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Abstract

Interval arithmetic provides an efficient method for
monitoring and controlling errors in numerical calcu-
lations. However, existing software packages for in-
terval arithmetic are often too slow for numerically
intensive computations. This paper presents the de-
sign of a multiplier that performs either interval or
floating point multiplication. This multiplier requires
only slightly more area and delay thean a conventional
floating point multiplier, and is one to two orders of
magnitude faster than software implementations of in-
terval multiplication.

1 Introduction

The performance of conventional microprocessors
currently increases at a rate of approximately 55 per-
cent per year and is expected to increase by a factor
of 50 over the next ten years [1]. This rapid increase
in computing power has led to a greater reliance on
results produced by computer simulation and model-
ing. Although many areas depend on computer gen-
erated results for reliable information, roundoff error
and catastrophic cancellation in floating point compu-
tations can cause results to be highly inaccurate, with
little or no indication [2].

Interval arithmetic provides an efficient method for
monitoring and controlling errors in floating point
computations, by producing two values for each re-
sult [3]. The two values correspond to the lower and
upper endpoints of an interval, which contains the true
result. The width of the interval indicates the accu-
racy of the result. If the interval endpoints are not
representable, they are outward rounded. For exam-
ple, if each interval endpoint uses three decimal digits,
the interval multiplication [1.23,1.24] x [2.56,2.57] =
[3.1488, 3.1868] is outward rounded to [3.14,3.19]. Al-
though naive use of interval arithmetic can result in
wide intervals, algorithms have been developed that
produce narrow intervals for many applications [4].
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Because of its ability to provide reliable results,
several interval software packages been developed 5],
[6]. Although these packages improve the reliability
of arithmetic computations, they are often too slow
for numerically intensive applications. As reported
in [7], interval arithmetic operations implemented in
software are often tens to hundreds of times slower
than corresponding floating point operations. This is
because interval arithmetic has overhead due to func-
tion calls, changing the rounding mode, selecting the
appropriate interval endpoints, and testing for special
cases and exceptions.

Many researchers feel that it is necessary for the
performance of interval arithmetic to be within a fac-
tor of five of floating point arithmetic for it to gain
general acceptance [7]. To this end, the GNU Fortran
Compiler is being modified to provide support for an
interval data type [8], based on the Interval Arith-
metic Specification [9]. However, to achieve high per-
formance, hardware support for interval arithmetic is
also required. Previous hardware designs for interval
arithmetic employ special-purpose coprocessors [10],
[11], or functional units [12], [13]. Although these de-
signs improve the performance of interval arithmetic,
the cost of adding specialized interval hardware can
be prohibitive.

This paper presents the design of a combined inter-
val and floating point multiplier, which is constructed
by adding a small amount of hardware to a conven-
tional floating point multiplier. This approach offers
the performance benefits of a dedicated interval mul-
tiplier, but requires significantly less hardware. Sec-
tion 2 gives an overview of previous software and hard-
ware techniques for interval multiplication. Section 3
shows how a floating point multiplier is modified to
enable it to also perform interval multiplication. Sec-
tion 4 provides area and delay estimates for the com-
bined interval and floating point multiplier. Section 5
gives our conclusions.




2 Interval multiplication
As presented in (3], multiplication of the intervals
X = [z;,z,] and Y = [y, y,] is defined as:

Z=X'Y [min(-'clyl,$lyu,xuyl:fﬂuyu)y

max(:c,y,, 1Yy, T4 Wi, zuyu)]

If the floating point multiplier is capable of producing
a product that is at least twice as precise as its input
operands, the interval product can be computed as:

Z=X'Y

[V min(zy1, ZiYu, Tut, Tul),
A max(ziyr, Tiyu, Tyt zuyu)]

where 7 denotes rounding down toward negative in-
finity and A denotes rounding up toward positive in-
finity. Based on this definition, computing the interval
endpoints of Z requires four multiplications (to ob-
tain the double length products z;y;, z;y.,, Z,y1, and
TuYu), four comparison operations (to obtain the min-
imum and maximum values), and two directed round-
ings [12].

In practice, however, interval arithmetic is typically
performed on double precision operands, and a double
precision result is produced. In this case, X -Y can be
computed as:

Z=X.Y

[min(vzlyls VZiYu, VZuli, Vluyu),
max(Aziy, Aziy,, Azyy, Az,y,)]

Based on this definition, the interval endpoints of
Z are computed by performing eight multiplications
(with rounded products VI, VEYuy VY, VoY,
Az Azyy,, Azyuy, and Azyy,), and six compari-
Son operations (three to obtain the maximum value
and three to obtain the minimum value) [12].

To reduce the number of multiplications, a tech-
nique originally presented in [3] can be employed.
With this technique, the signs of the interval endpoints
are examined to determine the endpoints to multiply
together to produce the interval product. The signs
of the endpoints of the intervals X and Y indicate
Whether X and Y are greater than zero, less than
Zero, or contain zero. This results in nine possible
Cases, as shown in Table 1. In Case 9, when both X
and Y contain zero, mn min(Vz;yy, VZuy) and
mz = max(Azy;, Azyy,). For this case, the end-
Points to be multiplied cannot be determined based
Solely on their signs. Instead, it is necessary to per-
form foyr multiplications and two comparisons to de-

ine the Jower and upper endpoints. In practice,
Caseg occurs infrequently, since intervals that contain
Zero have infinite relative error. The other eight cases
Tequire only two multiplications.

209

Although examining the signs of the interval end-
points decreases the number of multiplications, its
software implementation requires several conditional
branches to determine which interval endpoints should
be multiplied. This is illustrated in F igure 1, which
shows a software implementation of interval multipli-
cation, similar to the one used in [5].

m = get_round.mode();
round._down () ;

if (>0 {
if (g >0) {
= y; round up(); 2z, =2y - Yo
} else if (y, < 0) {
Z =Ty "tr; Toundup(); zy = I; - yy;

} else {
21 = Ty - Yi; Tound up(); zy = Ty - Yy

}
} else if (z,<0) {
if (>0 {
2L =21 Yu; roundup(); zy =z, - y;
} else if (y, <0) {
2 = Ty~ Yu; Toundup(); z, =y - yp;
} else {
21 =2y - Yu; roundup(); z, = 27 -y;;
}
} else {
if (>0 {
24 =2 Yy; Toundup(); 2z, = Ty - Yy
} else if (y, <0) {
21 =y y; roundup(); z, = -y

} else {
M =X Yui; T =Ty Yi;
2] = min(m,,m);
round up() ;
My =T Y13 Ny =Ty *Yus
2y = max{my, n,);

}

}

set_round_mode (rm) ;

Figure 1: Code for interval multiplication.

Software implementations of interval arithmetic are
typically between one and two orders of magnitude
slower than floating point multiplication. The large
number of conditional statements used to select be-



Table 1: Nine cases for interval multiplication.

Case Condition Z Example

1 >0, >0 TiYl, Tulu [1,2]-[3,4] = [3, 8]

A 2 ;> 0,y, <0 Zoll, TiYy 1,2]-[-4,-3]=[-8,-3
3 Ty <0,y >0 TiYu, Tull -2,-1)-[3,4] =[-8,-3
1 Zu <0,y <0 Zubwa] | =2, —1] - [~4, =3] = [3,8]
5 5 <0< 2y, >0 [Z1Yu, Tuyu) [(-1,2]-[3,4] = [-4,8]
6 21 <0< Ty, y, <0 [Zwy, ziy] | [-1,2]-[-4,-3] = [-8,4]
7 21 >0,y <0<y | [Tuht,Tuyu] | [1,2]-[-4,3]=[-8,6]
8 T, <0, <0<y, [y, miy] | [-2,-1] - [-4,3] = [-6, 8]
9 |z <0<z, <0<y, | [mn,mz] [-2,1]-[-4,3] = [-6, 8]

tween the nine cases greatly increases the time re-
quired to perform interval multiplication. This is es-
pecially true for pipelined and super-scalar processors,
for which the performance penalty due to conditional
branches is greater. Another performance limitation
is that changing the rounding mode in software often
requires a large number of cycles. As noted in [14],
changing the rounding mode on IEEE processors can
take as long as executing six floating point additions,
due to an ineflicient user interface. On many proces-
sors, changing the rounding mode causes the entire
floating point pipeline to be flushed, which results in
a delay of several cycles and severely limits parallel
execution. Furthermore, software implementations of
interval multiplication are typically implemented as
subroutines, which adds overhead for subroutine calls
and returns.

To improve the performance of interval multipli-
cation, hardware designs for dedicated interval mul-
tipliers have been developed [12], [13]. In [12], sev-
eral hardware techniques for performing interval mul-
tiplication are presented and compared. These com-
parisons show that hardware interval multipliers that
examine the sign bits to determine the endpoints to
be multiplied typically require less hardware and have
shorter execution times than designs that compute
eight rounded products or four double length prod-
ucts and then determine the minimum and maximum
values. In [13], hardware interval multipliers are in-
troduced that require less hardware and have shorter
execution times than those given in [12]. Although
these hardware implementations of interval multipli-
cation are much faster than software implementations,
they require a significant amount of dedicated hard-
ware. For example, area estimates presented in [13]
indicated that serial and parallel interval multipliers
require approximately 15 and 110 percent more area
than an IEEE double precision multiplier implemented
in the same technology.
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3 Interval/floating point multiplier

Rather than using dedicated hardware to imple.
ment interval multiplication, the interval multiplier
can share hardware with an existing floating point
multiplier. With this approach the performance ben-
efits of a dedicated hardware interval multiplier are
achieved at a relatively low cost. This section presents
the design of a combined interval and floating point
multiplier. The design for this multiplier is based upon
the design of the serial interval multiplier presented
in [13], with modifications made to enable the same
multiplier to perform either interval or floating point
multiplication.

The interval multiplier presented in this section is
designed to handle normalized numbers in the IEEE
double precision format [15]. As in [12], [13], denor-
malized numbers and special IEEE values (i.e., zero,
infinity, and not-a-number) are assumed to be handled
separately. To provide tight intervals that contain the
correct result, these special cases should be handled as
specified in [16]. IEEE double precision numbers are
64 bits long, and have a sign bit (s), an 11-bit biased
exponent (e), and a 52-bit significand (f). The signif-
icand contains a hidden one, which gives it an actual
precision of 53 bits. The value of a normalized IEEE
double precision number is

(—1)* x L.f x 2671028

Figure 2 shows a block diagram of an IEEE dou-
ble precision multiplier. The multiplier has input and
output registers, sign logic, an exponent adder, and
a significand multiplier with rounding and normaliza-
tion logic. The input and output registers are each 64
bits. The sign logic computes the sign of the result
by performing the exclusive-or of the sign bits of the
input operands. The exponent adder performs an 11-
bit addition of the two exponents and subtracts the
exponent bias of 1023. The significand multiplier per-
forms a 53-bit by 53-bit multiplication. If the most




significant bit of the product is one, the normalization
logic shifts the product right one bit and increments
the exponent. The rounding logic rounds the product
to 53 bits based on a 2-bit rounding mode (rm).
Figure 3 shows a block diagram of the combined
interval/floating point multiplier. Compared to the
floating point multiplier, the combined multiplier re-
quires two additional input registers and one addi-
tional output register. It is also requires control logic
and multiplexors to select the interval endpoints to be
multiplied, and control logic to set the rounding mode
appropriately for interval multiplication.

il ex [ fi | sl e [ f, ]
4
sign N\ .
logic exponent - significand |
adder inc multiplier
EZI e: | f, j

Figure 2: Floating point multiplier.

b)'_ll €y ] fu —l
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& multiplexor multiplexor Sty
|
{
sign N
logic exponent - sxgmfjcgnd le— m
adder inc multiplier
'
Bod e | Ta ] [l €m | fuw ]

Figure 3: Interval/floating point multiplier.

Two multiplexors select the endpoints to be multi-
Plied based on the toggle bits, tz and ty. If the toggle
bit is one, the lower interval endpoint is selected. The
V_alues for the toggle bits are determined based on the
Sign bits of the interval endpoints, szl, sxu, syl, and
¥y, and whether the lower or upper interval endpoint
of the product is to be computed. The sign bits are
one if the number is negative and zero if it is positive.

control bit le is set to one when the lower interval
endpoint is computed and zero when the upper inter-
val endpoint is computed.
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Table 2 shows the value of the sign and toggle bits
for each of the nine cases presented in Table 1. In
Case 9, both intervals contain zero, and it is not pos-
sible to determine the interval endpoints to multiply
based only on the sign bits. One approach for handling
this case is to have the interval multiplier automati-
cally take care of it [12], [13]. However, this approach
requires a significant amount of additional hardware
to store temporary values and compute the minimum
and maximum. It also complicates the control logic,
since three extra cycles are needed to perform interval
multiplication when both intervals contain zero [13].
Since this case occurs infrequently, the approach taken
in this paper is to have the interval multiplier detect
that both intervals contain zero and signal a trap to
software by setting the zero contained (z¢) flag to one.
For this case, the values for the toggle bits are irrele-
vant, which is indicated by X in Table 2.

To specify the operation performed by the multi-
plier a control bit fp is used. This bit is set to one for
floating multiplication and zero for interval multipli-
cation. It is assumed that when floating point multi-
plication is performed, the input operands are stored
in the registers for z; and y;. In this situation, both
toggle bits should to be one and the zero contained
flag should be zero. Based on Table 2, the logic equa-
tions for the toggle bits and the zero contained flag
are:

tr fp+le- (syl +3yu- szl) +le- (syu+ szl - syl)
ty = fp+le (szl+ syl 570) +E-(szu+szl-sy1)
ze = ,—f;‘szl-m-syl-?ﬁﬁ

When floating point multiplication is performed,
the two bits for the rounding mode come from the
floating point status and control register (SCR), as
is done on most IEEE compliant processors. These
bits are denoted as fp.rml and fprm0. The design
presented here uses the values for the rounding mode
bits given in the Sparc Architecture Manual [17] and
shown in Table 3. When interval multiplication is per-
formed, the rounding mode from the SCR is altered to
cause the multiplier to round toward negative infinity
when computing the lower interval endpoint and to-
ward positive infinity when computing the upper inter-
val endpoint. The rounding mode bits, rm0 and rm1,
for the combined interval and floating point multiplier
are determined as follows:

fporm0- fp+le fp
fprml +75

I

rm0

rml



Table 2: Setting of sign and toggle bits for interval multiplication.

le=111le=0

Case Condition szl | szu | syl | syu VA tx |ty |tz | ty | zc

1 ~ >0,y >0 0 0 0 0 b:,y,,:cuyu 1 1 0 0 0

2 > 0,y, <0 0 0 1 1 TuYl, TiYy 011 1100

3 Ty <0,y >0 1 1 0 0 T1Yu, Tuli 110101110

4 Ty <0,y, <0 1 1 1 1 Tylu, Z1Y 0,0 1 1]0

5 r<0<zy,;1 >0 1 0 0 0 | [@Yu,Zuyu) [ 1 [ O | O[O0 ] O

6 <0<y, 5. <0 1 0 1 1 [Zwyp,zigy]) | O] 1 [ 1 [ 1]0

7 >0,y <0 <yy 0 0 1 0 | [zuyt,zuyu) [ O [ 1] O[O ] O

8 T, <0, <0<y, 1 1 1 0 Ty, zig]) | T [ O0O[1 ] 1]0

9 T <0< Ty, <0<y, | 1 0 1 0 [mn, mz] XIX i X[{X]1
. ) requires fifteen percent more area and has a total de-
Table 3: Yalue of the rounding mode bits. la}(il that is about eight percent longer. Although the

Rounding mode fporml | fporm0 . . . -
min/max unit of the serial interval multiplier causes
Round to nearest even 0 0 the total area to increase by about 8 percent, it does
Round toward 0 0 1 not increase the cycle time, since pipeline registers are

Round toward +oo 1 0 used to keep it off the critical path.

Round toward —co 1 1 If the combined interval and floating point multi-

4 Area and delay estimates

Area and delay estimates are given in Table 4 for
the combined interval and floating point multiplier,
along with estimates for an IEEE double precision
multiplier and the serial interval multiplier presented
in [13]. The area and delay estimates are based
on data from a 0.4 micron CMOS standard cell li-
brary [18]. These estimates assume that the signif-
icand multiplier is a Reduced Area Multiplier [19)],
followed by a carry select adder with rounding and
normalization logic [20]. The area of each compo-
nent is estimated by adding together the areas of all of
the macrocells that make up the component and then
adding an additional 50 percent for internal wiring.
The total area is estimated as the sum of the com-
ponent areas plus an additional 50 percent for global
routing and unused space. The delay for each com-
ponent is computed by taking the worst case delay
of the critical path and adding 25 percent for process
variations and clock skew.

Compared to the IEEE double precision multiplier,
the combined interval and floating point multiplier re-
quires three additional 64-bit registers, and the multi-
plexors and control logic for selecting the interval end-
points. It uses about seven percent more area and has
a total delay that is eight percent longer. The serial in-
terval multiplier requires a dedicated min/max unit,
and it cannot perform floating point multiplication.
Compared to the IEEE double precision multiplier, it
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plier is not pipelined, it can perform floating point
and interval multiplication in one and two cycles, re-
spectively, with a cycle time of approximately 13 ns.
To decrease the cycle time, the interval multiplier can
be pipelined into two stages. The first stage per-
forms interval endpoint selection, partial product gen-
eration, and partial product reduction. The second
stages combines the carry and sum vectors from the
reduced partial products, and normalizes and rounds
the result. With this approach, floating point and
interval multiplication require two and three cycles,
respectively, and the cycle time is reduced to approx-
imately 7 ns. For the pipelined implementation, the
total area increases to 10.88 mm? due to additional
registers needed for pipelining. Depending on the area
and performance requirements, other design modifica-
tions can be made.

5 Conclusion

The combined interval and floating point multiplier
is implemented by making minor modification to a
conventional floating point multiplier. With this ap-
proach, interval multiplication requires only one more
cycle than floating point multiplication, and is one to
two orders of magnitude faster than software imple-
mentations of interval multiplication. By trapping to
software in the uncommon case that both endpoints
contain zero, a significant decrease in area is achieved.
The design of the combined multiplier has been com-
pleted, and its VLSI implementation is currently in
progress.




Table 4: Multiplier area and delay estimates.

IEEE Double Combined Interval Serial Interval [13]
Component Area (mm?) | Delay (ns) | Area (mm?) Delay (ns) | Area (mm?) | Delay (ns)

Multiplier 6.05 11.53 6.05 11.53 6.05 11.53
Registers 0.35 0.51 0.70 0.51 0.70 0.51
Multiplexors - — 0.08 0.44 0.08 0.44
Control Logic - — 0.01 0.50 0.01 0.50
Min/Max Unit - - - - 0.53 6.27

Route and Space 3.20 - 3.42 - 3.69 -
Total 9.60 12.04 10.26 12.98 11.06 12.98
Percent Overhead - - 6.88 7.81 15.21 7.81
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