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Abstract

A variation of merged arithmetic is applied to the
implementation of the wavelet transform. This approach
offers a simple design trade-off between the computational
accuracy and the complexity. Our analysis shows that the
trade-off is a function of the input data resolution, the
number of filter taps, the arithmetic precision, and the
level of the wavelet transform. The design parameter can
be also fixed for a given number of taps and used to
determine the minimum word size for the wavelet
coefficients of the transform. The key element of this
approach is to introduce a ‘“truncation” within the
merged arithmetic reduction process which provides
equivalent throughput with a substantially less complexity.
An experiment has been conducted 1o verify the analysis,
which suggests that 24-bit merged arithmetic is required
Jor the EZW algorithm to handle up 10 a level 6-wavelet
transform.

1 Problem Statement

Compactly supported wavelets use a computational
model that is a k-tap FIR filter operation. The theory of the
wavelet transform is that a pair of FIR filters is applied
recursively to the designated quarter of the wavelet
coefficients, the result of the previous level of the filter
operations. Merged arithmetic [1] produces filter results of
size £, = N+ (M + ﬁogquf )" when applied to N-bit
signal coefficients, M-bit filter coefficients, k-tap filter,
and L, levels. The problem is to minimize the size of the
wavelet coefficients. without destroying the image quality.

2  Introduction

The wavelet transform is an alternative to Fourier
based analysis that has found many practical applications.
Image compression is an application where the wavelet
transform offers an attractive quality-complexity tradeoff.
For many years, wavelet transforms have been studied
under different titdes: multiresolution analysis  [2],
compactly supported wavelets [3], symmetic quadrature
mirror filters [4], and the Embedded Zerotree Wavelet
Algorithm [5]. These researches showed that the quality
of wavelet-based image compression is better than
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conventional approaches such as JPEG. An effective and
fast computation of the wavelet transform is necessary to
create a practical application.

Merged arithmetic was introduced {1] as a way of
achieving an effective implementation of compound
arithmetic functions comprised of multiple arithmetic
operations (such as add, subtract, and multiply). The
approach is to merge one arithmetic operation into
another, by dissolving the boundaries separating the
discrete arithmetic operations. As a result, the desired
algoritn is realized through a process that is
arithmetically identical, but more efficient in performance
and cost of implementation. The concept originates from
the context of parallel multiplier and adder designs to
compute inner products which is a core computation of
digital signal processing systems as well as the wavelet
transform.

The wavelet transform poses a different problem to
the selection of the filter word size than the conventional
digital signal processing applications. The compactly
supported wavelet applies a pair of Finite Impulse
Response (FIR) filters to an input image to produce the
first outputs of the wavelet transform, or wavelet
coefficients. The same wavelet transform is applied over
and over again on the designated quarter of wavelet
coefficient calculated from the prior wavelet transform
until it reaches to the final level. This recursive process
introduces an amplification of the word size of the wavelet
coefficient. The results of the FIR filier operations have to
be truncated; otherwise the word size of the coefficients
increases dramatically.

An approximation to the exact solution of the wavelet
transform is desired when it is considered as an image
compression algorithm. The compression ratio and the
error between the original and the restored image measure
the quality of image compression. Therefore, a trade-off
can be made between the image quality and the
complexity by examining the compression ratio and the
image error. It is also attractive to use a single arithmetic
unit for computing the wavelet transforn regardless of the
level and the filtering coefficients.
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Figure 1. Wavelet decomposition: the first and
second level wavelet coefficients.
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Figure 2 - Transform-based image coder.

This paper introduces a merged  arithmetic
implementation for the wavelet transform specifically to
perform image compression algorithms such as the EZW.
First, the characteristics of the compactly supported
wavelets are reviewed to identify the word size
requirement of the wavelet coefficient. Then, we develop
an analytical solution of the design parameters. Finally, an
€xperimental result is presented to confirm our analysis.

3 Discrete Wavelet Transform

The wavelet-based image compression used in this
Paper is adapted from Shapiro’s Embedded Zerotree
Wavelet algorithm [5). It is based on a hierarchical
subband system. where the subbands are logarithmically
Spaced in  frequency and represent  octave-band
Qﬁcompositions. The overall process of the decomposition
' 10 begin with the original image and apply the four
d§fferem filters, HH, HL, LH, and LL. H and L represent
high-pass filter and low-pass filter, respectively. The
results of the four different filter operations are referred as
wavelet coefficients and they are decimated after each
Operation so that the four wavelet transforms have the
Same size a5 the original image. The process is recursively
;‘Pi)lied to the LL; wavelet coefficients as shown in Fi gure

_ The EZW algorithm is utilized as a transform-based
!Mage coder throughout this paper as shown in Figare 2.

© Quantization of the coder is based on a zerotree data
Stucture, and (he compression is from this quantization
lfﬁf?hnique alone. It is common to combine this technique
With & lossless compression technique such as Huffman
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Figure 3 - Truncated reduction of a 14-bit 3-tap filter

with 12-bit signals and 6-bit coefficients.

Coding to increase the compression ratio [5], [6]. This
additional compression is not included in this paper
because our interest is to study the effect of the
approximate transform on the image quality.

Since our objective is maximum efficiency of the
wavelet transform, we will examine the characteristics of
the wavelet. The compactly supported wavelets provide a
theoretical explanation that is especially useful for image
compression. The compactly supported wavelet is
represented by a set of FIR filter coefficients, h(n) and
£(n) with the following characteristics:

=l1<h{n) g(n)<1



Figure 4 - Restored image sequence of floating-point EZW
algorithm. The triple <T, PSNR, bpp> means that T is the
EZW quantization threshold, PSNR = 10-log;o(255*/MSE),
and bpp is the compression ratio. The original image is 8
bpp, of size 512x512.

The wavelet transform applies the filters to each
dimension of the image, i.e., two passes are required to
complete each level of the transform. For example, the LL
coefficients are obtained by applying the filier A(n) to the
rows of the original image followed by applying A(n) to
the columns of the row transforms, LH is obtained by the
filter h(n) followed by g(n), etc.

The maximum level of the wavelet transform depends
on the size of the original image and the size of the filter
bank. Due to decimation, each level of the wavelet
transform reduces the number of the coefficients produced
by the LL filter by a factor of 4. The next level of wavelet
transform is applied to this reduced region. The level of
the wavelet transform is L,, which is given by 1 +
LlogzN/k_f for an original image of size NN and k
coefficient filters.

4 Approach
Our design of the wavelet transform utilizes
“truncated reduction” to provide a simple trade-off

between the computational accuracy and complexity. It
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Figure 5 - Truncation process.

offers more flexibility than conventional merged
arithmetic [1]. Truncation error is adjusted to minimize the
complexity while achieving adequate image quality.
Furthermore, this design maintains a constant word size
throughout all the stages of the wavelet transform.

Merged arithmetic unifies the parallel multiplier and
fast adder to achieve a reduced implementation cost,
Regular merged arithmetic applies a Dadda-reduction
scheme [7] to the composite bit-product matrix that is the
collection of all the bit-products from the multiplication
[1]. All the bits are reduced in a uniform fashion,
However, truncating bits offers an opportunity to reduce
the implementation cost because it eliminates a portion of
the composite bit-product terms as well as the reduction
counters. Figure 3 shows merged arithmetic with
truncation to implement a 12-bit filter operation with
fractional coefficients. In this scheme, all the bits right of
the truncation line, less significant bits than the upper w
bits have been deleted. The white dots represent the
truncated bit-products and the black represent the active
bit-products that take a part in the reduction process. The
reduction is identical to the regular merged arithmetic and
it is constructed with counters such as full adders and half
adders as introduced in Dadda’s method.

Computational error is undesirable for most
applications and so is the truncation of the merged
arithmetic. However, certain applications tolerate the error
depending on the nature of computational error. The EZW
algorithm is such an application since it employs lossy
compression, as shown on Figure 2. Many experiments
conducted for the wavelet application show that the
wavelet is relatively insensitive to the quantization error
that occurs in the less significant bits of the wavelet
coefficients. The EZW or any other wavelet-based image
compression algorithm produces a large amount of image
information by using the most significant bits of the filter
coefficients. This suggests that maintaining the integrity of
the most significant part of the wavelet coefficient is
critical to the EZW algorithm. Figure 4 explains such
characteristics of the EZW algorithm. The Mandrill image
is processed with the floating-point implementation of the
EZW and the restored images are collected along with the
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Figure 6 — Conventional w-bit merged
arithmetic wavelet transform.

Quantization threshold T, the signal-to-noise ratio, PSNR,
and the compression ratio. The quantization threshold is
used by the EZW algorithm to recover the wavelet
coefficients and larger values indicate greater quantization
errors.

Since the filter coefficients of the compactly
Supported wavelet are fractional, the merged arithmetic
implementation of such a filter is shown in Figure 3. As
prior discussion suggested, a truncation line is drawn
vertically across the composite bit-product matrix to keep
only the word size of w greater than the integer of the
wavelet coefficients. Let wyand w; be the size of fractional
and integer wavelet coefficient as shown in Figure 3. With
this configuration, the w, most significant bits of the
wavelet coefficient provide the bit precision for the
Tequired image restoration quality. The wy least significant
bits compensate the error occurred in the truncation. As a
result, the merged arithmetic implementation of the
Wavelet transform can use registers of size w = (w, + wy)
for the wavelet coefficients.

Our design goal is to position the truncation line so
that the wavelet transform produces image quality that is
“Omparable (o the floating-point implementation. This is
done by estimating wy, the size of the fractional wavelet
“oefficient. In order to find this value. let us examine the
Wuncation process as shown in Figure 5. The wuncated
bits are equivalent 10 a single number that we refer to an
error. Due 10 the big size of the bit-product matrix, the
error value is a multiple bit number. As indicated in Figure
3, the error occurs at the integer wavelet coefficient when
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Figure 7 - Truncated w-bit merged arithmetic
wavelet transform.

the bit size of the error value is greater than wy. This is
integer-error condition of merged arithmetic described as
follows:

w

o
P o

wa <(wi+wpr -1k

for a k-tap merged arithmetic filter bank with infinite
precision of the filter.

Compactly supported wavelet states that each filter
has fractional coefficients that sum to less than or equal

toﬁ for each filter. Since the filter is applied in two
passes to both dimensions of the image. an additional bit is
required for each level of the wavelet transform.
Therefore, the integer size of the wavelet coefficients
should be

wi=1+02+L,
if the pixel resolution is 2, and wavelet transform is
performed up to the L, level.

With w, obtained above, the integer-error condition
estimates the lower boundary of the parameter w; that does
not introduce an error to the integer wavelet coefficient;

27wk > (02 + L)k
The minimum wy satisfying this condition is approximately

equivalent to fl+]og2(Qp + L)k . Therefore the word
size of the wavelet coefficient is

W= W, + wy:2+.Qp+Lw+ﬁog2(.Qp+Lw)ﬂ
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Figure 8 — Image quality of wavelet transform.

for the wavelet transform of an image with a pixel size,
{2, k-tap filter bank, and up to L, level.

5 Results

For a typical application such as EZW with an image
of size 512 x 512 by &-bits, and 9-tap filters [5], the word
size should be at least 23 bits (15-bit integer and 8-bit
fractional.) The regular merged arithmetic implementation
of the EZW is shown in Figure 6; the wavelet coefficient
of the merged arithmetic is truncated into w-bits. This
provides the wavelet transform with a fixed word size. It is
also possible to implement the wavelet transform by
utilizing truncated reduction as shown in Figure 7. These
two implementations provide image quality that is
comparable to the full precision floating-point
implementation.

An experiment has been conducted to validate the
analytical solution for the design parameters of the
truncated reduction. The wavelet transform is performed
to the Mandrill image by using merged arithmetic with
various truncations. The result wavelet coefficients are
applied to the inverse wavelet transform to restore the
image by using the same arithmetic. The restored images
and the original image are compared to compute the PSNR
by using the following formula:

2
PSNR (dB) =10 -log,, %
N-1N-i (t~ _ %f
MSE = Z R A K.
iZO: =0 N*

where x, is the original image and %, is the restored

image of size N x N. The signal-to-noise ratio, PSNR, is
measured for each truncation and plotted along with the
size of the wavelet coefficient as shown in Figure 8. The
experiment shows that the image quality has reached to
PSNR of 45 dB when the word size is around 23 at L,, = §,
This is equivalent to the maximum image quality of the
integer wavelet coefficient of the floating-point
implementation (see Figure 4).

Each level differs approximately by one bit as
predicted in our analysis. It is interesting that the S-level
image quality is gradually improved as the word size
increases from 17 to 24 bits. But it stays flat from 24
through 32 bits. It increases again, but rapidly after 33
bits. This indicates that the fractional portion of the
composite bit-product matrix makes a major contribution
to the mmage quality of the wavelet transform. This
contribution is incremental until there is no more error to
the integer wavelet coetficients (integer-error condition).
[t also indicates that the perfect image restoration requires
the 6-level wavelet coefficients larger than 34 bit.

NOT-MERGED REGULAR MERGED TRUNCATED MERGED
with adder tree 20-bit filter coefficients
FUNCTION GATES USAGE | GATES USAGE GATES USAGE GATES
AND GATE 1 4320 4320 4320 4320 2484 2484
HALF ADDER 4 333 1332 60 240 51 204
. FULL ADDER 9 3573 32157 4312 38808 2691 24219
. 27BitCLA 351 1 351
44 Bit CLA 620 13 8060
45 Bit CLA 620 2 1240
46 Bit CLA 641 1 641
47 Bit CLA 641 1 | 641 1 641
TOTAL GATE COUNT (110%) 48391 44009 (62%) 27258

Table — 24-bit Wavelet transform (9-tap filter bank) implementation comparison: the size assessment of CLA is
made by utilizing gates with 2 to 4 inputs, each counted as one gate.
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The second experiment is to build two different
circuits to realize the merged wavelet arithmetic: one is
the conventional merged arithmetic and the other is 24-bit
merged arithmetic implementation with  truncated
reduction. Both implementations offer a similar speed
performance, but the 24-bit truncated reduction offers a
substantial reduction in the cost of implementation. This
result is shown in Table along with a comparison to the

adder tree implementation [1]; it shows a substantial
saving in the gate count of the truncated reduction (40%).
The quality of the restored image of the 24-bit EZW by
utilizing the truncated reduction is provided in Figure 9
and it reveals performance that is very close to the
floating-point implementation.

6 Conclusion

Truncated reduction is investigated as an alternative
to the regular merged arithmetic that provides a very
effective implementation of the wavelet transform. The
truncated reduction offers a simplified assessment of the
trade-off between the image quality and the computation

-36.00, 6093523 ISR
Flgure 9 Res(()rcd umage sequence of the 24-bit merged

arithmetic with a truncation.
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accuracy that normally becomes very complicated for a
recursive process such as wavelet transform. Our design
achieved an optimal operating condition with a single
design parameter that is consistently applied to the entire
process of the wavelet transform. As a result, the wavelet
coefficient was reduced to a fixed word size with a
substantial reduction in the implementation cost (on the
order of 40%).

Our study shows that the design parameter of the
truncated reduction is

w=2+Q+ Lo+ [log (2 + L)-k]

for the wavelet transform of an image with a pixel size,
{2, k-tap filter bank, and up to L, level. The word size w
is fixed for given L,, k and (2. The result wavelet
arithmetic unit is capable to handle an arbitrary size of
image up to L,,. Our research concludes that 24-bit merged
anithmetic of the wavelet transform is appropriate for
image compression algorithms (such as EZW) to handle
up to size of 512 x 512 of 8-bit image with 9-tap filter
bank.
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