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Abstract

The Residue Number System (RNS) is an integer
system appropriate for implementing fast digital signal
processors since it can support parallel, carry-free, high-
speed arithmetic. In this paper a new RNS system and an
efficient implementation of its residue-to-weighted
converter are presented. The new RNS is a balanced §-
moduli system appropriate for large dynamic ranges. The
new residue-to-binary converter is very fast and
hardware-efficient and is based on a I's complement
multioperand adder adding operands of size only 80% of
the size of the system’s dynamic range.

I. Introduction and Background

The Residue Number System (RNS) [1] is an
integer system capable of supporting parallel, carry-free,
high-speed arithmetic. The system also offers some
useful properties for error detection, error correction and
fault tolerance in digital systems. Important areas of
application of the RNS include:

L Digital Signal Processing (DSP) intensive
computations such as digital filtering,
convolutions, correlations and DFT and FFT
computations [2]-{13].

2. Direct Digital Frequency Synthesis [14].

Recent work in RNS arithmetic has resulted in
the development of the Quadratic Residue Number
S)jSlem (QRNS) [15]-[16], [7], [17]-[18] the Quadratic
Like Residue Number System (QLRNS) [19]. the
Modified Quadratic Residue Number System (MQRNS)
!20]4 and the generalization of the above Quadratic
Rcsmue Systems, the Polynomial Residue Number
System (PRNS) [21]-{22]. [9]-[10]. All these systems can
*upport complex DSP operations using minimum
“omputational complexity and maximum parallelism.

, The basis for an RNS is a set of relatively prime
!ﬁ{egers

S:‘”{mpmz,..‘,ml‘}, where ("7,J?1/> =]fori#j (hH
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with (mi,mj)indicating the greatest common divisor of
m, and m;. The set S is called the moduli set. while the

dynamic range of the system is defined by the product M
of all the moduli m, in the set S. Any integer X belonging

to Z,={0,1,2...M -1} has a unique RNS
representation given by
RNS
X——(X,. X5..... X)) (2)
where
X, =(X), .i=12,...,L (3)

while (x) denotes the operation x mod m. If the integers
X,) and

(Y]YL) respectively, then the RNS representation of

W=X®Y (where ® denotes addition, subtraction or
multiplication} is given by

X and Y have RNS representations (X],‘..,

Y) =1L (4

Equation (4) demonstrates the parallel, carry-free nature
of the RNS. It must be mentioned that in order to ensure
fast internal RNS processing. the moduli mymy,...m,
should be as small as possible. The reconstruction of X
from its residues (XI,Xz,...,XL) 1s based on the Chinese
Remainder Theorem (CRT) [1] shown by equation (5)

where



The notation <Ml.'1>m in equation (7) denotes
the multiplicative inverse of M; modulo m;. Another
way for converting the RNS representation
(X,,X,,...,X,) into its weighted form X is by using the
Mixed Radix Conversion (MRC) formula {1] shown by
equation (8)

X=X +mX;+mmXi+...+mm,..m_X; (8)
where X[, X3,..., X, are the mixed radix digits of X.

In this paper a very efficient new residue-to-
weighted conversion technique is proposed. The
technique is based on combining the CRT and MRC
techniques and relies on a final adder of size smaller than
the size of the system's dynamic range. Section 2 offers
the new decoding technique and the class of RNS systems
which are appropriate for the new technique. A new 5-
moduli RNS system and the efficient implementation of
its residue-to-weighted converter are presented in section
3. Finally, section 4 offers conclusions.

2. RNS Systems with Efficient Residue to
Weighted Conversion

Consider an L-moduli RNS system based on the
moduli set S of (1) and consider converting the residue
form (Xl,X2,...,XL) into its weighted form X by using
the Chinese Remainder Theorem (CRT) of (5). An
implementation of the CRT equation (5) can be based on
a multioperand adder mod M (M is the system’s dynamic
range given by (6)). Such a mod M multioperand adder
can be efficiently implemented by a mod M Carry Save
Adder (CSA) tree and a mod M Carry Propagate Adder
(CPA). Let N be the size of the dynamic range M in terms
of number of bits. Then

N =[log, M] 9
The following observations are in place:

1. The size N directly affects the speed and cost of
the mod M CRT multioperand adder of (5). The
larger the size N is, the higher the cost of the
mod M CSA tree becomes. Also, the larger the
size N is, the higher the cost and the propagation
delay for the final mod M CPA becomes.

2. The form of the number M (the dynamic range)
affects the speed and hardware complexity of the
mod M CRT multioperand adder.

A new class of RNS systems appropriate for very
efficient residue-to-weighted conversion is now
presented. The RNS-to-weighted converters for these
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new systems rely on a hardware-efficient multioperang
modulo adder of size smaller than the system’s dynamijc
range.

Consider an RNS system based on the modulj set

S of (1) where one of the moduli (say the modulus m) is
a power of two or

m =2 (10)

The conversion of the RNS representation

(XI,X2,...,XL) into its weighted form X will now take

place by using a combination of the CRT and MRC
techniques as follows:

Combine the channels mod m,, mod ms, ..,

mod m, using the CRT approach. The set used for this
CRTis

S ={m2,m3,...,mL} $9))
and the performed CRT computation is
* L * *
X =(X(xN) M (12)
i=2 m; M'
where
. L
M =[]m (13)
i=2

Apply now the MRC formula on channels mod m, and

mod M * (see (10), (13) for m,, M‘)to get

X=X +mX} (15)
where
X =X, (16)
,l‘ _1 *
x5 = (m (X - X)) (17)

Combining (17) and (12) yields

L
X5 = <mfﬂ2<xu’\/f> M:j~ X, D (18)
=2 ‘ M

Equation (18) dictates that X can be computed by a

mod M’ multioperand adder of size N bits where N is




N‘=[‘iog2M']={1og2—Aﬂ=N—i (19)

2

According to (15), (16) the desired X can be computed by
X=X +mX] (20)

Since m, = 2% (see (10)) and the residue X, is an i-bit
number, (X1 = (X)m]), no computational hardware is
needed to compute X according to equation (20). The

desired X is just the result of concatenating X; and X, or

%

X=X/ X, @n

where comma (,) denotes concatenation. Thus, using the
novel RNS decoding technique of (18) and (21) (which is
based on combining CRT and MRC), the RNS-to-
weighted conversion can rely on a multioperand modulo
adder of size smaller than the size of the system’s
dynamic range. This is possible if one of the L moduli in

the system is of form 2'. In this case, the size of the
multioperand adder will be by i bits less than the size of
the systemn’s dynamic range (see (19)).

Our next concern is that the mod M
multioperand adder of equation (18) be as fast and
hardware-efficient as possible. This will of course

depend on the form of the number M~ (see (13) for M.).
The best form of M™ is M~ = 2°. This is mathematically

. . *
mpossible, however, due to the fact that M =2% can
not be factored into pairwise relatively prime integers

My, my,....m;. The second most attractive M s the

form M = 2° — | which is the choice considered by this
paper.

3. A New RNS and its Converter Design

As seen in section 2, if a multimoduli RNS
System relies on a moduli set with one modulus being of

form 2 and the product of the remaining moduli being of

form M™ = 24 I, then the RNS-to-weighted conversion
can rely on an efficient adder of size smaller than the size
of the system’s dynamic range. This is possible due to the
Presented novel RNS decoding technique which is based
on combining the CRT and MRC techniques. The
Simplest such RNS system is the 2-moduli system with

m =2" and M* = my =2" = 1. Another system of this
“ategory is the popular 3-moduli system with m, =2"

and M* = mym, =2°" ~1 which implies my =2" -1

and my = 2" +1 [23]-[27]. Both the above mentioned
systems rely on simple RNS-to-weighted conversion but
are not appropriate for large dynamic ranges. This is due
to the fact that in case of large dynamic ranges, large
values of n are required resulting in apparent performance
degradation of the system.

For large dynamic ranges, RNS systems with
more than two or three moduli must be considered. A
new 5-moduli RNS appropriate for efficient residue-to-
weighted conversion is now presented. The new system
is based on the set S,

Sy ={my,my,my, my, mg)

, el et (22)
=272 12" 412" 427 +1,2" =27 4 1)m
is odd integer
Here
my=2"" (23)
5
M*=]]m =2 -1 (24)
i=2

The moduli my,m,...,mg of the set S, are pairwise
relatively prime while the achieved dynamic range (in
number of bits) is DRs; = 5n+1 bits. Also, the set S,
implies balanced arithmetic since the sizes of the
mod m;, mod m,, ..., mod my processors are

n+1n,nn+1 and n bits respectively.

Due to the fact that m; and M are forms
dictated by (23)-(24), the new RNS of set $, (eq. (22))

can be decoded by using the novel technique of (18) and
(21). Let the RNS representation of X be (X Xy, X))

Then (18) becomes

X3 =(m; (AM; + BM; + CM, + DM, - X,)),,. (25)

where

M =2% (26)

my=2"" 27

(mhy,. =2 (28)

A=(X,N,),, (29)

B=(X;N),, (30)

C= (XN, ‘ (31)

D= (X,N;) (32)

"is

My ="+ D2+ 1) (33)



M =" =127+ 1) (34)
‘ )

M, =(2" 12" =22 +1) (35)
n+l

M= -2 +2 7 +1) (36)

where m,,my,m,,m; are given by (22) while

N;,N;,N:, N; are given by (14). It must be mentioned
that the computations of A, B, C, and D (equations (29) -
(32)) are performed by the existing modm,
(i =2,..,5)ymultipliers which belong to the RNS
processing hardware. Since A, B, C, D, and X belong to
the rings of integers mod(2” —1), mod(2" + 1),

n+i n+l

mod(2" +2 2 +1), mod2" =2 % +1)

mod(2"“), respectively, then these numbers are of
lengths n,n+ 1,n+1,n and n+1 bits respectively. Let
the binary (bit-level) representations of A, B, C, D, and
X, be

and

A=(a,_a,_,...q,a,) (37)
B=(bb, b, 5..0by) (38)
C =(c,C,_1Cp_n € \Co) (39)
D=( _,d _,..dd,) (40)
X = (%, X, (X, 5. X Xg) 40

Combining equations (26), (28), (33) - (41) together with
(25) and using simple properties of arithmetic

mod(2® = 1) results in
X;k - <zzl,) an (42)

where Z,,2Z,,....Z;, are the following 4n — bit vectors

Z, = (aya, ,a, ,..a,)" (43)
Z, = by(0Y bbby (0) bbb, (44)
Zy = b, bbb b, BB ()T 45

188

n~1

Z, = Cl;'""CO(O) 2 Cn(cn_l.,,clco}z

N

‘ (46)
0) % c,...cp
Zi=coepyc ()5 e, 06
o (47
(D7 ec,...0p ¢
~\2n n—
z,=1c,)" (1) (48)
Z; = (O)Hl(dnqdn—z ““";d0>2(0)"_| (49)
3n+l 3n-1
Zg=(0) 2 d,_\d,_,...ddy(0) 7 (30)
Zy=dyd, ..d d(1)"d,_..d, d (51
Zg=drl.d dy(D"ddi (D)
Z =X—n;,: ;;(;(1)3n~1 (53)

In the equations (43) - (53) the notation (0)" indicates a
string of n zeros, (1)" indicates a string of n ones while
(abed)* indicates a 4k-bit vector where the 4-bit string
abed is repeated k times. For example (1)°(ab)*(0)*
means 111abab0000. In order to improve the readability
of the paper, derivations for the expressions of
Z,.Z,,...Z,, (equations (43) - (53)) are not provided
here.

Figure | shows an efficient implementation of
the new RNS-to-binary converter for the new 5-moduli
system of (22). The converter implements equation (42)
using the carry save adder (CSA) approach. The

converter consists of a mod (24" - 1) CSA tree and a
mod (24" - 1) carry propagate adder (CPA). Each mod

(24" ~1) CSA in the tree consists of 4n full adders

,’411

(FAs). The outputs of each mod (._ - 1) CSA are the

4n -bit summation vector §; and the 4n-bit vector C,
where C, is the left-rotated by one bit carry-out vector

(end-around carry). The presence of zeros and ones in the
vectors of (43) - (53) implies that some of the full adders
(FAs) in the CSAs can be replaced by simpler gates
(AND, OR, XOR etc.) costing less and having smaller
propagation delay than a FA. The repetition of certain




binary strings in the vectors of (43) - (53) implies that
some CSAs will rely on fewer than 4n FAs or simplified

FAs. The mod (24" - I) CPA is a I's complement carry

propagate adder of size 4n bits. An area-time efficient
design of such an adder is provided by reference [28].
The result of the 5-moduli RNS-to-weighted conversion is
the concatenation of the 4n-bit vector X; and the
(n +1)-bit residue X, (see figure | and equation (21)).
The cost and delay for the new RNS-to-weighted
converter are

Converter-cost < 36nC, + C, (54)

Converter-delay = 5D+ D, (55)
where C; and D, are the cost and delay for a full adder
(FA) while C, and D, are the cost and delay for a mod

(24" - 1) carry propagate adder (CPA). The parameter n

is the number of bits per moduli channel; (the system has
a dynamic range of 5n + 1 bits).

4. Conclusion

In this paper a class of multimoduli RNS systems
appropriate for very efficient residue-to-weighted binary
conversion has been presented. Specific emphasis was
placed on a new balanced 5-moduli such RNS system and
its converter design. The presented L-moduli RNS class
relies on one modulus being of the form m, =2' and the
product of the remaining L-1 moduli being of form
M =)0 —1.  The proposed restdue-to-weighted
conversion technique is based on combining the Chinese
Remainder Theorem (CRT) and the Mixed Radix
Conversion (MRC) techniques. The resulting new RNS-
to-weighted converters are very fast and hardware-
efficient due to the following reasons:

I The new converters rely on a multioperand adder
of size smaller than the size of the system’s
dynamic range.

2. The multioperand adder is a mod (2“ ~ ]) adder.

5 carry save adder (CSA) based implementation of a mod
(2° - 1) multioperand adder is faster and more hardware-

efficient than the implementation of a mod M adder with
M#2t
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