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Abstract

We introduce a new concept for test sequence compaction
referred to as recycling. Recycling is based on the observation
that easy-to-detect faults tend to be detected several times by a
deterministic test sequence, whereas hard-to-detect faults are
detected once towards the end of the test sequence. Thus, the
suffix of a test sequence detects a large number of faults, includ-
ing hard-to-detect faults. The recycling operation keeps a suffix
S8, of a test sequence T, and discards the rest of the sequence.
The suffix S, is then used as a prefix of a new test sequence T,.
In this process, §; is expected to detect the more difficult to
detect faults as well as many of the easy-to-detect faults, result-
ing in a new sequence T, which is shorter than T,. Recycling is
enhanced by a scheme where several faults are targeted simulta-
neously to generate the shortest possible test sequence that
detects all of them.

1. Introduction

Several dynamic and static test sequence compaction procedures
for synchronous sequential circuits have been proposed recently.
Dynamic compaction [1}-[4] incorporates into the test generation
procedure techniques for reducing the final test length. Static
compaction techniques [5]-[7] are applied as a postprocessing
step to test generation, and can be applied in addition to or
instead of dynamic compaction to reduce the length of the test
sequences produced by a test generation procedure.

In this work, we introduce a new concept for test
sequence compaction referred to as recycling. It can be viewed
as a hybrid of dynamic and static compaction techniques. Recy-
cling is based on the well-known observation that easy-to-detect
faults tend to be detected by the test vectors produced early dur-
ing the test generation process. These faults are detected several
times along the test sequence, leaving difficult-to-detect faults to
be detected only once towards the end of the test sequence.
Although fault ordering may affect the time unit in which a fault
is detected, test generation is typically applied only to a rela-
tivety small number of fauits; the remaining faults are acciden-
tally detected by the test sequence generated for the targeted
faults. Thus, for most of the faults, the time unit where they are
detected is a reasonable measure of the difficulty of detecting
them. The prefix of a test sequence (i.e., a subsequence that starts
at the beginning of the test sequence) that contributes only to the
detection of easy-to-detect faults may unnecessarily lengthen the
test sequence. However, it may not be possible to omit a prefix
of the test sequence without losing fault coverage. To take
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advantage of these observations, recycling keeps a suffic S 1ofa
test sequence T (i.e., it keeps a subsequence S, that ends at the
end of the sequence T)) and discards the rest of the sequence.
The suffix is selected such that it detects the most difficult to
detect faults. For the remaining faults, test generation starts
from the sequence S, and S, is extended into a complete test
sequence T, with S, as a prefix of T, (hence, this process recy-
cles the most useful part of the test sequence into a new test
sequence). In this process, S, is expected to detect the more dif-
ficult to detect faults as well as many of the easy-to-detect faults,
resulting in a sequence T, which is shorter than 7,. The recy-
cling process may now be repeated using a suffix S, of T,. The
suffix S, of T, is selected such that the sequence S 15, detects the
most difficult to detect faults. Test generation starting from § 15,
is used to obtain a test sequence T; which is expected to be
shorter than T,. This may be repeated any number of times.

The main difference between recycling and static com-
paction is that static compaction procedures manipulate a given
test sequence and do not perform additional test generation,
whereas recycling repeats the test generation process for faults
that remain undetected by the selected suffixes. Thus, recycling
has more flexibility in reducing the test length. Compared to
other dynamic compaction techniques, recycling requires only
minor modifications to the underlying test generation process, as
described in Section 2. Thus, it is easier to implement. In addi-
tion, it is general purpose in the sense that any test generation
procedure can be plugged into the recycling process to further
reduce the test sequences it generates.

Recycling requires repeated test generation. It is possible
to keep this test generation effort to a minimum by using the fol-
lowing observations. (1) Only faults that are not detected by the
suffix selected for inclusion in the new test sequence need to be
considered again. By keeping the number of faults detected by
the suffix large, the additional test generation effort can be mini-
mized. (2) Faults that could not be detected in the first test gener-
ation pass (undetectable and aborted faults) need not be consid-
ered again for test generation. In cases where the test generation
process is not complete, undetected faults may be simulated, to
take advantage of accidental detection.

Recycling can be applied in conjunction with any test
generation procedure. In this work, we apply recycling to the
test sequences generated by the basic test generation procedure
described in [1]. This basic procedure does not include any of
the compaction heuristics introduced in [1]. Nevertheless, the
lengths of the test sequences it generates are typically shorter
than those of other test generation procedures that do not employ
compaction techniques, such as [8]. Thus, it provides a good
basis for experimenting with the recycling procedure. We also




modify the basic procedure of [1] to consider several faults
simultaneously, thus generating shorter test sequences. Recy-
cling is shown to be effective both before and after this modifica-
tion of the basic procedure. Recycling can be applied together
with static and/or dynamic test compaction procedures to obtain
even shorter test sequences.

The paper is organized as follows. In Section 2 we
describe the general recycling concept and a specific recycling
procedure. In Section 3 we describe a complete test generation
procedure based on recycling. Section 4 includes experimental
results. Section 5 concludes the paper.

2. Test sequence recycling

The goal of test sequence recycling is to repeatedly extract from
a test sequence the parts that detect the most difficult to detect
faults, and use them in constructing a new and shorter test
sequence. In this section, we first describe a generic recycling
procedure. In this procedure, we use hard-to-detect faults and
subsequences to detect them, without defining how these faults
are identified or how the subsequences are derived. We then
describe a specific implementation that incorporates definitions
of hard-to-detect faults and subsequences to detect them.

The generic recycling procedure is given below as Proce-
dure 1. Initially, we have a set of faults F , and empty sequences
T and S. At every iteration of the procedure, T is set equal to §
and then extended by test generation into a test sequence for all
the faults in F. In the first iteration, S = ¢ and test generation is
carried out for all the faults in F. In the following iterations,
S#¢, and test generation is carried out only for faults not

by S. Once T is complete, a subset of hard-to-detect
faults F, is selected. A subsequence S’ is extracted from T such
that §- §’ detects all the faults in Fy (here, - stands for concate-
nation). The sequence § is replaced by the sequence S - §’, and
the new sequence S is used in the next iteration. This process is
Fepeated until the length of S - §” becomes equal to or larger than
the length of T, or S- 8 detects all the faults in F. Throughout
the procedure, whenever a complete test sequence T is gener-
ated, its length is compared to the length of the shortest test
Sequence generated so far, stored in Tyes- If T is shorter than
Tpen, then T is stored in Thesr- This step is needed since the test
Sequence length is not guaranteed to decrease monotonically
With additional iterations of the procedure.

edure 1: A generic recycling process .
(1) Let F be the set of target faults. Let T = (¢) (an empty
sequence). Let S = (¢). Let Ty, = ().

(@ Extend T to detect the faults in F. If Thess = () oF
ITi<IT,,,l, store T in Thess (1Al is the length of the
sequence A).

() Select a set of hard-to-detect faults Fyc F.

@) Extract from T a subsequence §” such that § - §” detects
all the faults in F,.

& 1551217, stop: T, is the final test sequence.

(6) SetS=5. §andT =S5,

Y Simulate F under T and drop the detected faults from F.

®  IiFi=g

@)  IfITI<IT,,,l, store T in T,,,,.
(b)  Stop: T,,, is the final test sequence.

® Goto Step 2.

Note that since § is always kept as a prefix of T, the faults
€Cts can be dropped from further consideration. This is done
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in Step 7 of Procedure 1.

Next, we describe a specific implementation of Procedure
1. In this implementation, the subset of hard-to-detect faults Fy
consists of a single fault f,. A similar procedure can be used for
IFgl > 1. We use the detection time of a fault (the time unit at
which the fault is detected for the first time) as a measure of the
difficulty in detecting it. Thus, the most difficult to detect fault fo
is the one with the highest detection time. Other definitions of
hard-to-detect faults can be used. We extract the shortest suffix
of the test sequence that detects f, by performing binary search
over all possible suffixes. A suffix S} is said to detect Jo if 59
detects f, when the fault free circuit and the faulty circuit in the
presence of f; are started from their all-unspecified initial states
before §7 is applied. Binary search will find the shortest possible
suffix due to the following property, which resuits from the fact
that the ali-unspecified initial states are used for the suffixes,
Lemma 1: If S} and S are two suffixes of a test sequence T
such that §7 is shorter than S, then S} detects every fault
detected by S7.

To show that binary search will find the shortest possible
suffix, let S, be the shortest suffix of T that detects Jfo. Consider
an arbitrary step where a suffix S] is considered. If S} is longer
than S, then 5] detects f, and binary search will continue to
consider a suffix shorter than $7; and if S} is shorter than S,
then §7 does not detect f, and binary search will continue to
consider a longer suffix. The suffix length will continue to
change until binary search converges to S,.

To describe the recycling process in more detail, we use
the following notation. The input vector at time unit # of a
sequence A is denoted by A[u]. The subsequence of A from time
unit u, to time unit u, is denoted by Afu, - - - uy). The first time
unit where a fault f is detected by a test sequence T is denoted
by u4,(f). The length of T, IT], is denoted by L. Binary search
to find the shortest suffix that detects a fault Jo is done using
three variables. Variable low holds the index of the first time unit
where the suffix may start; variable high holds the index of the
last time unit where the suffix may start; and variable mid is
computed as mid = (low + high)/2. The following example illus-
trates the proposed implementation of the recycling process.

We consider ISCAS-89 benchmark circuit s27. The test
sequence T, shown in Table 1(a) is first generated to detect all 32
faults in the circuit. Next to every input vector Ty[u] we show in
Table 1(a) the indices of the faults detected at the same time unit
u (faults with u,,,(f) = u). The fault with the highest detection
time is fault 25, with u,,,(f,s) = 16. We therefore concentrate on
this fault. Our goal is to find the shortest suffix S y of T, that
detects f5. To find the suffix, we use binary search over T, and
we simulate f,s under the following sequences.

Initially, low =0, high=16 and mid = (0+16)/2 = 8.
We obtain the suffix 7,[8---16]. The fault Jas is detected by
this sequence, therefore, we set low = mid + 1 = 9. We now have
mid =(9+16)/2 =12 and we consider the suffix T[12-..16].
The fault f,5 is detected by this sequence as well, therefore, we
set low = 13, mid = 14, and we consider the suffix T[14.--16] =
(0010, 1001, 0000). This sequence still detects [frs. We therefore
obtain low =15 and mid = 15, and we consider the suffix
T[15---16] = (1001, 0000). This sequence does not detect Jas-
Therefore, we update high = 14. We now have high < low, and
binary search terminates. The shortest suffix to. detect Jfas is
Sy =Tlhigh---L~1],0r T[14---16] = (0010, 1001, 0000).



Table 1: An example of recycling for 527

(b) The test sequence 7,

(a) The test sequence T,
T[u]|detected

u |T[u]|detected u

00010 010010
111101(0,9,15,20,22,24,30 1{1001)2,6,8,11,17,23,29,31
2 10010 2 /0000|14,18,25,26
3[0001)1,2,6,8,11,12,17,23,29,31 3{1101]0,7.9,13,15,20,22,24,30
411000(7,13,21 4 {0010

5100013,28 510001]1,12

6 1000014,27 61100021

7 |0100 7 [0001 13,28

8 {0001]5,16 8 10000{4,27

910010 910100

10 | 0000 10 | 0001 [5,16

11 {0001 10 11 | 0010

12 10000114,18,26 12 {0000

13 ]0100}19 13 10001 {10

14 {0010 14 [0100}19

15 [ 1001

16 {0000 |25

Next, we simulate S; and find that it detects 12 faults. For
the remaining 20 faults, we extend S, into a test sequence T, by
performing test generation. The resulting test sequence is shown
in Table 1(b). Note that S, is now a prefix of the test sequence.
The new test sequence T, is of length 15, shorter by two test
vectors than the original sequence.

We now repeat the recycling process with the fault Jio
detected by T, at time unit 14. Our goal is to select a suffix S,
such that S, - S, detects fy. Binary search starts with low =3
(since T[0---2]=S, must be left intact), high =14 and
mid = (3 +14)/2 = 8, and we consider the following sequences.

We first consider S, = T,[8- - - 14]. We simulate f,o under
the sequence S, -5, = (0010, 1001, 0000, 0000, 0100, 0001,
0010, 0000, 0001, 0100). Since fiq is detected by this sequence,
we set low = 9, mid = 11, and we continue to consider the suffix
S =T,[11---14]. Continuing this process, we find that fio is
detected using the suffix S, = [14]. This is the suffix selected.

Next, we simulate S, - S, = (0010, 1001, 0000,0100) and
find that it detects 13 faults. The new test sequence T is con-
structed for the remaining 19 faults starting from S, - S,. The
resulting test sequence is of length 11.

The next recycling step does not improve the test length
any further. In this case, two iterations of recycling reduce the
test length from 17 to 11.

In the previous example, the test sequence length reduced
monotonically with every additional recycling step. In general,
this may not be the case. Consequently, one must save the test
sequence every time a test sequence is obtained which is shorter
than any previously computed test sequence. The recycling pro-
cedure is summarized next as Procedure 2.

Procedure 2: The recycling process

(1) Let F be the set of target faults. Let T =(g). Let
Lys =0 (L, is the total length of all the suffixes con-
catenated to form the prefix of the new test sequence).

(2) Extend T to detect the faults in F. For every fault f,
maintain its first detection time in ug,(f). If f is not
detected, set u,,,(f) =~ 1. Let the length of T be L. Let
Log=L. If Ty, =(9), or T is shorter than T,,,, or T
detects more faults than T,,,,, store T in T},,,.

(3)  Select a fault f, such that u,,,(f,) = max {u,( f) feF}.

4 Setlow=L,, and high=L-1.

(5)  Set mid = (low + high)/2.

(6 LetT'=T[0-- L, ~1]-Tlmid---L-1].

(N If T detects fo, set low=mid+1. Else, set

high = mid - 1.

(8)  If high 2 low, go to Step 5.
(9 LetT=T[0---L,, -1] Tlhigh---L~1]. Let L be the

lengthof T. Let L, =L. .

(10) If L =L,,, stop: Ty, is the final test sequence. :
(11)  Sirnulate F under T and drop the detected faults from F.
(12) IfiFl=¢:
(a) IfIT1 <iT,,,l, or T detects more faults than Thrrs
store T in T,,,,.
(b)  Stop: Ty,, is the final test sequence.
(13) Goto Step 2.

Note that since the prefix T[0- - L, = 1] is always kept
intact as L, is increased, there is no need to resimulate the
faults detected by the prefix. These faults are dropped from the
set of target faults F in Step 11. In addition, if a fault f cannot
be detected in Step 2 of Procedure 2, it can be marked and test
generation for it does not need to be done again.

3. The complete test generation procedure

In this section, we complete the description of our implementa-
tion of Procedure 2 by describing the test generation procedure
used in Step 2 of Procedure 2. The first test generation proce-
dure we use is the basic procedure used in [1] (before adding
dynamic compaction heuristics to it). We also modify this proce-
dure to generate shorter test sequences by considering several
faults simultaneously.

In the basic test generation procedure of [1], test genera-
tion starts from an initial test sequence T (T may be empty). At
every iteration of the procedure, a target fault f is selected. The
test sequence T is simulated in the fault free circuit and in the
faulty circuit in the presence of f starting from the all-
unspecified initial states. If f is not detected by T, then at the
end of the simulation process, the final states reached by the fault
free and the faulty circuits are recorded. Let the final state of the
fault free circuit be Q, and let the final state of the faulty circuit
in the presence of f be 0 (when T = ¢, O, and @}, are the all-
unspecified states). A test sequence is generated for f starting
from the state pair Qy/Qy. If a test sequence T” is generated, T” is
added at the end of T. The resulting test sequence detects f and
possibly additional faults that were not detected by 7. The new
sequence is simulated, and all the yet-undetected faults that it
detects are dropped from the list of target faults. This process is
repeated for other target faults, until all the faults have been con-
sidered. This process is similar in structure to the process used
by other test generation procedures such as [8] and [9].

Next, we describe the generation of a test sequence T’
starting from a given state pair Qy/Qj. It is convenient to
describe the procedure by a tree with vertices corresponding to
pairs of fault-free/faulty states and edges corresponding to state
transitions. The edges are labeled by the input and output values
corresponding to the state transitions. An example of such a tree
is shown in Figure 1. The state pair Qp/Q} is placed in the root
of the tree. The test generation procedure starts from 00/Q0p and
creates the tree in BFS order, level by level. Each state pair
appears at most once in the tree. If a state transition leads to a
state pair that already exists in the tree, it is not included in the




tree. To limit the run time of the procedure, a limited number of
randomly selected input vectors N,,. is applied for every state
pair. In addition, the number of state pairs in each level of the
tree is limited to N,,. The procedure terminates with the first
state transition where the output vector of the fault free circuit B
conflicts with the output vector of the faulty circuit BA’. In Figure
1, we replace B/f" by B if f=p". The edge labeled
a3y, B3,/ B’y indicates that the fault can be detected by the input
sequence @y, a; a;3,. No additional state transitions are explored
following the state transition that detects the fault. Alternatively,
the procedure terminates when all the successors of all the state
pairs reached are abandoned, or when a limit on test length is
reached. In this case, the fault is aborted. The test generation
procedure above is referred to as Procedure 3. When Procedure
3 is called with T = ¢, we refer to the procedure as the underly-
ing test generation procedure.

Qo/Qy
Fn an ﬂlz\ﬂuvﬂﬂ\
1/eh Q12/Q1, Q13/Q13
eA, B azz*ﬂﬁ @348
021/05, 02,/05 023/023
a1, B /B3
Q51053

Figure 1: An example of test generation for a single fault

Next, we consider an extension of Procedure 3, aimed at
generating shorter test sequences. The extended procedure con-
siders several faults simultancously and generates the test
$equence 7" to detect as many of these faults as possible. Con-

tion of several faults was used in [10] to generate compact
test sets for combinational circuits. The following modifications
e made to Procedure 3. Instead of selecting a single yet-
undetected fault, N ¢ yet-undetected faults are selected for test
generation. The test generation process for N ¢ faults is similar
10 the test generation process for a single fault.  The test genera-
tion process for two faults, fi and f,, is illustrated by the tree
shown in Figure 2 (f, is the same fault considered in Figure 1).

vertices of the tree contain triples of the form Q/Q’/Q”,
where O is the state of the fault free circuit, Q’ is the state of the
aulty circuit in the presence of f), and Q” is the state of the
faulty circuit in the presence of f,. The search for a test
Sequence terminates in one of two cases, as explained next.
. The first case occurs when both faults are detected. This
1 demonstrated by the tree of Figure 2. The transition into state
_Sleingﬁ'z has output vectors B2/ B'52/B3: such that 8;, con-
3::‘5 with both £, and §%,. Thus, both faults are detected by
put sequence a, 1@2,a3;. Note that based on the tree of
18ure 1, we selected the test sequence oy 2;,a3, for f;. Using
j:‘e Same sequence length, the sequence @y as, detects both
1and f,,

The second case where the test generation procedure for
fi and /2 terminates occurs when all the successors reached in
lhism are abandoned, or a limit on test length is reached. In

Case, we look for a state transition out of the highest level in
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Qo/Qo/ Qg
B ex ﬂlZ\a’lsvﬂﬁ\
21/CW/ Q) 12/Q12/ 0 13/Q13/QY;
}z(ﬂzl 32, Bz az3) B
w/@/Q  0nlQhIQF  10:3/05:/0%

a3y, BaifB'31/ B aszyﬂszﬁ'szlﬂ'éz
0,/04/05) ooz

Figure 2: Example 1 of test generation for two faults
the tree (corresponding to the shortest sequence) where the
largest number of faults are detected. We use this state transition
to trace a test sequence T to detect as many faults as possible.

In implementing the test generation procedure, it is neces-
sary to keep track of cases where a fault is detected by a state
transition at a level of the tree which is higher than the level cur-
rently considered. This is illustrated by Figure 3, where the first
fault f; is detected by the state transition labeled
ayy, B1/f'1\/B,,. The fault is not detected again in lower levels
of the tree; however, any sequence that starts with a; detects f.
We keep track of this fact by storing in the vertices the list of
faults detected by state transitions they can be reached from.
Thus, the vertices Q,,/05,/Q%, and 02/Q%,/Q7, contain f,. To
limit the run time of the procedure, after generating a level of the
tree, we omit all the vertices that detect fewer than the maximum
number of faults detectable at that level. In Figure 3, only the
vertex Q1,/Q1,/Qf) is used to continue the test generation pro-
cess.

Q0/00/0%
e, Bl B Nz
1211/01/QMy 12/Q12/0F:
%x NI
21/00/Q5) 22/Q32/ 05

Figure 3: Example 2 of test generation for two faults

The test generation procedure above is summarized as
Procedure 4. In Steps 2-6 of Procedure 4, test generation is car-
ried out for subsets of faults of size at most N ¢. During the test
generation process, faults that have been considered are removed
from the set F,. However, faults that are not detected when
they are considered as part of a subset are not declared unde-
tected. Instead, they are considered each one alone by calling
Procedure 3 in Step 8 of Procedure 4.
Procedure 4: Test generation starting from a test sequence T
considering faults simultaneously
(1) Let F be the set of target faults. Set Fip=Fand Fy, = ¢.
(2) SetF,=¢ )
(3)  WhilelF,l< N; and Frp # ¢



(a) Selectafault f e Frep.
(b)  Simulate f under T. Record the final states
reached. If f is not detected, add f to F,.
(¢)  Remove f from F,.
(4)  Construct a tree (such as the ones in Figures 2 and 3) for
F, starting from the final states reached in Step 3.
(5}  Select the state transition where the largest number of
faults are detected, and construct a test sequence T”.
(6) AddT attheendofT.
(5) Forevery fault f € Frop:
Simulate f under T. If f is detected, add f to F,
and remove it from F .

(6) If Fiz# ¢, goto Step 2.

(N SetF,=F-F,,

(8)  Call Procedure 3 to extend 7T into a test sequence for F .
(9)  Stop: T is the required test sequence.

4. Experimental results
We applied the recycling procedure, Procedure 2, to ISCAS-89
benchmark circuits. We used Procedures 3 and 4 as the test gen-
eration procedures embedded in Procedure 2. In Procedure 4, we
used subsets of faults of size three. During test generation for a
fault or subset of faults, we allowed the test length to be at most
100 (at most 100 levels in the test generation tree); we consid-
ered at most 100 input vectors in every state (N,,, = 100); and
we allowed at most N, = 100 state pairs in every level of the test
generation tree. We allowed at most 10 recycling operations in
Procedure 2 before terminating the procedure.

The first set of results is reported in Table 2 as follows. In
Table 2(a) we report the results when Procedure 3 is used for test
generation. After circuit name we show the number of faults in
the circuit. We then show the number of faults detected and the
test length for the underlying test generation procedure (before
recycling). Next, we show the number of fauits detected and the
test length after recycling, and the number of recycling iterations
required before the test length reached its minimum value. In
Table 2(b) we show the same information when Procedure 4 is
used as the test generation procedure and at most three faults are
processed simultaneously. The following points should be noted.

Comparing the results before and after recycling in each
table, it can be seen that except for 5820, recycling is effective in
reducing the test length. For 5820, recycling increases the num-
ber of detected faults. Consequently, the test length is increased
as well. The number of recycling iterations is sometimes high.
The reduction of the number of iterations is considered below. It
can also be seen that non-trivial reductions in test length are
sometimes obtained when using Procedure 4 with three faults
simultaneously, compared to Procedure 3. For 5820, the fault
coverage is increased when using Procedure 4. Recycling also
benefits from the processing of several faults simultaneously.
We point out that the lengths of the test sequences produced by
the underlying test generation procedure are often smaller than
those of other test generation procedures that do not employ
compaction techniques, such as [8]. The results in Tables 2(a)
and (b) show the improvement achievabie by recycling com-
pared to the underlying test generation procedure embedded in
the recycling process. It also demonstrates the usefulness of tar-
geting several faults simultaneously during test generation.

Next, we consider the use of several faults to select the
suffix in Procedure 2. The goal of this study is to reduce the

Table 2: Results of Procedure 2
(a) Using Procedure 3

under recycl
circuit fits det len det len iter
5208 215 137 153 137 114
s298 308 265 180 | 265 129
s344 342 329 127 | 329 49
s386 384 314 247 | 314 185
s420 430 179 128 179 101
5641 467 | 403 152 | 404 93
5820 850 | 623 258 | 719 304

OO W o

(b) Using Procedure 4 with N =3

under recycl
circuit det len det len
5208 137 108 137 94
5298 265 169 | 265 115
s344 329 141 329 65
s386 314 201 314 169
$420 179 117 179 95
s641 404 153 { 404 153
5820 760 405 | 794 416

..‘
=
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number of iterations of Procedure 2 and its computational effort
(reported below).

Step 3 of Procedure 2 is the following.

(3)  Select a fault f, such that u,,(f;) = max {v(f): feF}.
We replace this step by a procedure that selects a subset of faults
Fy instead of the single fault with the latest detection time. The
size of Fy is bounded by a preselected constant N,. We include
in F, the faults with the highest detection times. However, we
include a fault f in F, only if its detection time satisfies
Ugee(f) 2 max (ug,(f): f € F} ~ A where A is a preselected con-
stant. For example, if the maximum detection time is 100 and
A =20, we only consider faults with detection times 80 or above,
By not allowing the detection time to be too low, we restrict the
length of the selected suffixes. Procedure 5 given next summa-
rizes the selection of the faults in F,,.
Procedure 5: Fault selection for recycling
(1) Let F be the set of yet-undetected target faults.
(2)  Setd = max {uy,(f): f € F).
(3) Forevery f € Fsuchthat f £F,, ifug (f)=d:

Add fto F,. IfIFyl = Ny, stop.
4) Setd=d-11fd2max{ug(f): feF}-A, go to Step

3.

(5)  Stop.

We applied Procedure 2 using Ny =3 and A =20. We
used Procedure 4 with three faults targeted simultaneously dur-
ing test generation (N r =3). The results are shown in Table 3,
including the number of detected faults and the final test length
before recycling; the number of detected fauits and the final test
length after recycling; and the number of recycling iterations. It
can be seen that using N, = 3 reduces the number of recycling
iterations and in some cases also helps reduce the test length
compared to Table 2(b). We include in Table 3 results for addi-
tional circuits, that were not considered in Table 2(b). Larger
circuits may be considered by embedding a more efficient test
generation procedure into the recycling procedure.

To provide an indication of the computational effort
involved in recycling, we measured the test generation time dur-
ing every iteration of the procedure. We denote the test genera-
tion time at iteration i by RT_TG;. We report in Table 4 the



Table 3: Results using N, =3 and N, = 3

under recycl
circuit fits det len det len iter
5208 215 137 108 137 91 2
$298 308 265 169 265 109 3
5344 342 329 141 329 59 5
s382 399 364 783 364 578 2
5386 384 314 201 314 173 3
5420 430 179 117 179 105 3
5641 467 404 153 404 103 8
s820 850 760 405 794 459 6
s1196 1242 | 1235 957 | 1235 837 7
s1488 1486 | 1444 560 | 1444 458 3

value of RT_TG,/RT_TG, for all the iterations. By considering
relative run times instead of absolute run times, we remove the
effects of the inefficiences in the implementation of the test gen-
eration procedure on the reported numbers, as well as the effects
of circuit size. In addition to test generation time, there is also a
fault simulation effort to extract the suffix in every iteration. We
captured the total run time for iteration i in a variable RT_C,.
We report the value of RT_C/RT_TG, in the second row for
each circuit in Table 4. At the end of the second row we show

9
the value of ZRT_C /RT_TG,. From Table 4 it can be seen
=0

that for most circuits, additional recycling iterations do not take
significant amounts of time compared to complete test genera-
tion (performed in iteration 0). For example, for s208, recycling
increases the test generation time by 41%. For circuits such as
5820 and 51196, where recycling incurred large increases in run
time, we increased N, the size of F,. We also reduced the maxi-
mum detection time of any fault included in F, by increasing A.
These changes result in longer suffixes that detect more faults,
leaving fewer faults to be detected by test generation, and reduc-
ing the test generation effort. The results obtained using the
modified values of N, and A are marked with asterisks next to
the circuit name. For 5820, after increasing N, to 10 and A to
5:0. 792 detected faults and a test length of 443 were obtained
(instead of 794 detected faults and a test length of 459 when
No=3andA= 20). For 51196, after increasing N, to 20 and A
to 100, 1235 faults were detected and the test length was 865
(instead of 1235 detected faults and a test length of 837 when
No=3and A= 20). It can be seen that by changing the values
of Ny and A, it is possible to control the run time of the proce-
dure without significantly changing the fault coverage or the
compaction level. The fault coverage need not change at all if a
Mare robust test generation procedure is embedded in the recy-
cling process. The values of Ny and A can be selected dynami-
cally according to the number of faults left undetected by the
suffix to further reduce the run time.

S. Concluding remarks
We introduced a new concept of test compaction, referred to as
recycling. Given a test sequence T, the recycling operation
keeps a suffix § y that detects one or more of the hardest-to-detect
faults, and discards the rest of the sequence. The suffix S, is
then used as a prefix of a new test sequence T,. In this process,
118 expected to detect the more difficult to detect faults as well
as many of the easy-to-detect faults, resulting in a new sequence
2 ‘\fhlt;h is shorter than T',. Recycling was applied iteratively to
tain Increasingly compacted test sequences. The run time of
fecycling process was kept low by the fact that many of the
#ults, including hard-to-detect faults, are detected by the prefix

221

Table 4: Relative test generation times

relative time during iteration § =

circuit | 0 1 2 3 4 5 6 7 8 9 |total
s208 1.00 0.25 0.05 0.01

1.02 0.27 0.08 0.04 141
s382 1.00 O.11 0.11 0.18 0.08 0.07 0.03

1.00 0.11 0.11 0.18 0.08 0.07 0.03 1.58
s386 1.00 0.30 0.25 0.19 0.25 0.23 0.22 0.13 0.11 0.06

1.01 0.31 0.26 0.20 0.27 0.24 0.23 0.14 0.12 0.08{2.86
5641 1.00 0.03 0.14 0.09 0.02 0.02 0.01 0.00 0.00 0.00

1.00 0.03 0.14 0.09 0.02 0.02 0.01 0.00 0.00 0.00(1.31
s820 1.00 0.57 0.64 0.47 0.59 0.52 0.50 0.56 0.42 045

1.02 0.59 0.66 0.49 0.61 0.54 0.52 0.59 0.44 048]5.94
s820* 1.00 0.54 0.40 043 038 0.24 0.16 0.20 0.21 0.06

1.02 0.56 0.42 045 0.41 0.27 0.18 0.23 024 0.09/3.87
s1196 | 1.00 0.79 0.73 0.54 0.54 0.55 053 047 042 041

1.02 0.82 0.76 0.57 0.57 0.58 0.56 0.50 0.45 044|627
s1196**1.00 0.49 0.49 0.50 0.30 0.20 021 0.12 0.06 001

1.02 0.52 0.53 0.54 0.35 0.24 0.26 0.17 0.11 0.06]3.80
s1488 11.00 0.22 0.19 0.18 0.14 0.12 0.11 0.12 0.10 0.11

1.00 0.22 0.19 0.19 0.14 0.12 0.11 0.13 0.11 0.12]2.33

*Np=10and A= 50 ** No=20and A =100

For other circuits, Ny = 3 and A = 20
of the new test sequence, and test generation needs to be carried
out for a relatively small number of faults. Recycling was
enhanced by a scheme where several faults were targeted simul-
taneously to generate the shortest possible test sequence that
detects all of them.
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