto a saturation point that is less than
the maximum added value for the operand range. An add
function without the overflow/carry bit, is an example of a
saturated add (Figure 4).

o

| J—— |

W

. Saturated Add

r_-
L
i
(M}

- Shift-Left/Shift-Right
0\ — — - >
E_‘D 000000y
- T === 0

Figure 4: Functions with no inverse

225

A shift-left or a shift-right, where the shifted out bit is lost,
are also operations without a deterministic inverse (Fi gure
4). At a first glance, these two might appear as inverses of
each other. However, rotate-left and rotate-right are inverses
but not shift-left/shift-right.

We described two functions that inherently do not support
corresponding inverse functions. Graphically, a function
may be viewed as a mapping from its input space to output
space. All mappings from input to output that are one-to-
one, theoretically have a corresponding inverse. The
mappings from input to output that are many-to-one, cannot
have a deterministic inverse. This is shown in Figure 5. It
may be noted that correctly defined functions do not have
one-to-many mappings from input to output space.

INPUT SPACE

OUTPUT SPACE

——3» one-to-one
— many-to-one

Figure 5: Function with many-to-one mappings

Random Self-Test approach may be used for partially
validating such functions, but cannot be used for complete
validation. Partial validation may be accomplished if the
range of input stimuli is restricted to all one-to-one
mappings from the input to output space. In the saturated
add case, this implies restricting input stimuli to not cause
the result to reach the saturation point. Partial validation
may also be accomplished if the result, after applying the
inverse function, is partially compared with the expected
result. In the N-bit Shifter case, this implies comparing only
N-r rightmost bits after applying an r-bit Shift-left followed
by the corresponding r-bit Shift-right; where r is a random
integer between 0 & N.

It has been observed that practical hardware
implementations typically support inverse functionality for
all functions where possible. An interesting question arises
in cases where a design implements a function without its
inverse, but for which an inverse is possible [11]. Should an
inverse function be added to the implementation, even if it
not required by the design, simply to aid random self-test?
The authors hope to encounter a practical design case with
such a situation and hence be in a position to assess its
feasibility. The answer obviously depends on the cost of
implementing a bare-bones inverse functionality for a given

function and, to a certain extent, the perceived dependence
on random self-test method for validating this function.

4. Applicatibns on PowerPC Microprocessor
Caches

This Section describes the use of Random Self-Test
technique with two examples derived from the PowerPC
Microprocessor family. The first example is the use of
Random Self-Test for exercising the Data Cache and the
second example describes an Instruction Cache thrasher.
Figure 6 shows the conceptual view of the on-chip cache
organization in PowerPC 604e microprocessor. It features
32K byte Instruction and Data caches. From the
architectural level, the Instruction cache is read-only. The
Data cache is Write-through - implying a CPU write is
written to both the Data cache and the Main Memory.

Memory

Instruction
Cache Cache

v

CPU

PowerPC Microprocessor

Figure 6: On-Chip caches on PowerPC microprocessors

4.1 Random Self-Test on the Data Cache

Consider a Data Cache with the following features:

8-way set associative
Write through capability
The four major functional operations for the Data Cache are:

Cache Load

Address Tag Compare (Hit/Miss)
Victim Allocate/Castout

Write Allocate

Readers not familiar with cache design and operations are
recommended reading any textbook on Computer Design,
such as [12, 14].

226

A template for exercising the Data Cache with Random
Self-Testing stimuli is shown in Figure 7 in a high-leve]
flowgraph for easy understanding.

<address> = <index><tag>

——

j=0 |

rv_1 = MISR|
P

reseed MISR

i

W

e

i=0
,
i=i+ 1
L__Y___.
rv_2 = MISR
rv_3=MISR
————-——'———4
Write Memory
address = <rv_1><rv_2>
=<rv_3>

data
No *@‘
Yes
init. MISR
i=0

Read Memory
address = <rv_1><rv_2>
read data = RD

No

FLAG ERROR

YeS | g !

No

:

Yes

No

:

Yes

Done

Figure 7: A Random Self-Test Flowgraph for PowerPC
microprocessor Data Cache

MISR (Muiti Input Shift Register) is used as a source for
random stimulus. In the first inner loop, the random data is
written to addresses with random tags but fixed index. Since

the cache supports Write Allocate, all 8 ways of a particular
index will quickly fill up and then exercise the Victim
Allocate (Castout) function extensively. At the end of the
first inner-loop, a total of N tag-random addresses will be
initialized with random data of which the last 8 will reside
in the cache and the remainder in main memory. Before the
second inner loop is executed, the MISR is re-initialized
such that the same N tag-random memory locations are read
back and compared with expected data. In this loop, the
Cache Load and Victim Allocate will be exercised
extensively. The outer loop repeats the testing performed by
inner loops on random index values thus complementing the
tag-compare testing.

In practice, 6 to 8 templates could be developed for
exercising all functions of the cache with variations in
addressing, read/write sequencing, cache on/off testing and
data-width granularity. Additionally, a practical validation/
test environment will turn on background activity such as
external interrupts & DMA requests to stress the cache
design, in a fashion similar to Directed Random Testing.

One may have noticed that the example template described
here will pass when the data cache is completely non-
functional (i.e., the CPU gets a cache miss all the time and
read/write operations access main-memory). This is
equivalent to the data cache being turned off. In general,
such a gross design error will be validated with manually
written tests as described in Section 3 (also see Figure 2).
Manual test are short and easy to write for such cases. The
biggest utility of random testing is towards validating
design functionality for obscure machine-states. Due to
large number of variables involved, manual test generation
is not practical.

4.2 Instruction Cache Thrasher

A template for exercising the Instruction Cache is given
below. The features of the Instruction Cache are the same as
the Data Cache - except for Write Allocate and Write Back,
which are not applicable (Instruction Cache is read only).

Take any existing program
Modify by appending following twe instructions
after each program instruction

load r1,PC-1 ; rl <-- Program Counter - 1

write r3, 0(r1) ; write r3 to location (r1)

Register r3 is initialized with an illegal instruction. The
modified program is enclosed in a loop such that it runs
twice. That’s it. This simple template (dubbed Icache-
thrasher) is capable of self-testing the Instruction Cache
Quite extensively using existing programs or randomly
Benerated programs. An example of this procedure is shown
in Figure 8.

227

$ loadi rQ, 2

Instr. A

{load r1, PC-1
* write 13, 0(r1)

Instr. A

Instr. B i Instr. B
Instr. C ¢ load r1, PC-1
Instr. D - write r3, 0(r])
Instr. E ¢ Instr. C

¢ loadrl, PC-1
} write 13, 0(r1)
f Instr. D
@ loadrl, PC-1
1 write 13, 0(r1)
 Instr. E
Modified Program _A] load r1, PC-1
write 13, O(r1)
load 10,10-1 §
bne 10, loop

Original Program

Figure 8: Example use of Instruction Cache Thrasher

After each instruction (of the original program) is executed
the first time through the program loop, it is loaded into the
instruction cache. The following two instructions simply
overwrite the instruction in main-memory with an illegal
instruction. By the time the first loop completes, all cache-
resident instructions should have an illegal instruction in the
corresponding main-memory location. The second loop
through the program validates all the major cache functions
such as Cache Load, Victim Allocate and Tag Compare.

In practice, the Icache-thrasher considers a few more details
in structuring the modified program to improve its
efficiency, scope and diagnostic ability. For example,
Register r3 may be initialized with the opcode of a write
instruction, instead of an illegal instruction as described in
the example. The write instruction is able to provide enough
unique information to simplify diagnosis of failed functions
or cache locations. Alternately, the illegal-instruction
exception-handler can be rewritten to process every failed
function/location before returning execution to the program.

Because the templates are self-testing and the stimulus is
directed-random, one is able to run a given test on real
hardware without need for a on-the-fly reference model or
the pre-computed expected response. This is a big
advantage. Ten seconds of Random Self-Testing based on
10-12 templates for both caches, yields 3 Billion cycles on
a 300 MHz Microprocessor!

5. Discussion

Many digital designs, when viewed from a higher level, say
system level, offer inverse functions for many of its
supported functions. The Random Self-Test method
described in this paper can be used with a certain degree of
effectiveness in validation testing of such digital systems.

Although the proposed method may be used for
manufacturing testing, the primary utility of this method is
design validation testing on actual silicon [13]. For designs
where this method can be used effectively, the economical
advantages are enormous. When a gold model is not
required, at-speed validation can proceed on actual silicon
without need for creating expected responses from a gold
model. There may be economic utility for this method even
when a subset of a given design functionality is amenable
for random self-testing.

Clearly this method is not suitable for validation or testing
at very low levels of a design, because logical operations
such as AND/OR/NAND do not have inverses.
Furthermore, functions with no inverses, as described in
Section 3, cannot be tested across the entire functional
space. Floating Point operations also belong to this category
because rounding-operation is a many-to-one mappin g from
input to output space.

Table ! compares the Random Self-Test (RST) method
against Directed Random Testing (DRT) on eight important
features. We have seen that DRT requires a reference (gold)
model while RST does not. This is the biggest advantage in
favor of RST. For effective application, both methods
require effort in developing templates for test stimuli. We
believe template development effort for RST will generally
be higher than DRT because the template must also include
inverse functionality - and in many cases, only an indirect
inverse may be possible.

Aligsing exists in both methods. Aliasing may originate
from two sources in DRT - (a) the design and its gold model
may have identical design error; (b) the effect of a design
error may not be captured in the machine-state signature
which is observed periodically for comparison with the
comresponding signature of the gold model. RST has one
source of aliasing - identical errors in function and its
inverse will be masked. This is mitigated in high-
performance designs that typically implement functions and
their inverses with different hardware. We assign advantage
to DRT because, the already accumulated, empirical data
does not indicate aliasing to be causing design error escapes.

Both methods use pseudo-random test stimuli. Pseudo-
random testing is inherently poor in efficiency. We assign
advantage to DRT because the tests used in RST will be
longer, and hence less efficient, due to every function
requiring the inverse operation to complete the test.

The scope of DRT is as broad as the completeness of the
reference model will allow. Fairly complete and robust
reference models exist for many designs. A prior
implementation of a given design may also serve as a

228

reference model. On the other hand, we have seen that RST
method cannot be applied to functions with no inverses,
This is the primary disadvantage of RST.

Directed Random Ad
Feature Random Testing Self-Test n tava
(DRT) (RST) ge
Reference Required Not RST
Model Required
Template Dev. Medium High DR‘T
Effort
Aliasing Yes Yes DRT
Test Efficiency Low Low DRT
Scope Broad Limited DRT
Completion Probabilistic/ Probabilistic/ even
Criteria Coverage Coverage
Analysis Analysis ’
Test Speed on As Fast as As Fastas RST
Hardware Reference Model Hardware J
Existing Infra- Stable/Vested Nil DRT
structure

Table 1: Comparison of Test Methods

One of the biggest problems with random testing methods is
the difficulty in establishing completion criteria. This is
especially true for validation testing [1-3]. DRT and RST
must use similar probabilistic and/or coverage-analysis
methods to establish criteria and determine when testing is
completed. Both methods are even in this regard.

Continuing design validation on actual silicon is an
accepted and prudent industry practice for large and
complex designs. With DRT method, the speed at which test
stimulus can be applied is limited by the speed at which the
expected response is computed from the reference model.
The simulation speed for the reference model, for a typical
PowerPC microprocessor, is 50,000 cycles/second.
Therefore DRT can go no faster than 50K cycles/second.
Because RST method does not require a reference model, it
can operate as fast as real hardware. PowerPC
microprocessors operate in the range of 180-400 million
cycles/second. The tremendous speed-advantage enjoyed
by RST is a derivative advantage of not requiring the gold
model.

In terms of existing infrastructure, DRT enjoys a stable and
vested environment. RST has not been used heavily quite

yet.

Built-In Self-Test for Memories (M-BIST) implicitly uses
the Random Self-Test principle. A data pattern is written to
memory. Later the data pattern is read from memory and
compared with what was written earlier. The Write and
Read operations constitute the function & inverse pair.
Although, many practical M-BIST systems use fixed data
patterns, such as checkerboard, walking ones, etc, - the data
pattern can very well be randomized for each write
operation as long as the M-BIST system can conveniently
remember what it wrote.

The Random Self-Test method described in this paper may
also be viewed as a generalization of the M-BIST scenario
described above.

Of the eight discernible features, we view “Reference
Model” and “Test Speed on Hardware” as the biggest
advantages of Random Self-Test over Directed Random
Testing; and “Scope” as the biggest disadvantage of
Random Self-Test. For the remaining features, Directed
Random Testing may hold an advantage, but only by virtue
of having been in use and practice for a long time.

4. Conclusions

The paper presents a novel method for generating test
stimuli for validation of Digital Systems. The test stimuli is
random as well as self-testing. The method takes advantage
of the fact that Digital Systems, feature an inverse function
for many of its supported functions. This is especially true
when validation testing is done at a high-level (ie.,
complete system level). The paper describes the use and
limitations of this technique on microprocessor class
designs using PowerPC microprocessor caches as examples.

Itis hoped that the paper is successful in generating research
and development interest in this promising area.

Acknowledgments:

The authors thank the PowerPC 604e microprocessor validation
and test teams - Dawit Belete, Robert Bailey, Charlie Beh,
Hemendra Talesra, Tom Austin, Tien Dinh, Suksoon Yong, Terri
Fukuhara, Laura Powell, Richard Yin and Nathan Steinke for
providing assistance with PowerPC microprocessor
Implementation details. The authors are also thankful to our
esteemed colleagues - Heeru Thadani, Javier Prado, Jim Golab,
Brad Burgess, Carl Pixley, Marvin Denman, Mike Snyder and
Magdy Abadir for reviewing this work and providing constructive
Suggestions. We thank the GLS-VLSI'98 anonymous reviewers
for Providing insightful and useful critique. Finally we are thankful
to Carlos Gutierrez, Mark McDermott, Moises Cases and Naras
lyengar for providing continued management support to this
project.

229

References:

1. Hosseini A., D. Mavroidis & P. Konas, “Code Genera-
tion and Analysis for the Functional Verification of
Microprocessors,” Proc. of the 33rd Design Automation
Conference, pp. 305-310, June 1996.

Monaco J.,, D. Holloway & R. Raina, “Functional Veri-

fication Methodology for the PowerPC 604™ Micro-
processor,” Proc. of the 33rd Design Automation
Conference, pp. 319-324, June 1996.

Kantrowitz M. & L. Noack, “I'm Done Simulating;
Now What? Verification Coverage Analysis and Cor-
rectness Checking of the DECchip 21164 Alpha Micro-
processor,” Proc. of the 33rd Design Automation
Conference, pp. 325-330, June 1996.

Aharon A, et. al.,, “Test Program Generation for Func-
tional Verification of PowerPC Processors in IBM”,
Proc. of the 32nd Design Automation Conf., pp. 279-
285, June 1995.

Wagner K.D., C.K. Chin & E.J. McCluskey, “Pseudo-
random Testing,” IEEE Trans. on Computers, Vol. C-
36, No. 3, pp. 332-343, March 1987.

Waicukauski J.A., VP. Gupta & S.T. Patel, “Fault
Detection Effectiveness of Weighted Random Patterns,”
Proc. of the Int’l Test Conf., pp. 245-255, 1991.

Raina R. & P.N. Marinos, “Signature Analysis with
Modified Linear Feedback Shift Registers,” Proc. of the
21st Fault Tolerant Computing Symp., pp. 88-95, June
1991.

Feedback from reviewer#1; GLS-VLSI ‘98.

Denman M., P. Anderson & M. Snyder, “Design of the

PowerPC 604¢™ Microprocessor,” Proc. of the IEEE
Compcon, pp 126-131, 1996.

10. Pixley C., B. Burgess et. al., Patent Disclosure Meeting,
Somerset Design Center (Motorola/IBM), Austin, TX,
Feb. 1997.

11. Feedback from reviewer#2; GLS-VLSI ‘98.

12.Stone H., “High-Performance Computer Architecture,”
Addison-Wesley Publishing Company, 1987.

13.Golab J., R. Raina, T. Dinh and N. Steinke, “Silicon
Validation Methodology of the 0.25 micron PowerPC
604e™ Microprocessor,” Proc. of the DesignCon - On-
Chip Systems Design Conference, Jan 1998.

14. PowerPC 604e RISC Microprocessor User’s Manual,
Motorola Press. June 1996. N
Web Address - http://www.mot.com/PowerPC/

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

