THE DESIGN OF RESIDUE NUMBER SYSTEM ARITHMETIC UNITS FOR A
VLSI ADAPTIVE EQUALIZER

Inseop Lee and W. Kenneth Jenkins

Department of Electrical and Computer Engineering and
The Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street. Urbana, IL 61801
email: is-lee@uiuc.edu and jenkins@uicsl.csl.uiuc.edu

ABSTRACT

This paper presents the design details of an experimen-
tal ASIC for an all-digital adaptive equalizer. In this
design, the LMS algorithm is chosen because of its sim-
plicity. The adaptive equalizer design, which is based
on an RNS architecture, consists of an RNS multiplier.
an RNS adder, an RNS filter, a binary-to-residue con-
verter, a residue-to-binary converter, and an update
algorithm. The design is verified by a high level hard-
ware simulation tool. The designs of all these units are
discussed in this paper.

1. INTRODUCTION

As the transmission rate increases, high speed adaptive
equalization is necessary. The most popular and widely
used adaptive algorithm in practical applications is the
least-mean-square (LMS) algorithm because it is a sim-
ple but powerful algorithm. Although the LMS algo-
rithm is a simple adaptation algorithm, implementing
a high speed and area efficient adaptive equalizer Is
hot a simple problem because a considerable number
of multiplications is required to implement the update
€quation and filter [1]. To overcome this complexity
in the LMS algorithm, modifications were made on the
LMS algorithm. Examples of these modifications are
the use of the sign LMS, the block LMS and the de-
layed LMS algorithms. These algorithms are not the
€xact optimal solutions, but for some applications, the
performance is acceptable [2].

Another approach to solving this problem is to use
RNS arithmetic to achieve high speed multiplication.
The residue number system {RNS) has been a success-
ful alternative arithmetic for high-speed finite impulse
fesponse (FIR) filters [3]. Because of its carry-free
Property, it accommodates parallel implementation for

0-8186-8409-7/98 $10.00 © 1998 IEEE

high speed applications. However, a scaling operation,
which is a simple shift operation in the binary number
system, is not simple in the RNS [4]. Because of this
cumbersome scaling operation, the RNS-based imple-
mentation of the LMS algorithm has not been attrac-
tive as a general approach.

The design strategy used here moves the scaling
operation into the binary number system. This ap-
proach requires increasing the internal dynamic range.
To limit the growth of this internal dynamic range,
which 1s increased to avoid scaling within the RNS. and
to improve the finite precision performance, a modified
LMS algorithm was proposed and demonstrated in [5].
Also, to avoid the large computational complexity of
residue-to-binary conversion, an approximated Chinese
remainder theorem (ACRT) is implemented [5]. Figure
1 shows block diagram of the RNS implementation of
the modified LMS algorithm.

2. THE RESIDUE NUMBER SYSTEM

The binary number system is called a weighted num-
ber system because each digits have different weights.
A number X is represented in the binary number sys-
tem as

n-—1
X = baotbaio-bo=) b2 (1)
j=0

bj = O 1
where
X : Nonnegative integer, 0 < X < 27,

This X also can be represented by a non ‘weighted num-
ber system using the RNS. X in the RNS is

X = (ry,ro, - -,1r0), (2)

r; = X mod mj, {(3)
g5mj + 14, (4)

-
I

where

J =12 N.
r; 1s called residue of .X' modulo mj. M = H]V:l m;

is the dynamic range of this number system. If X <
M, then X can be uniquely represented by the RNS
and can be perfectly converted to X from its RNS rep-
resentation. This conversion process from the RNS to
the binary number system is based on the Chinese Re-
mainder Theorem(CRT). The CRT states that if m;
and r; are given, X < M, and (m; my)(j # k) pairs
are relatively prime, then X can be recovered by

N
. LT ;
(Xl = |Z r”j|’;1_1j!m,hl (5)
J=1
where,
M
m; = — (6)
J m;
N
=1
['lary = - mod M (8)
1
|—Im, Multiplicative inverse which satisfies
m;
1
my

By this old theorem and some restrictions on num-
bers (pairwise relatively moduli, dynamic range of X),
we can represent numbers in different ways without los-
ing any information. Arithmetic operations in the RNS
can be categorized by two groups, simple and difficult
operations. Addition, subtraction and multiplication
belong to the simple operation group. Division. scal-
ing, sign detection and magnitude comparison belong
to the difficult group. Addition and subtraction in the
RNS is

X = {zy. 22, .1,)
Y'o= (yiye)
(X2 Yy = (Jer2yllm, o2 £ 1200,
ey EyNlmy). (10)

Multiplication in the RNS is given by

X = (xy, 20, -, 1,)
Y'o= (y1.¥2. - ym)
XYy = (er-ylm, o2 220m,.
Zv YNy) (11)

180

[t is easily observed that there is no carry propagation
in these operations and this is the most attractive prop-
erty of the RNS. However scaling by a fixed number ip
the RNS is not a simple operation because all digits
are not weighted. although in a weighted number sys-
tem, like the binary number system, it is a simple shift
operation. This scaling operation in the RNS includes
sign detection and division. Both belong to the difficylt
group of operations. Detalls of these operations can be
found in [4].

3. THE RNS IMPLEMENTATION OF THE
LMS ALGORITHM

As mentioned in Section 1 and 2, scaling in the RNS is
a very high-cost operation. Therefore it is desirable to
eliminate this operation or to implement it in the bj-
nary number system. It is impossible to eliminate the
scaling in the fixed point implementation of the LMS
algorithm because of its feedback structure. However,
1t can be done in the binary number system rather than
in the RNS. This approach can eliminate scaling oper-
ations in the RNS but requires increasing the number
of bits for internal processing.

Assume that N = 28-1 where B is the number of
bits. The coefficients w(n). data x(n), and step size
are quantized using B bits, and shifting operations are
required at every multiplication. Therefore, the LMS
update equation in fixed point arithmetic is,

win+ 1) = win)+ px(n) (113
1

-—R';ng(n)x(n))‘ (12)

d{n)

According to eq.(12), 1if the scaled desired signal,
N%d(n) is provided and % 1s formed by shifting in the
binary number system, scaling in the RNS is no longer
a problem. However, to implement this, a large number
of bits are required to represent w# (n)x(n). For B=6,
24 bits are required to represent y(n) = w#(n)x(n)
properly. This architecture has a serious drawback
when high resolution is required, because a large num-
ber of internal bits are needed. All coefficients and data
are quantized using B bits and @p_;[] is a quantizer
with B bits. Then,

w(n+ lj=w(n)+ux(n)(@p-1[d(n)]-Qp-1[y(n)])
=w(n)+px(n)(Qp-s[d(n)]+Q4_1[d(n)] - 27*
~Qp-5ly(n)]-Qs_1[y(n)] -27%) (13)
If Qazi[d(n)] =0,

win+ 1) =w(n) + px(n)(Qp-s[d(n)] — Qp_s[y(n)]
~Qaly(n)] - 27Y) (14)

D : RESIDUE OPERATION O : BINARY OPERATION

d(n)

/ y{r)
+
x(n) BTOR) RTOB - 9
e(n)
MUX
UPDATE SHIFT

1

DELAY

O

Figure 1: Block diagram of the RNS implementation of the modified LMS algorithm.

After stalling occurs, @p-s5[d(n)]—Qp-s[y(n)] = 0,
then

Win+1) = w(n) + Qa1 [x(n)(~y(n) - 27%)). (15)

Eq.(15) has the same effect as a quantizer with more
bits.

4. DESIGN OF THE RNS ARITHMETIC
UNITS

A relatively large complexity for the residue-to-binary
converter limits the RNS from being used in many digi-
tal signal processing applications. Eq.(5) can be rewrit-

ten using modular algebraic operations and scaling [7].

N

. Qd 7’j Qd
X = *ZIEIm, ' ;)J_‘I?dv

Jj=1

(16)

!f‘ €q.(16) we can apply the following approximation to
stmplify the hardware architecture:

k

1 r _
— =, —, (17)
77)] 771]' 777]‘
L :
R{k) = — A~ | —]k, (18)
777J‘ 77)‘7

nd

where £ is ap integer and 0 < k < m;. Finally, X - 37
“an he computed by summing the precomputed ROM

181

outputs, R(k), according to eq.(16), resulting in
» 2d N T]'
X5 ~i§m|;§rm,>t?d. (19)
Figure 2 shows a block diagram of an ACRT implemen-
tation [5]. Inputs of this ACRT are RNS encoded num-
bers and ROMs contain precomputed values of eq.(18).
And the implementation of power of 2 modulo adder 1s
the same as a binary adder with floating overflow bit.
To reduce errors cause by using finite precision ROMs.
LSBs are truncated. Bias control is realized by two
comparators, a multiplexor and a binary adder. The
truncated output is compared to two preset values to
determine the bias and then subtracted to correct bjas.
The binary-to-residue converter is designed based
on the algorithm which is described in [3.6]. A K bit
number X can be expressed,

K1 K
X o= Yb24 S b (20)

=0 J=R 141

where b; is the sign bit. The residue of X mod m;,
where m,, 7 = 1,--- N, is the i-th modulus used to
define the RNS code, can be written using eq.(20),

K1 K
= 26+ 3 2]

X,
J=0 JEK 141
K1 » K .
= }bez]fm. = | Z b;2 |, (21)
1=0 J=R1+1

where & represents modulo addition. According to
eq.(21), the binary-to-residue converter can be imple-
mented by two precomputed ROMs and a modulo
adder. For the smaller modulus, it is simpler to use
programmable logic arrays (PLAs) instead of ROMs.
In this design we use both approaches to reduce hard-
ware complexity. A block diagram is given in figure
3.

One of the primary building blocks is the modulo
adder. The basic architecture of an adder used in this
system is the vector merging adder (VMA) with over-
flow control, which is suitable for high speed applica-
tion because it is pipelined to reduce carry propagation
delay. To guarantee high speed operation of this adder,
for large moduli, the gate delay should be considered in
the design of overflow control circuit. A design example
of the VMA architecture is given in figure 4. Design of
the modulo multipliers is based on a pipelined square
law multiplier which uses two ROMs and 3 modulo
adders for each modulo multiplier [3, 6]. With a slight
modification this system can be implemented with 2
ROMs and 1 modulo adder. Taking values of multi-
plicands as the input to the ROMs with precomputed
residues of values of square-of-sums (|(4A + B)?|m,) and
square-of-differences (|(A — B)?|,,), and adding out-
puts of ROMs with a modulo adder, produces the mod-
ulo multiplication. But the output of this multiplier is
four times larger than the expected value (44B). A
block diagram is shown in figure 5. The binary multi-
plier needed for the coefficient update block is imple-
mented using AND gates and adders, because the value

ROM3

ROMS5 N\
ROM11 /

ROM13

ROM17

Fd

ROM19

ROM23 {}/

.
0

of the step size is usually kept small for stability of the
system. Implementing the multiplier using a combi-
nation of logic and adders can save considerable area
and speed compared to a conventional multiplier de-
sign. FIR filter sections are designed by the pipelined
FIR structures. To compensate all delays caused by
pipelining, special attention is required. In figure 6 a
structure of a pipelined FIR filter is given. To imple-
ment the update algorithm, modulo multipliers, mod-
ulo adders and delays are used. To initialize the filter
coefficients, external initialization inputs are provided.
Because each modulo multiplier and each modulo adder
has different numbers of delays, also delay compensa-
tions are required. This is given in figure 7.

5. SUMMARY

This paper presents the design details of an experimen-
tal ASIC for an all-digital adaptive equalizer. Since the
system level designs based on an RNS architecture are
already established in a previous publication [5], this
paper focuses on the design details of the RNS adap-
tive equalizer arithmetic units. The designs of all units,
Le. an RNS multiplier, an RNS adder, an RNS filter,
a binary-to-residue converter, a residue-to-binary con-
verter, and an update algorithm for the adaptive equal-
izer based on an RNS architecture are discussed in this
paper, demonstrating the feasibility of an RNS imple-
mentation of the LMS algorithm. Design verification is
performed by timing and logic simulation using a high
level hardware simulation tool.

0001(212)

R T

[oetar

Figure 2: Block diagram of an ACRT for 16 bit precision.

6. REFERENCES Hi ROM

[1] C. S. H. Wong, J. C. Rudell, G. T. Uehara, BINARY \ e
and P. R. Gray, “A 50 MHz Eight-Tap Adaptive
Equalizer for Partial-Response Channel,” IEEE J.
of Solid-State Circuits, vol.30, no.3, pp. 228-234,
March 1995.

LOW ROM

Figure 3: Block diagram of a binary-to-residue con-
[2) S. Haykin, Adaptive Filter Theory 3rd Ed. New verter.

Jersey: Prentice Hall, 1996. o4 b4 83 b3 &2 b2 & b1 80 bO
'S8T 8T8
[3] N. R. Shanbhag and R. E. Siferd, “A Single-Chip @ ;b +
Pipelined 2-D FIR Filter Using Residue Arith- ')
metic,” IEEE J. of Solid-State Circuits, vol.26, OVERFLOW CONTROL)

no.5, pp. 796-805, May 1991.

/ {1
[4] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, s (D GE
and F. J. Taylor, Residue Number System Arith-
metic: Modern Applications in Digital Signal Pro- +/
¢

cessing, New York, IEEE Press, 1986.

S
[5] Inseop Lee and W. Kenneth Jenkins, “VLSI De- S}’D

sign for an Adaptive Equalizer Using a Residue
Number System Architecture for Magnetic Chan- / /
nels,” Proceedings of 40th Midwest Symposium on @ +
Circuits and Systems, Sacramento, CA, August,
1997, to appear. n
[6] W.K. Jenkins and B. J. Leon, “The Use of Residue |
Number Systems in the Design of Finite Impulse
Response Digital Filters,” [EEE Trans. on Cir- /
cuits and Systems, vol.CAS-24, no.4, pp. 191-201,
April 1977. wor) (+
{7} J. Y. Kim. K. H. Park, and H. S. Lee, “Efficient ‘/
Residue-to-Binary Conversion Technique with
t

Rounding Error Compensation,” IEEE Trans. on

Circuits and Systems, vol.38. no.3, pp. 315-317. A
ve PP " Figure 4: An example of VMA architecture for modulo

March 1991.
17 adder.
Acknowledgment A (AeBR
ROM

T:his work is supported in part by the Joint Ser- EL AB
V}Ces Electronic Program (JSEP) under grant number g
N0001A-96-0129. The opinions expressed herein are e
ot necessarily those of the sponsoring agency. 8 ROM

Figure 5: Block diagram of a modulo multiplier.

183

(=]

o L1 EF*E}”@

&=

=)

o

ol

&

5

&

&

é (=]

é o
-

—
oHeH

é
!
Y
yin)

Figure 6: Block diagram of FIR filter.

[neml @) Delay1 | [ne(mix(n)]

43
3 3 . ; LI 3 —————-l 3
[uein)] H— °

. elay2l ‘ MUX ! ,ue(n)x(n)is
tnit
]
H
i
1
'
i

[xin | g

l > .
fnemx(n)]

S

3“9(”)123 7 7

ll Delay7
y]

23

Figure 7: Implementation of update algorithm.

	Main Page
	GLSVLSI98
	Front Matter
	Table of Contents
	Author Index

